REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arilington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - 10)
xx-08-2003	Technical	
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER
Final Light Nonaqueous-Phas	se Liquid Weathering at Various Fuel	F41624-00-D-8024
release Sites, 2003 Update		5b. GRANT NUMBER
		5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)		5d. PROJECT NUMBER
Parsons Engineering Science, Inc.		
		5e. TASK NUMBER
		24
		5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S	S) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION REPORT NUMBER
Danas Garage Caisas Inc		NUMBER
Parsons Engineering Science, Inc.		
1700 Broadway, Suite 900, Denver, CC)	
9. SPONSORING / MONITORING AGENCY	NAME(S) AND ADDRESS(ES)	10. SPONSOR/MONITOR'S ACRONYM(S)
Air Force Center for		AFCEE
Environmental Excellence		
3300 Sidney Brooks	-	11. SPONSOR/MONITOR'S REPORT
Brooks City-Base, TX 7823		NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This update report presents the results of work completed to evaluate additional analytical data collected to augment the original fuels weathering study performed for AFCEE. The original report, "light Nonaqueous-Phase Liquid (LNAPL) Weathering at Various Fuel Release Sites" was completed Sep 1999. The existing data set from the original fuels weathering study was augmented with newly-collected data from several additional sites. The expanded data set was used to form a more robust database for estimating fuel LNAPL weathering rates.

Both the original study and this update focus primarily on the weathering or natural depletion of BTEX components from free-phase product.

15. SUBJECT TERMS

LNAPL, weathering, fuels, source depletion

16. SECURITY CLASSIFICATION OF: UNCLASSIFIED		17. LIMITATION	18. NUMBER	19a. NAME OF RESPONSIBLE PERSON	
		OF ABSTRACT	OF PAGES	Mr. Jerry Hansen	
a. REPORT U	b. ABSTRACT U	c. THIS PAGE U	SAR	211	19b. TELEPHONE NUMBER (include area code) 210-536-4353

FINAL

Light Nonaqueous-Phase Liquid Weathering at Various Fuel Release Sites 2003 Update

Prepared For

Air Force Center for Environmental Excellence Science and Engineering Division Brooks City-Base San Antonio, Texas

1700 Broadway, Suite 900 • Denver, Colorado 80290 • (303) 831-8100 • Fax: (303) 831-8208 • www.parsons.com

September 2nd, 2003

Mr. Jerry Hansen AFCEE/ERS 3207 Sidney Brooks Road Brooks City Base, San Antonio, Texas 78235

Subject:

Submittal of the Final Report for Light Nonaqueous Phase Liquid Weathering Rates at Various Fuel Release Sites, 2003 Update (AFCEE

Contract F41624-00-D-8024, TO24)

Mr. Hansen,

cc:

Please find enclosed two copies of the Final Report for Light Nonaqueous Phase Liquid Weathering Rates at Various Fuel Release Sites, 2003 Update. The final report was also submitted to the various site managers of the bases included in the study in electronic form for their use. The final report was prepared by Parsons Engineering Science, Inc. (Parsons) for the Science and Engineering Division of the Air Force Center for Environmental Excellence (AFCEE/ERS). If you have any questions, require additional information, or additional copies of this final report; please contact Dan Griffiths at (303) 764-1940 or Bruce Henry at 303-764-1986.

Sincerely,

PARSONS

Linda Murray Project Manager For Linda Murray

Mr. Jack Sullivan – Parsons San Antonio (1 copy)

AFCEE/MSCD (letter only) HSW/PKVCB (letter only)

FINAL LIGHT NONAQUEOUS-PHASE LIQUID WEATHERING AT VARIOUS FUEL RELEASE SITES 2003 UPDATE

August 2003

Prepared for:

Air Force Center for Environmental Excellence
Science and Engineering Division
Brooks City-Base
San Antonio, Texas

Prepared By

PARSONS

1700 Broadway, Suite 900 Denver, Colorado 80290 (303) 831-8100

TABLE OF CONTENTS

			Page
ACR	ONYMS	S AND ABBREVIATIONS	v
SECT	TION 1 :	- INTRODUCTION	1-1
ole i	10111	T(TROBOCTIOT)	1 1
1.1	Projec	ct Scope and Objectives	1-1
1.2	Repor	rt Organization	1-3
SECT	TION 2	- LITERATURE REVIEW	2-1
2.1	Gasol	line and Jet Fuel Use and Composition	2-2
		Fuel Use and History	2-2
	2.1.2	Hydrocarbon Composition of Gasoline and Jet Fuel	
		2.1.2.1 Distillation	
		2.1.2.2 Wide-Cut and Kerosene-Based Jet Fuels	
		2.1.2.3 Hydrocarbon Structure	
		2.1.2.4 BTEX Composition	
		2.1.2.4.1 Gasoline	
		2.1.2.4.2 JP-4	
		2.1.2.4.3 JP-8	
		2.1.2.4.4 JP-5	
2.2		urface LNAPL Distribution and Recovery	
		LNAPLs in the Unsaturated Zone	
	2.2.2	LNAPLs in the Saturated Zone	
	2.2.3	LNAPL Recovery	
2.3		PL Weathering Mechanisms	
	2.3.1	Dissolution	
		2.3.1.1 Effective Water Solubility of BTEX	
		2.3.1.2 Fuel/Water Partitioning Coefficients	
		2.3.1.3 Equilibrium versus Nonequilibrium	
	2.3.2	Volatilization	
	2.3.3	Biodegradation	
		2.3.3.1 Residual LNAPL and Groundwater	
	0.1	2.3.3.2 Mobile LNAPLs	
2.4		Factors Influencing LNAPL Weathering	
	2.4.1	Hydrocarbon Layer Thickness	
	2.4.2	Groundwater Velocity	
	2.4.3	Soil/Aquifer Material	
2.5	2.4.4	Distance from Source Area	
2.5		leum Hydrocarbon Weathering Studies	
	2.5.1	BTEX Decay in Source Area Groundwater	
	2.5.2	Bemidji Oil Release Site	
	2.5.3	Internal Biomarkers and Hydrocarbon Ratios	
	2.5.3	BTEX Ratios	2-23

TABLE OF CONTENTS (Continued)

			Page
SECT	ION 3 -	SELECTION OF STUDY SITES	3-1
3.1	Sita S	election Criteria	2 1
3.1		Weathering Study Sites	
3.2	ruer v	veathering study sites	3-2
SECT	ION 4 -	· COLLECTION OF SITE DATA	4-1
4.1	Soil S	ampling	4_1
4.2		e LNAPL Sampling	4-3
4.3		idwater Sampling	
4.4		atory Analysis	
		National Risk Management Research Laboratory	
		Evergreen Analytical Laboratory	
	4 4 3	O'Brien and Gere Laboratories	4-6
	1. 1.5	O Brieff and Gere Eudoratories	1 0
SECT	ION 5 -	ANALYTICAL RESULTS AND DATA ANALYSIS	5-1
5.1	Result	s Summary	5-1
J.1	5.1.1	Mobile LNAPL BTEX Results	5-1
	5.1.2	Groundwater BTEX Results	
	5.1.3	Soil BTEX Results	
5.2		e LNAPL Weathering	
5.2		Assumed Initial Fuel Compositions	
	5.2.2	Kinetics of Weathering	
	3.2.2	5.2.2.1 Zero-Order Weathering	
		5.2.2.2 First-Order Weathering	
	5.2.3	Weathering in JP-4 Mobile LNAPL	
	3.2.3	5.2.3.1 Range of Weathering Rates for the Six JP-4 Sites	
		5.2.3.2 Combining JP-4 Site Data to Assess Weathering Rates	
		5.2.3.3 Dissolution-Dominated Weathering	
		5.2.3.4 Weathering and Spill Age	
		5.2.3.5 Site-Specific Weathering Based on Multiple Sampling	
		Events	
		5.2.3.5.1 Shaw AFB	
		5.2.3.5.2 DFSP-Charleston	
	5.2.4	Weathering in JP-5 Mobile LNAPL	
		5.2.4.1 Beaufort MCAS	
		5.2.4.2 Cecil Field NAS	
	5.2.5	Weathering in JP-8 Mobile LNAPL	
		5.2.5.1 Pope AFB	
		5.2.5.2 Seymour Johnson AFB	
	5.2.6	Weathering in Gasoline Mobile LNAPL	
	2.2.0	5.2.6.1 One-Point Weathering Rates	
5.3	Fuel/V	Water Partitioning Coefficients (K_{fw})	

TABLE OF CONTENTS (Continued)

		Page
	5.3.1 Site-Specific Results	5-32
	5.3.2 Source-DK Modeling of LNAPL and Groundwater Concentrations.	
5.4	Comparison of Residual and Mobile LNAPL Weathering	
	5.4.1 BTEX Weathering	5-35
	5.4.2 Comparison of Soil and Mobile LNAPL Chromatograms	5-36
SEC	TION 6 - CONCLUSIONS	6-1
<i>(</i> 1	Designed of Design of Objections	<i>(</i> 1
6.1	Review of Project Objectives	
6.3	Reccomendations	
SEC'	ΓΙΟΝ 7 - REFERENCES	7-1
APP	ENDICES	
C - C C-1 - C-2 - C-3 -	O'brien and Gere Analytical Data Calculations - Mobile LNAPL Weathering Calculations - K _{fw} Calculations - Residual LNAPL Calculations Response to Comments LIST OF TABLES	
No.	Title	Dogo
		Page
2.1	Dissolved Concentrations of Aromatic Fuel Hydrocarbons	2-13
2.2 2.3	Fuel/Water Partitioning Coefficients for BTEX and TMBs	
3.1	Henry's Law Constants for BTEX, TMBs, and Naphthalenes Site Summary	
4.1	Origin of Sample Data	
4.2	Analytical Protocols for Soil, Mobile LNAPL, and Groundwater	च−∠
1.2	Samples	4-5
5.1	BTEX Content in Mobile LNAPL, Groundwater, and Soil Resulting	
	from Gasoline and Jet Fuel Releases	5-2
5.2	BTEX and Naphthalene (One-Point) Weathering Rates in JP-4 Mobile	
	LNAPL	5-8
5.3	BTEX and Naphthalene (One-Point) Weathering Rates in JP-5 Mobile	
<i>-</i> .	LNAPL DEFENDED TO THE COLUMN AND THE	5-24
5.4	BTEX and Naphthalene (One-Point) Weathering Rates in JP-8 Mobile	5.20
	LNAPL	3-26

TABLE OF CONTENTS (Continued)

LIST OF TABLES

No.	Title	Page
5.5	BTEX (One point) Weathering Rates in Gasoline LNAPL	5-31
5.6	Fuel/Water Partitioning Coefficients for Fuel Release Sites	5-33
5.7	Comparison of Estimated Residual and Mobile LNAPL BTEX	
	Concentrations	5-37
6.1	Summary of Benzene and Total BTEX First-Order Weathering Rates in JP-4 and JP-8 Mobile LNAPL	6-4

LIST OF FIGURES

No.	Title	Page
2.1	Typical Structures of Fuel Hydrocarbons	2-4
2.2	Typical Structures of BTEX Compounds	2-6
2.3	BTEX Concentrations in Fresh Fuels	2-8
2.4	Mechanisms of LNAPL Weathering	2-12
3.1	Location of Study Sites	3-5
5.1	Example of Zero-Order Contaminant Weathering	5-5
5.2	Example of First-Order Contaminant Weathering	
5.3	Total BTEX Weathering Considering Average Date from the JP-4	
	Release Sites	5-15
5.4	Benzene Weathering Considering Average Date from the JP-4 Release	
	Sites	5-16
5.5	Zero-Order BTEX Weathering in JP-4 Mobile LNAPL at MW1610-2	5-19
5.6	First-Order BTEX Weathering in JP-4 Mobile LNAPL at MW1610-2	5-19
5.7	Zero-Order BTEX Weathering in JP-4 Mobile LNAPL at EW-6	5-21
5.8	First-Order BTEX Weathering in JP-4 Mobile LNAPL at EW-6	5-21
5.9	Comparison of First-Order Total BTEX Weathering at Four Wells	5-23
5.10	Zero-Order BTEX Weathering in JP-8 Mobile LNAPL at MW-1S	5-29
5.11	First-Order BTEX Weathering in JP-8 Mobile LNAPL at MW-1S	5-29
5.12	Chromatograms for Two JP-4 Mobile LNAPL Samples	5-39
5.13	JP-4 Impacted Soil Chromatogram Results with Depth	5-40

ACRONYMS AND ABBREVIATIONS

%/yr percent per year
°C degrees Celsius
AD Little Arthur D. Little
AFB Air Force Base

AFCEE/ERS Air Force Center for Environmental Excellence/Science and

Engineering Division

AGE aerospace ground equipment storage area

AST aboveground storage tank

ASTM American Society for Testing and Materials

bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and xylenes

DFSP Defense Fuel Supply Point DoD Department of Defense

EAL Evergreen Analytical Laboratory

ft/yr feet per year

GC/FID gas chromatography/flame ionization detection

GC/MS gas chromatography/mass spectrometry

GC/PID gas chromatography/photoionization detector

GSI Groundwater Services, Inc.
H Henry's Law Constant
JP-4 Jet petroleum No. 4
JP-5 Jet petroleum No. 5
JP-8 Jet petroleum No. 8

K_{fw} fuel/water partitioning coefficient LNAPL light, nonaqueous-phase liquid

LTM long term monitoring M&E Metcaff and Eddy

MCAS Marine Corps Air Station MCL maximum contaminant levels milligrams per kilogram mg/kg milligrams per liter mg/L milligrams per milliliter mg/mL μg/L micrograms per liter micrograms per milliliter μg/mL methyl tert-butyl ether **MTBE**

NRMRL National Risk Management Research Laboratory

PAH polynuclear aromatic hydrocarbons
OBG O'Brien and Gere Laboratories
Parsons Engineering Science, Inc.
R² coefficient of determination

RNA remediation by natural attenuation

SVE soil vapor extraction TMB trimethylbenzenes

ACRONYMS AND ABBREVIATIONS (Continued)

TO task order US United States

USACE United States Army Corps of Engineers

USAF US Air Force

USEPA US Environmental Protection Agency

USN US Navy

UST underground storage tank

vol% percent by volume wt% percent by weight

yr⁻¹ per year

SECTION 1

INTRODUCTION

This update report presents the results of work completed to evaluate additional analytical data collected to augment the original fuels weathering study performed for the Air Force Center for Environmental Excellence, Science and Engineering Division (AFCEE/ERS) by Parsons Engineering Science, Inc. (Parsons). The original report, completed in September 1999, is entitled *Light Nonaquous-Phase Liquid (LNAPL) Weathering at Various Fuel Release Sites*. The existing data set from the original fuels weathering study was augmented with newly-collected data from the previously sampled sites as well as historic and newly-collected data from several additional sites. The expanded data set was used to form a more robust database for estimating fuel LNAPL weathering rates. This update was prepared by Parsons under AFCEE contract number F41624-00-D-8024, Task Order (TO) No. 0024.

Both the original study and this update focus primarily on the weathering or natural depletion of benzene, toluene, ethylbenzene, and xylenes (BTEX) from free-phase product (i.e., mobile LNAPL) following a fuel release. The BTEX compounds typically are identified as fuel hydrocarbon contaminants of concern because of their solubility and resulting mobility in soil and groundwater, and their relative toxicity (particularly benzene). Of primary interest for the study were jet petroleum no. 4 (JP-4) sites, because JP-4 was the most commonly-used fuel at Air Force installations. However, spill sites with gasoline, JP-5 and JP-8, also were evaluated.

1.1 PROJECT SCOPE AND OBJECTIVES

At many government and commercial sites, large-volume environmental releases of fuel products have contaminated, and continue to contaminate, soil and groundwater systems. Primary sources of large-volume fuel releases include fuel handling and storage activities associated with aboveground storage tanks (ASTs), underground storage tanks (USTs), fuel pump houses, fuel hydrant systems, oil/water separators, and fuel pipelines. Uncontrolled catastrophic or chronic releases from such a source can result in large volumes of fuel entering the subsurface. In the subsurface, the LNAPL often is present both as residual and mobile contamination. Residual LNAPL is defined as the LNAPL that is trapped in the aquifer by the processes of cohesion and capillary pressure, and therefore, will not flow within the aquifer or from the aquifer matrix into a groundwater well under the influence of gravity. Mobile LNAPL is defined as LNAPL that is free to flow in the aquifer and will flow from the aquifer matrix into a well under the influence of gravity.

The purpose of this study is to scientifically determine defensible natural LNAPL weathering rates (i.e., contaminant source-term reduction rates) that can be used during

contaminant fate and transport analyses. Currently, little information is available regarding rates of natural weathering of the BTEX components from mobile fuel-related LNAPL. As a result, the rate of reduction of the contaminant source term in groundwater models often is left to professional judgment or guesswork. The use of overly conservative LNAPL weathering rates to evaluate contaminant fate and transport and the suitability of remediation by natural attenuation (RNA) as a remedial alternative can extend the estimated timeframe for long-term monitoring (LTM) and affect the perceived cost-effectiveness and administrative feasibility of implementing RNA. Conversely, overestimation of weathering rates can lead to an overly optimistic forecast of RNA performance. This could result in the application of RNA at a site where some source removal is warranted. The potential result could be further economic and environmental damage, including impact to receptors.

The primary objective of the original fuel weathering study was to document a range of BTEX weathering rates for the mobile LNAPL fraction based on data collected from sites with documented mobile LNAPL plumes with known release dates. In addition, rates of naphthalene and methylnaphthalenes weathering from mobile LNAPL were evaluated. Secondary objectives of this study included an evaluation of the degree of contaminant partitioning of BTEX from mobile LNAPL to groundwater, and comparison of weathering effects on the mobile LNAPL fraction and on residual LNAPL present in capillary fringe soils. The following tasks were completed during the original study to meet these objectives:

- A literature search to assess existing information regarding weathering of LNAPL;
- Selection of eight primary sites where the time of release is generally known and free-phase jet fuel or gasoline remain *in situ*;
- Sampling of soil, groundwater, and free-phase LNAPL at the eight primary sites;
- Evaluation of data obtained from the eight primary sites, as well as data from four secondary sites, to assess contaminant concentrations in site media in relation to such factors as age of the fuel release, fuel type, and site stratigraphy and hydrogeology.

The primary objective of this fuel weathering study update was to collect additional LNAPL analytical data from the original sites having sufficient free product remaining, and to recalculate LNAPL source reduction weathering rates using the expanded data set. A second objective was to add up to four additional sites to the LNAPL analytical database, and to calculate LNAPL source reduction rates for these new sites. Additional secondary objectives of this update study included an expanded evaluation of BTEX contaminant partitioning from LNAPL to groundwater, an evaluation of BTEX weathering rates in groundwater, and evaluation of the Source-DK Model (Groundwater Services, Inc. [GSI], 2002) and alternate methods of determining source weathering rates. The following tasks were completed during the fuel weathering study update:

 A brief literature review was completed to assess any new information that has been published since the completion of the original fuels weathering study in 1999;

- LNAPL and groundwater samples were collected at sites that were included in the original study and that still contained sufficient mobile LNAPL to sample;
- LNAPL and groundwater samples were collected at one additional site for inclusion in the fuels weathering analytical database;
- LNAPL weathering rates and partitioning coefficients were calculated using the expanded LNAPL and groundwater analytical database;
- BTEX weathering rates in groundwater were calculated using new and historic groundwater analytical data obtained at locations for which there were a minimum of two data points; and
- The Source-DK Model was evaluated to determine how LNAPL weathering rates calculated using field data compares to decay rates calculated using this source decay model.

This technical report presents the findings of the original fuels weathering study as well as findings of the update study. This report is inclusive, in that it is designed to replace the original fuels weathering study.

1.2 REPORT ORGANIZATION

This technical report consists of seven sections, including this introduction, and three appendices. Section 2 presents pertinent background information and findings from the literature review. Section 3 presents site selection criteria and a listing of the sites selected for the study. Section 4 summarizes the procedures used for collection and analysis of the site data. Section 5 summarizes the analytical results and presents the results of the LNAPL weathering data analysis. Section 6 presents conclusions and recommendations based on the study results, and Section 7 lists the references used in preparing this document. Appendix A provides a copy of the original work plan and site addenda. Appendix B provides the analytical data for LNAPL, soil, and groundwater samples collected at the study sites. Appendix C provides calculations from the data analysis.

SECTION 2

LITERATURE REVIEW

The purpose of the literature review was to compile and summarize available technical literature on natural weathering of the BTEX fraction of fuel LNAPLs released to the subsurface environment. Specifically, the literature search attempted to answer the following question:

Is there sufficient published scientific information available regarding *in situ* weathering rates for BTEX in mobile LNAPL to determine source-term reduction or weathering rates for mobile LNAPL?

Parson's experience with the AFCEE natural attenuation demonstration initiative had indicated a lack of scientifically defensible information regarding BTEX weathering rates for mobile LNAPL. As a result of this data gap, weathering rates used to simulate BTEX source-term reduction rates in fate and transport models generally have been based on a combination of professional judgment, guesswork, and consideration of site-specific Typically, total BTEX depletion rates (i.e., contaminant source-term reduction rates) between 1 and 15 percent per year (%/yr) have been assumed. Examples of site-specific conditions considered in assigning weathering rates include groundwater depth, precipitation, composition of the soil/aquifer matrix, and site location; these factors have been used to determine whether BTEX removal from mobile LNAPL is likely to be hindered or enhanced. For example, a total BTEX depletion rate between 10 and 15 %/yr might be assumed for a warm, high-precipitation, high-soil-permeability, shallow groundwater site in Florida; whereas a total BTEX depletion rate of 1 to 3 \%/yr might be assumed for a cool, low-precipitation, low-permeability, deep groundwater site in Montana. In cases where site conditions did not appear to excessively hinder or enhance BTEX depletion in mobile LNAPL, a default value of 5 %/yr often was used. No scientific studies were known to exist that could support the validity of these assumptions. Therefore, a more formal literature search was included as part of this study.

A preliminary review of the literature as summarized in the work plan (Appendix A) indicated that there was not sufficient information regarding BTEX weathering rates in mobile LNAPL, and that field studies of fuel-contaminated sites would be appropriate. Since the time of the initial literature review, additional information regarding weathering processes and rates of fuel weathering has been gathered; however, the general findings of the preliminary literature review are still valid. No new field studies were identified that scientifically evaluate naturally occurring BTEX reductions (weathering) within mobile LNAPL at fuel release sites. However, additional data collected from groundwater at 366 petroleum (mostly gasoline) sites has been evaluated to determine average first-order decay rates for BTEX compounds (Farhat *et al.*, 2002). These data

are discussed in Section 5.3.2. A discussion of fuels composition and a review of the fuel weathering literature is provided in the following subsections as background information for the fuel weathering study results and conclusions presented in Sections 5 and 6, respectively.

2.1 GASOLINE AND JET FUEL USE AND COMPOSITION

2.1.1 Fuel Use and History

Gasoline, diesel fuel, and jet fuel represent the primary fuel types used at United States (US) military installations for powering vehicles, equipment, and aircraft. Large-volume storage and handling of these petroleum products has resulted in widespread environmental contamination of soil and groundwater. However, BTEX contamination in soil and groundwater at US military installations has resulted primarily from uncontrolled releases of jet fuel.

A variety of jet fuels have been used for powering US military aircraft turbine (jet) engines since the beginning of jet flight in the 1940s. Since the 1950s, JP-4 and JP-5 represent the primary fuels used by the US Air Force (USAF) and US Navy (USN), respectively. More recently, the USAF has converted from JP-4 to JP-8 because of its lower volatility and explosion/fire hazard. In 1979, USAF installations in Great Britain replaced JP-4 with JP-8 (Martel, 1987), and in 1993/1994, USAF installations in the continental US converted to JP-8. Therefore, most JP-8 fuel releases that have contaminated soil and groundwater at USAF installations are no more than 9 years old. While other, less common jet fuels have been used by the US military, their use and storage has been limited, resulting in far less environmental site contamination.

2.1.2 Hydrocarbon Composition of Gasoline and Jet Fuel

Gasoline and jet fuel are refined petroleum products derived from crude oil. Crude oil, a degradation product of organic material (e.g., prehistoric animal and plant matter) is a complex mixture primarily composed of hydrocarbons, which are compounds consisting solely of carbon and hydrogen. Measured by weight, carbon and hydrogen represent at least 95 percent of the elements present in crude oil (Neumann *et al.*, 1981). In comparison, hydrocarbon concentrations in refined petroleum products such as gasoline, diesel fuel, and kerosene are even higher than in crude oil, because non-hydrocarbon compounds (which contain sulfur, nitrogen, oxygen, or trace metals) are destroyed or removed during the refining process (Owen and Corey, 1990).

2.1.2.1 Distillation

The hydrocarbon composition of jet fuel and other petroleum products derived from crude oil is largely determined during the refining process known as distillation. Distillation is a process whereby the crude oil is heated/boiled, and fractions of the crude oil are separated based on boiling point. During distillation, the more volatile, shorter-chain, lower-molecular-weight hydrocarbons are initially removed at relatively low boiling points, and the less volatile, longer-chain, heavy-molecular-weight hydrocarbons are subsequently removed at higher boiling temperatures. Distillation utilizes the relationship between boiling point and hydrocarbon molecular weight to separate crude oil into useable fractions, or "cuts," for further refinement into petroleum end products.

Because hydrocarbon molecular weight is dictated by the number of carbon atoms present, it is possible to generally classify these distillation cuts by their predominant carbon-atom ranges (American Society for Testing and Materials [ASTM], 1995):

- Gasoline C₄ to C₁₂ hydrocarbons;
- Kerosene and jet fuels C₁₁ to C₁₃ hydrocarbons;
- Diesel fuel and light fuel oils C₁₀ to C₂₀ hydrocarbons;
- Heavy fuel oils C₁₉ to C₂₅ hydrocarbons; and
- Motor oils and other lubricating oils C_{20} to C_{45} hydrocarbons.

2.1.2.2 Wide-Cut and Kerosene-Based Jet Fuels

Jet fuels commonly used by the Air Force and Navy can generally be separated into two categories: "wide-cut" fuels and "kerosene-based" fuels (Martel, 1987). JP-4 is created by taking a "wide cut" of the distillate to include both the gasoline and kerosene fractions. JP-4 typically is composed of approximately 50 to 60 percent gasoline range hydrocarbons and 40 to 50 percent kerosene range hydrocarbons (Martel, 1987). This large percentage of gasoline imparts increased volatility to JP-4. On the other hand, JP-5 and JP-8 are kerosene-based fuels that contain relatively less volatile, longer-chain hydrocarbons.

2.1.2.3 Hydrocarbon Structure

The three most prevalent types of hydrocarbons in crude oil and refined petroleum products, based on their chemical structure, are alkanes, alkenes, and aromatics. Figure 2.1 illustrates the structures of these three types of hydrocarbon compounds.

Alkanes, or paraffins, are hydrocarbon chains characterized by single molecular bonds between the carbon atoms and "saturation" of all remaining bonding sites by hydrogen atoms. For this reason, alkanes also are referred to as saturates. Based on their structure, alkanes can be further separated into n-alkanes (straight-chain alkanes), isoalkanes (branched-chain alkanes), and cycloalkanes (alkane rings) (Figure 2.1). Isoalkanes and cycloalkanes are commonly referred to as isoparaffins and naphthenes, respectively. In general, alkanes are the most abundant hydrocarbons in crude oil and gasoline. Alkanes represent 55 to 75 percent of all hydrocarbons in crude oil (Metcalf & Eddy [M&E], 1993). A compilation of analytical results from 10 gasoline samples indicated that alkanes make up approximately 55 percent by weight (wt%) of the hydrocarbons in gasoline (Nakles *et al.*, 1996).

Alkenes, or olefins, are characterized as hydrocarbon chains that are not saturated with hydrogen atoms, and as a result, contain one or more double bonds between carbon atoms (Figure 2.1). While alkenes are typically present at trace levels in crude oil, their

ALKANES

Isoalkane Structure

Cycloalkane Structure

AROMATICS

Single-Ring

Two-Ring

Three-Ring

(Phenanthrene)

ALKENES

$$\begin{array}{c}
H \\
C = C
\end{array}$$

$$\begin{array}{c}
H \\
C_2H_4
\end{array}$$
(Ethylene)

FIGURE 2.1

TYPICAL STRUCTURES OF FUEL HYDROCARBONS

Fuel Weathering Study

PARSONS

Denver, Colorado

concentration in petroleum products is often increased by the refining process. Nakles *et al.* (1996) reported the concentration of alkenes in gasoline as approximately 11 wt%.

Aromatic hydrocarbons also are unsaturated, and are characterized by their six-carbon ring structure. As illustrated on Figure 2.1, the six-carbon-ring aromatic structure has alternating single and double bonds. The simplest aromatic compound is benzene (C₆H₆), which is composed of a single aromatic ring (monoaromatic). Benzene and its chemical derivatives are common in volatile fuels such as gasoline and JP-4. Other aromatic hydrocarbons more typical of heavier, less volatile fuel types are naphthalene, a two-ring aromatic (diaromatic) and phenanthrene, a three-ring aromatic (Figure 2.1). Three-ring and higher aromatics are often referred to as polynuclear aromatic hydrocarbons (PAHs). Nakles *et al.* (1996) report that aromatics make up approximately 33 wt% of the hydrocarbons in gasoline. However, in jet fuels, the aromatic content is limited to no more than 25 percent by volume (vol%) to improve combustion performance and minimize solvent effects (Martel, 1987).

A common feature of petroleum-derived aromatics is the presence of an "alkyl" group in place of a hydrogen atom on the six-carbon ring. Common alkyl groups are the methyl group and the ethyl group. The methyl group is composed of 1 carbon atom and 3 hydrogen atoms (CH₃). The ethyl group is composed of 2 carbon atoms and 5 hydrogen atoms (CH₂CH₃). In the ethyl group, a CH₂ unit is "sandwiched" between the aromatic ring and a terminal CH₃, or methyl group. Toluene, ethylbenzene, and *ortho-*, *meta-*, and *para-*xylenes all are single-ring aromatic compounds where one or two hydrogen atoms have been replaced by one or two of these alkyl groups. As illustrated on Figure 2.2, toluene is simply a benzene ring in which one of the hydrogen atoms has been replaced with a methyl group. In ethylbenzene, the hydrogen atom is replaced by an ethyl group. In the xylene isomers, two hydrogen atoms are replaced by two methyl groups. The prefixes "*ortho-*," "*meta-*," and "*para-*" refer to the position of the methyl groups on the benzene ring.

2.1.2.4 BTEX Composition

For this study, the weathering of the low-molecular-weight BTEX compounds is of particular concern because of their mobility within the environment and, in the case of benzene, its relatively high toxicity. To adequately characterize the degree or rate of BTEX weathering from mobile LNAPLs, the initial concentration of BTEX compounds within the original fuel is needed. Unfortunately, the exact concentration of BTEX compounds in a gasoline or jet fuel that is released to the environment typically is not known and can only be estimated based on compositional studies of fresh fuels. Cline *et al.* (1991) have noted that the specific composition of gasoline will vary depending on the source of the petroleum, the production method, the end use location, and the season of the year. Similarly, there is considerable variability in jet fuel composition based upon the distillate cuts of gasoline and kerosene from which the jet fuel is blended. Therefore, compositional studies of fresh fuels can provide only a range of BTEX concentrations within fresh fuels.

ortho-Xylene (1,2-Dimethylbenzene) (1,3-Dimethylbenzene) (1,4-Dimethylbenzene)

meta-Xylene

para-Xylene

FIGURE 2.2

TYPICAL STRUCTURES OF BTEX COMPOUNDS

Fuel Weathering Study

PARSONS

Denver, Colorado

Figure 2.3 illustrates the ranges of benzene, toluene, ethylbenzene, total xylenes, and total BTEX concentrations in fresh JP-4, JP-5, and JP-8 jet fuels and fresh gasoline. As is evident from this figure, fresh gasoline has the highest mass fraction (in wt%) of BTEX compounds, followed by JP-4, JP-8, and JP-5 jet fuels.

2.1.2.4.1 Gasoline

For gasoline, there is a large disparity between the minimum and maximum BTEX mass fraction values presented by Potter (1988), Arthur D. Little (AD Little, 1987), and Sigsby et al. (1987) (Figure 2.3). Reported maximum concentrations for benzene and toluene are approximately five times the minimum concentrations. The total BTEX maximum concentration is nearly four times that of the reported minimum concentration (38.5 wt% versus 10.4 wt%). Similar disparities were evident in analytical results compiled by the Alberta Research Council (1993) for 124 gasoline samples. benzene, the minimum and maximum reported concentrations were 0.34 wt% and 5.62 wt%, respectively, and the average benzene concentration was 1.86 wt%. For total BTEX, the minimum and maximum reported concentrations were 4.1 wt% and 45.4 wt%, respectively, and the average total BTEX concentration was 20.7 wt%. The BTEX mass fraction values for gasoline reported by Ghassemi et al. (1984) are somewhat lower than these average concentrations (Figure 2.3). Therefore, use of the fresh-product values presented by Ghassemi et al. (1984) along with measured in situ BTEX concentrations to predict BTEX reductions in gasoline LNAPL would be more conservative than using average concentrations from the other studies cited above.

2.1.2.4.2 JP-4

Figure 2.3 presents JP-4 BTEX concentrations reported by Hughes *et al.* (1984) and Smith *et al.* (1981). In the Hughes *et al.* (1984) study, 54 JP-4 samples were analyzed by gas chromatography/flame ionization detection (GC/FID) analysis, and results were reported in milligrams per milliliter (mg/mL). Mass fraction (wt%) results shown on Figure 2.3 were obtained using a maximum density value of 802 mg/mL for JP-4 at 15 degrees Celsius (°C) (Martel, 1987). Mass fraction results presented by Smith *et al.* (1981) were obtained from JP-4 samples analyzed by gas chromatography/mass spectrometry (GC/MS). As shown on Figure 2.3, BTEX mass fraction results presented by Smith *et al.* (1981) are slightly lower than those presented by Hughes *et al.* (1984), and therefore represent more conservative initial values for estimating mass fraction BTEX reductions in JP-4 mobile LNAPL.

2.1.2.4.3 JP-8

BTEX mass fraction results for JP-8 as determined by Smith *et al.* (1981) and Mayfield (1996) also are presented on Figure 2.3. Mass fraction BTEX results presented by Smith *et al.* (1981) were obtained by GC/MS analysis. In the Mayfield (1996) study, 63 JP-8 samples were analyzed by GC/MS and results were presented in milligrams per liter (mg/L). Average mass fraction values shown on Figure 2.3 were obtained using a maximum density value of 840 mg/L for JP-8 at 15 °C (Martel, 1987). The disparity in BTEX concentrations between these two studies is significant. BTEX concentrations presented by Smith *et al.* (1981) are approximately one-tenth the concentrations presented by Mayfield (1996). The reason for this disparity is not known, but may have resulted

FIGURE 2.3
BTEX CONCENTRATIONS IN FRESH FUELS
FUEL WEATHERING STUDY

from changes in JP-8 manufacturing methods or specifications between 1980 and 1996. The Mayfield (1996) study represents a more contemporary and comprehensive review of JP-8 composition, and likely better represents JP-8 jet fuel used in the 1990s. Use of the lower JP-8 BTEX concentrations, as determined by Smith *et al.* (1981), for predicting mass fraction reductions in JP-8 LNAPL while extremely conservative, may not be tenable if BTEX concentrations in site LNAPL exceed these values.

2.1.2.4.4 JP-5

Limited BTEX compositional data were available for JP-5. Results shown on Figure 2.3 are from one fresh JP-5 sample analyzed by Hughes *et al.* (1984) and one fresh JP-5 sample obtained from Beaufort Marine Corps Air Station (MCAS) in Beaufort, South Carolina and analyzed during this study (see Sections 3 and 4). Total BTEX concentrations in both samples were well below 1 wt%. While these data are limited, the relatively insignificant concentrations of BTEX in fresh JP-5 are likely to limit environmental threats from JP-5 releases, especially in comparison to gasoline and JP-4 releases.

2.2 SUBSURFACE LNAPL DISTRIBUTION AND RECOVERY

Characterization of fuel release sites where LNAPL is present in the subsurface is often difficult because of the complex transport parameters and mechanisms associated with LNAPL and separate-phase contamination. Subsurface migration and distribution of LNAPLs, as well as LNAPL persistence and strength as a source of soil and groundwater contamination, is governed by petroleum release factors, soil and aquifer properties, and LNAPL characteristics (Mercer and Cohen, 1990; Pfannkuch, 1984). The primary petroleum release factors influencing migration and distribution are the volume of the release, the release rate, and the area of the release. Influential subsurface properties include, but are not limited to, lithology, soil permeability, pore size distributions, porous media wettability, fluid pressure at and above the water table, and water table fluctuations. Characteristics of the LNAPL itself, such as density and viscosity, also influence subsurface distribution and migration (Newell *et al.*, 1995). Once LNAPL is released to the subsurface environment, a defined interface between the LNAPL and soil, air, and water, in the subsurface, typically does not exist (Newell, *et al.*, 1995).

2.2.1 LNAPLs in the Unsaturated Zone

In the unsaturated, or vadose, zone, movement of LNAPL initially is controlled by its fluid density and viscosity as it moves downward under the force of gravity (Hunt *et al.*, 1988). Subsurface heterogeneities may cause lateral spreading and trap lenses of LNAPL above layers of lower-permeability soils during downward migration. Interfacial forces (e.g., surface tension between soil-air and soil-water and the LNAPL) and soil capillary forces can cause residual masses of the LNAPL to become trapped in soil pores as ganglia and lenses (Hunt *et al.*, 1988; Powers *et al.*, 1991; Seagren *et al.*, 1993). Because this residual LNAPL can remain trapped in the unsaturated zone for an indefinite length of time, on the order of decades to centuries (Hunt *et al.*, 1988), it becomes a long-term source of groundwater contamination via infiltrating precipitation or a rising water table (Abriola and Pinder, 1985; Seagren *et al.*, 1993). If the volume of the fuel release is

relatively small and the depth to groundwater is great, the entire LNAPL volume may be retained in soil pores as residual LNAPL and not reach the water table.

2.2.2 LNAPLs in the Saturated Zone

If the fuel release is of sufficient volume to reach the water table, the mobile LNAPL fraction will spread laterally and form a floating pool at the capillary fringe above the water table (Pfannkuch, 1984; Voudrias *et al.*, 1994; Voudrias and Moon-Full, 1994). With water table fluctuations caused by seasonal recharge and depression, or by local pumping, an LNAPL smear zone can form over the range of water table fluctuation (McKee *et al.*, 1972; Dietz, 1980; Schwille, 1984; Voudrias *et al.*, 1994;). Like the residual LNAPL in the unsaturated zone, the LNAPL smear zone can be highly variable, with residual LNAPL present as discrete ganglia to fully saturated mobile LNAPL lenses (Hunt *et al.*, 1988). Also, the immiscible nature of LNAPLs can cause discrete LNAPL "blobs" to become trapped in groundwater (Yang *et al.*, 1995) and to be only partially remobilized during changing water table conditions (Hunt *et al.*, 1988).

2.2.3 LNAPL Recovery

Mobile LNAPL, or free product, recovery at fuel release sites often is difficult, expensive, and only marginally effective (Farr *et al.*, 1996). Recovery of free-phase fuel has proven to be difficult because of the complex interaction of hydrogeologic and LNAPL characteristics that tend to retain the mobile LNAPL. Typically, less than 25 to 35 percent of the mobile LNAPL that has spread out on the water table is recoverable (Farr *et al.*, 1996), with significant retention occurring in the capillary fringe during product recovery efforts (Testa and Paczkowski, 1989). Residual LNAPL retained in the unsaturated zone and immobile LNAPL blobs associated with the capillary fringe or submerged below the water table are unrecoverable by conventional means (Testa and Paczkowski, 1989; AFCEE, 1998). Nevertheless, regulatory requirements specifying removal of free product to the "degree practicable" traditionally have been interpreted as LNAPL removal to no more than a sheen (Lundy, 1997). This regulatory expectation, combined with the limited effectiveness of conventional LNAPL recovery methods, have tended to drive up remediation costs as remediation durations are extended with little product recovery or risk reduction.

More recently, a risk-based remediation approach to free product recovery has been proposed (Farr *et al.*, 1996; Lundy, 1997; AFCEE, 1998). Under this approach, site-specific environmental and health risks posed by the mobile LNAPL are evaluated in combination with the feasibility, effectiveness, and cost of free product recovery. At some sites it may be possible to demonstrate that the cost of free product recovery is not justified by a commensurate reduction in site risk. In these cases, it may be more appropriate to model the expected limit of plume migration and to expand the LTM well network to accommodate plume expansion rather than trying to limit expansion through source reduction (AFCEE, 1998).

2.3 LNAPL WEATHERING MECHANISMS

The term "weathering," or attenuation, refers to the combined effects of natural destructive and non-destructive processes to reduce the persistence, mobility, mass, and toxicity of the fuel contaminant in the environment. The majority of information

currently available regarding subsurface fuel contamination examines the effects of specific natural attenuation mechanisms such as dissolution, biodegradation, and volatilization as they apply to soil and groundwater contamination. While the literature has focused on these mechanisms as they apply to attenuation of chemicals sorbed to soil and dissolved in groundwater, mobile LNAPL weathering also is a function of these processes.

The primary mechanisms acting to reduce the strength of a LNAPL source are dissolution, volatilization, and biodegradation. These mechanisms are influenced by physical and chemical properties of the chemical compounds in the source product, as well as by physical, chemical, and biological properties of the soil and groundwater system. An illustration of these weathering mechanisms is shown on Figure 2.4.

2.3.1 Dissolution

Dissolution is the dissolving of chemical substances from a residual or mobile NAPL into percolating precipitation water and/or groundwater. At gasoline and jet fuel release sites, dissolution or partitioning of the BTEX compounds from the LNAPL into groundwater represents the most significant source of groundwater contamination and likely the most significant mechanism of BTEX depletion in mobile LNAPLs (Huntley and Beckett, 1997). LNAPL dissolution is governed by the characteristics of the aquifer matrix (including effective porosity and groundwater velocity), physical properties of the LNAPL (e.g., surface area of the LNAPL in contact with groundwater), and characteristics of the specific LNAPL contaminant (e.g., effective water solubility) (AFCEE 1995).

2.3.1.1 Effective Water Solubility of BTEX

Solubility of a substance in water is defined as the mass of the substance that will dissolve in a unit volume of water (typically expressed in mg/L). According to Montgomery (1996), the water solubility of a compound is arguably the most important factor in determining the fate and transport of the compound in the subsurface. The aromatic compounds are among the most mobile of dissolved fuel contaminants at gasoline and jet fuel release sites because of their relatively high water solubilities. Single-ring BTEX compounds are significantly more water soluble than the two-ring naphthalenes, as shown in Table 2.1. Pure-phase water solubilities for the BTEX compounds range between 157 and 1,750 mg/L. Based on these values, benzene is the most water-soluble of the BTEX compounds, followed by toluene, ethylbenzene, and xylenes. In various soil column water-flushing experiments (Borden and Kao 1992; Rixey et al., 1992; Voudrias et al., 1994), benzene, toluene, ethylbenzene and xylene were flushed from soil columns in order of decreasing solubility. With increased compound solubility, there is increased dissolution flux, indicating compound depletion or weathering in a fuel LNAPL will be more rapid for the more water-soluble compounds like benzene.

The dissolution flux of compounds in fuel LNAPLs also is influenced by the compound's concentration in the LNAPL. In fresh JP-4 jet fuel, benzene comprises approximately 0.50 wt% of the fuel, and in gasoline, benzene typically constitutes no

TABLE 2.1 DISSOLVED CONCENTRATIONS OF AROMATIC FUEL HYDROCARBONS FUEL WEATHERING STUDY

		Concentration	ons in Water	
	Pure-Phase		with Fuel ^{c/}	
	Water	("effective s	solubilities")	
	Solubility ^{a/}	JP-4 ^{d/}	Gasoline ^{e/}	$\mathrm{MCL}^{\mathrm{f}\prime}$
Compound	$(mg/L)^{b/}$	(mg/L)	(mg/L)	(mg/L)
Benzene	1,750	9.82	58.7	0.005
Toluene	524	8.49	33.4	1.0
Ethylbenzene	187	0.67	4.3	0.7
o-Xylene	167	1.21	6.9	$NA^{g/}$
m-Xylene	157	2.01	11.0	NA
p-Xylene	180	0.41	4.4	NA
Xylenes	168	3.63	22.3	10
Trimethylbenzenes	97.7 ^{h/}	0.87	1.1 ^{i/}	NA
Naphthalene	22	0.39	j/	$0.02^{\mathrm{k}/}$
Methylnaphthalenes	25.4 ^{1/}	0.24		NA

^{a/} Solubilities at 25°C (Montgomery, 1996).

b/ mg/L = milligrams per liter.

^{c/} Fuel to water ratio 1:10.

d Smith et al., 1981.

e/ American Petroleum Institute, 1985.

^{f/} MCL = maximum contaminant level (USEPA, 2002).

g/ NA = not applicable.

h/ Solubility for 1,3,5-trimethylbenzene.

^{i/} Value for 1,2,4-trimethylbenzene.

j' --- = not available.

^{k/} Health advisory value for 70-kilogram adult, lifetime exposure.

^{1/} Value for 2-methylnaphthalene.

more than 4.5 wt% of the fuel (Figure 2.3). Similarly, toluene, ethylbenzene, and xylenes typically are present in gasoline and jet fuels at concentrations significantly less than 10 wt%. Therefore, the dissolution flux of these compounds is significantly less than if they were present in pure phase. As shown in Table 2.1, the actual concentrations of aromatic compounds in water resulting from fuel/water contact are 1 to 2 orders of magnitude less than their respective pure-phase water solubilities. The BTEX compounds are more soluble in fuel than in water, and tend to remain in the fuel. There have been several studies completed in the recent past to determine dissolution rates of fuel components from mobile and residual LNAPLs (e.g., Borden and Kao, 1992; Geller and Hunt, 1993; Rixey, 1996; Durrant et al., 1999; and Garg and Rixey, 1999).

This decrease in dissolution flux resulting from an equilibrium relationship between the aqueous phase and the multicomponent LNAPL has been described by Raoult's Law. Raoult's Law is based on a thermodynamic theory of multicomponent solutions and is typically valid for compounds that are present in relatively low concentrations within the solution (M&E, 1993). Using Raoult's Law, the effective water solubility of a compound (C_i) can be predicted by the product of the water solubility of the pure compound (S_i) and the mole fraction of the compound in the LNAPL (X_i) :

$$C_i = X_i S_i$$
 eq. 2.1

In order to use Raoult's Law to estimate effective solubilities, the mole fraction or molecular percent of a compound in an LNAPL or a fresh fuel must be known. However, analytical results for fuel and LNAPL components are typically reported in wt% or vol%, not molecular percent. Using this equation, and estimates of molecular percent for BTEX in gasoline, semiquantitative estimates of effective water solubility have been determined for gasoline (M&E, 1993). However, a 20 to 30 percent disparity was apparent between predicted values and measured water concentrations resulting from gasoline contact (Table 2.1). This disparity is thought to have resulted from inherent uncertainties with the predictions of mole fraction in multicomponent fuels (M&E, 1993).

Despite the difficulty with using Raoult's Law directly, it is useful in illustrating the relationship between compound concentration and compound solubility in evaluating effective solubility at fuel-contaminated sites. As shown in Table 2.1, the pure-phase water solubility of toluene is less than one-third the pure-phase water solubility of benzene, yet the effective solubility of toluene when water is in contact with JP-4 or gasoline is much closer to the effective water solubility of benzene. This similarly results from the higher concentration or mole fraction of toluene in the fuel compared to that of benzene (Figure 2.3). Based on this relationship and the effective solubility values presented in Table 2.1, it appears that ethylbenzene and xylenes are not sufficiently present in JP-4, or sufficiently soluble in water, to consistently exceed regulatory maximum contaminant levels (MCLs) at JP-4 contaminated sites. At sites contaminated by lower-BTEX-content fuels (i.e., JP-5 or JP-8), there is even less dissolution flux of BTEX compounds into site groundwater.

2.3.1.2 Fuel/Water Partitioning Coefficients

Fuel/water partitioning coefficients offer another method for evaluating fuel contaminant dissolution from fuel LNAPLs into water. The fuel/water partitioning coefficient (K_{fw}) is a dimensionless constant defined as the ratio of a compound in the

fuel (C_f) to the compound's equilibrium concentration in water in contact with the fuel (C_w):

$$K_{fw} = C_f/C_w$$
 eq. 2.2

Fuel/water partitioning coefficients demonstrate the relationship between water solubility of a compound and abundance of the compound in a fuel. Table 2.2 provides $K_{\rm fw}$ values for constituents of JP-4 and gasoline. As shown, $K_{\rm fw}$ values for BTEX compounds in JP-4 are significantly higher than gasoline values. Relative to gasoline, a larger portion of the BTEX compounds have a tendency to stay in JP-4, resulting in lower equilibrium concentrations in water and higher $K_{\rm fw}$ values.

2.3.1.3 Equilibrium versus Nonequilibrium

Significant debate appears in the literature regarding the applicability of equilibrium conditions when assessing dissolution (Hayden et al., 1992; Seagren et al., 1993; Voudrias et al., 1994; and Yang et al., 1995). Use of Raoult's Law and K_{fw} values to assess contaminant dissolution assumes that equilibrium conditions exist. equilibrium is assumed in order to simplify dissolution calculations in subsurface flow models (Seagren et al., 1993). For example, once the concentration of a contaminant is known in one phase, equilibrium partitioning is used to calculate the concentration in the other phase at the same location. However, serious errors in prediction of contaminant reduction have occurred when equilibrium assumptions are used in groundwater modeling (Powers et al., 1991). As noted by Bruce et al. (1991), dissolved concentrations of the BTEX compounds rarely exceed 20 percent of the calculated equilibrium concentration, unless LNAPL is present as a sheen or colloids. hypothesis suggests that the lack of equilibrium concentrations occurs from less thorough mixing of the fuel (LNAPL) and water in the field as compared to the laboratory (Bruce, 1993). Groundwater sampling often is performed over several feet of saturated soil, and only the upper few inches of the soil column is in contact with LNAPL. Significant dilution of dissolved hydrocarbons will result in concentrations far lower than theoretical equilibrium values.

As discussed by Seagren *et al.* (1993), if equilibrium conditions exist in the field, the dissolution rate becomes a function of advection (groundwater transport of the contaminant away from the source area) and/or biodegradation. Under this scenario, the dissolution rate is enhanced by contaminant removal from the interphase (LNAPL and aqueous) boundary, thereby increasing the dissolution flux. However, if nonequilibrium conditions exist (e.g., the groundwater concentration of benzene is significantly less than its effective solubility [Table 2.1]), the dissolution rate cannot be enhanced by advection or biodegradation that further reduces the aqueous concentration.

The equilibrium assumption as it applies to LNAPL and groundwater contaminant concentrations has yet to be adequately demonstrated (Powers *et al.*, 1991). Also, while generalizations can be made, no quantitative criteria exist for determining when equilibrium or nonequilibrium conditions exist (Seagren *et al.*, 1993). Because it has been argued that the rate of dissolution is a significant limiting factor in remediation of residual LNAPL (Yang *et al.*, 1995), it can also be presumed that dissolution is rate-limiting (i.e., a predominant mechanism) for mobile LNAPL weathering.

TABLE 2.2
FUEL/WATER PARTITIONING COEFFICIENTS FOR
BTEX AND TMBs
FUEL WEATHERING STUDY

	Fuel/Water	Fuel/Water Partitioning Coefficient (K _{fw})		
Compound	JP-4 Jet Fuel ^{a/}	Gasoline ^{b/}	Gasoline ^{c/}	
Benzene	2,455	231	350	
Toluene	2,754	895	1,250	
Ethylbenzene	4,786	3,411	4,500	
o-Xylene	7,079	3,162	3,630	
m-Xylene	3,715	3,539	4,350	
p-Xylene	7,586	2,961	4,350	
1,2,3-Trimethylbenzene	$NA^{d/}$	NA	13,800	
1,2,4-Trimethylbenzene	8,913	12,270	NA	
1,3,5-Trimethylbenzene	NA	6,493	NA	

Source: AFCEE, 1995.

^{a/} Smith et al., 1981.

^{b/} Bruce et al., 1991.

c/ Cline et al., 1991.

 $^{^{}d}$ NA = not analyzed.

2.3.2 Volatilization

Volatilization, or evaporation, is the loss of a compound from a liquid or solid state to a vapor state. For surface spills, important factors affecting volatilization include temperature, vapor pressure of the constituents, and wind speed. For subsurface releases, temperature and vapor pressure are important, but volatilization requires diffusion through a porous medium; therefore, soil moisture and soil porosity also are important (LaGrega *et al.*, 1994). Subsurface rates of volatilization are directly proportional to soil porosity, pore size distribution, and temperature, but inversely proportional to volumetric moisture content (Hillel, 1980).

Relative volatility of compounds at equilibrium conditions can be compared by an air/water partitioning coefficient known as Henry's Law Constant (H). Henry's Law states that under equilibrium conditions, the partial pressure of a gas (i.e., volatile chemical) (P_g) above a liquid is proportional to the concentration of the chemical in the liquid (C_I):

$$P_g = HC_L$$
 eq. 2.3

Henry's Law Constant values for BTEX, trimethylbenzenes (TMBs), and naphthalenes are listed in Table 2.3. As a general rule of thumb, compounds with Henry's Law Constants greater than 10⁻³ are considered very volatile (M&E, 1993). As shown in Table 2.3, the BTEX compounds and TMBs are more volatile than naphthalene and 2-methylnaphthalene. Generally speaking, compound volatility decreases with increasing carbon atoms. On a unit-carbon basis, the alkanes are more volatile than the aromatics (Nakles *et al.*, 1996).

As with dissolution, contaminant volatilization from a LNAPL is influenced by the concentration of the contaminant in the LNAPL. In other words, a Raoult's Law expression similar to that discussed in Section 2.3.1.1 can be applied.

Enhanced volatilization using soil vapor extraction (SVE) techniques is commonly used for vadose zone cleanup at fuel-contaminated sites; however, no field studies were identified that evaluated "equilibrium" volatilization at sites having subsurface free-phase product. Volatilization is expected to be a significant weathering mechanism for petroleum products such as gasoline, JP-4, and JP-8. From a study on the fate of JP-8 in quiescent flask systems containing water and water/sediment mixtures, evaporation or volatilization from water was the major removal mechanism for low-molecular-weight, volatile hydrocarbons (Dean-Ross *et al.*, 1992). In the same study, it was determined that the presence of sediment can sequester jet fuel and render it less susceptible to volatilization. Intuitively, greater contact between soil gas and residual LNAPL would result in greater mass loss rates due to volatilization than would be expected in soils saturated with mobile LNAPL.

2.3.3 Biodegradation

2.3.3.1 Residual LNAPL and Groundwater

Most of the literature pertaining to *in situ* biodegradation refers to residual LNAPL contaminants in soil and contaminants dissolved in groundwater. As mentioned in

TABLE 2.3
HENRY'S LAW CONSTANTS FOR
BTEX, TMBs, AND NAPHTHALENES
FUEL WEATHERING STUDY

	Henry's Law
	Constant a/
Compound	(atm-m ³ /mol) b/
Benzene	5.28E-03
Toluene	6.42E-03
Ethylbenzene	7.88E-03
o-Xylene	4.87E-03
m-Xylene	7.44E-03
p-Xylene	7.44E-03
1,2,3-Trimethylbenzene	3.18E-03
1,2,4-Trimethylbenzene	5.70E-03
1,3,5-Trimethylbenzene	6.73E-03
Naphthalene	7.34E-04
2-Methylnaphthalene	3.18E-04

Source: Montgomery, 1996.

^{a/} Henry's Law Constant values at 25°C.

 $^{^{\}mathrm{b}^{\prime}}$ atm- m^{3} /mol = atmospheres - cubic meters per mole

Section 2.3.1.3, dissolution appears to be a rate-limiting factor in weathering, especially as it relates to biodegradation. If equilibrium conditions exist, biodegradation of dissolved petroleum contaminants will reduce aqueous contaminant concentrations, thereby enhancing dissolution rates by increasing mass transfer of soluble compounds from residual LNAPL into groundwater (Seagren *et al.*, 1993; Yang *et al.*, 1995). As a result of this dissolution limitation, mass loss rates of dissolved contaminants from biodegradation appear initially to be between zero and first-order (Song *et al.*, 1990), and to decrease with time (Barker *et al.*, 1987).

The kinetics of biodegradation are complicated by the fact that biodegradation is compound-specific and is significantly affected by the geochemistry of the subsurface environment. Dean-Ross (1993) examined the fate of JP-4 jet fuel in subsurface soils and discovered that, for the less volatile, higher-molecular-weight jet fuel components, biodegradation represented a significant mechanism for reducing soil contamination. Song *et al.* (1990) concluded that saturated compounds such as hexane generally are more easily biodegraded than the corresponding aromatic compounds. In a study by Barker *et al.* (1987), mass loss rates for aromatics in groundwater due to biodegradation were greatest for xylenes, followed by toluene, and benzene. Other factors playing an important role in contaminant biodegradation include availability of nutrients, oxygen, and other electron acceptors, and the interfacial area available for mass transfer to aqueous or gaseous phases (Yang *et al.*, 1995). For residual LNAPLs, the size of the LNAPL globules impacts biodegradation rates, with smaller globules resulting in greater interfacial area for mass transfer, and faster biodegradation rates (Yang *et al.*, 1995).

2.3.3.2 Mobile LNAPLs

No studies were identified that addressed intrinsic biodegradation of LNAPL pools. In addition, practical bioremediation of free-phase product has not been demonstrated (Newell *et al.*, 1995), most likely as a result of the following:

- Mobile LNAPLs represent a hostile environment for the survival of most soil microbes; and
- Requirements for microbial proliferation (e.g., nutrients, terminal electron acceptors, pH, moisture, osmotic potential) may be impossible to deliver or maintain in the LNAPL pool (Huling and Weaver, 1991).

Consequently, effective bioremediation and tangible intrinsic biodegradation is likely to be limited to the periphery of the mobile LNAPL zone (i.e., residual LNAPL and aqueous phases).

2.4 OTHER FACTORS INFLUENCING LNAPL WEATHERING

In addition to the LNAPL weathering mechanisms discussed above, hydrocarbon layer thickness, groundwater velocity, soil/aquifer material, and distance from the source area are factors expected to impact BTEX depletion within mobile and residual LNAPLs.

2.4.1 Hydrocarbon Layer Thickness

The hydrocarbon layer thickness at the interface of the unsaturated and saturated zones is presumed to influence BTEX dissolution from the LNAPL (Huntley and Beckett, 1997). Dissolution modeling of a 10-centimeter-thick LNAPL pool in fine sand indicated that the effective solubility of benzene could be reduced to approximately 0.001 mg/L in less than a year. However, modeling results for a 50-centimeter-thick pool indicated it would take approximately 70 years to reach the same effective solubility (Huntley and Beckett, 1997). The larger the LNAPL pool thickness, the more slowly benzene is removed from the LNAPL pool.

It is important to note that LNAPL thickness measurements from groundwater monitoring wells are not necessarily indicative of LNAPL thicknesses in the formation (Blake and Hall, 1984; Hall *et al.*, 1984; Hughes *et al.*, 1988; Testa and Paczkowski, 1989; Farr *et al.*, 1990; Mercer and Cohen, 1990; Huntley *et al.*, 1994). Mercer and Cohen (1990) suggest that the measured LNAPL thickness in wells is typically 2 to 10 times greater than the LNAPL thickness in the formation. In addition, depiction of mobile LNAPL as a distinct layer present above the water capillary fringe has been challenged (Farr *et al.*, 1990). It has been suggested that hydrocarbon-saturated soil layers do not exist at sites with measurable LNAPL; rather, LNAPL and water coexist in soil pores at residual LNAPL saturations ranging up to 40 to 50 percent (Huntley *et al.*, 1994). Nevertheless, the thickness of LNAPL within a soil column is expected to influence LNAPL weathering rates.

2.4.2 Groundwater Velocity

If equilibrium conditions exist between the LNAPL and the aqueous phase (Section 2.3.1.3), contaminant dissolution and depletion from the LNAPL source is enhanced with advection or groundwater flow. In soil column experiments performed by Miller *et al.* (1990), the rate of mass transfer between a toluene NAPL and the aqueous phase was found to be directly related to the aqueous-phase velocity. In addition, equilibrium conditions between the two fluid phases were rapidly achieved over a wide range of test conditions. Considering these findings, it is assumed that sites with higher groundwater velocities may exhibit more-rapid BTEX depletion of mobile LNAPLs in contact with the water table.

2.4.3 Soil/Aguifer Material

The type of soil/aquifer material at a fuel release site is expected to influence LNAPL weathering primarily as a result of fluid distribution and migration. Wettability, or the tendency for one fluid to spread on or preferentially coat a solid surface in the presence of another fluid with which it is immiscible, is impacted by the presence of organic matter, mineralogy, and saturation history of the porous medium (Mercer and Cohen, 1990). Capillary pressure also impacts the configuration and magnitude of trapped residual LNAPL and is a function of soil pore size (Newell *et al.*, 1995). LNAPLs have been observed to preferentially migrate through sands and gravels rather than silts and clays (Newell *et al.*, 1995).

2.4.4 Distance from Source Area

It is presumed that LNAPL weathering is impacted by the distance from the original fuel release location. Because of the effects of source area sequestration, increased surface area, and decreased contaminant mass, it is presumed that peripheral LNAPL weathers at a faster rate than core area LNAPL. It is unlikely that LNAPL weathering occurs at a uniform rate across the area of impact (Landon and Hult, 1991).

2.5 PETROLEUM HYDROCARBON WEATHERING STUDIES

Few weathering studies were identified that evaluated BTEX depletion from gasoline and/or jet fuel LNAPL with the intent of refining contaminant source term reductions for fate and transport modeling. A study was published in 2001 (Peargin, 2001) that provided a summary and analysis of smear zone LNAPL depletion rates of methyl tertbutyl ether (MTBE), benzene, and xylene from 23 gasoline UST sites. 15 of the 23 sites investigated in this study had not undergone significant remediation while the remaining eight sites had been remediated. Fuel component concentrations in groundwater were collected over time from within the source area at each site and first order decay function was fit to the data sets to calculate initial concentrations and depletion rates. The results of this study indicate that MTBE, benzene, and xylene concentration trends at the 15 nonremediated sites show very low or near zero reduction (Peargin, 2001). Alternatively, the results from the 8 remediated sites indicate that MTBE, benzene, and xylene concentration trends show significant concentration reduction over time (Peargin, 2001). Both data sets indicate that there was no significant difference between the individual compound concentration trends (Peargin, 2001). Thus, the individual compounds weathered at approximately the same rates despite the dissimilarity of the compound specific solubilities and diffusion coefficients.

A second more recently published study (Farhat, et al. 2002) provides a summary of source decay rates for BTEX compounds based on groundwater data collected from 359 petroleum-contaminated sites. Although the study did not differentiate between sites with LNAPL and without LNAPL, the average benzene decay rate associated with source area wells is comparable to LNAPL decay rates calculated in this study. Additional discussion of these data and their use in the Source-DK model is provided in Section 5.3.2. A second recently published study (Based on a review of the literature, hydrocarbon weathering studies have primarily focused on weathering of crude oil and heavier refined petroleum products such as fuel oils and diesel fuel (Zurcher and Thuer, 1978; Fried, 1979; Law, 1980; Gundlach et al., 1983; Baedecker et al., 1987; Eganhouse et al., 1988; Baedecker and Cozzarelli, 1991; Landon and Hult, 1991; Baedecker et al., 1993; Christensen and Larsen, 1993; Douglas et al., 1994; Vandermeulen et al., 1994; Douglas et al., 1996; Nakles et al., 1996). Typically, these investigations have focused on the high-molecular-weight, low-solubility fractions in assessing changes in chemical composition. Many of these studies have utilized hydrocarbon ratios and internal biomarkers to evaluate relative degrees of weathering, to estimate spill age, and for source identification (Christensen and Larsen, 1993; Douglas et al., 1994; Douglas et al., 1996; Kaplan et al., 1996.). A brief summary of the more pertinent findings from the literature search is presented below.

2.5.1 BTEX Decay in Source Area Groundwater

A review of data from 359 petroleum (predominantly gasoline) contaminated sites was used to estimate average decay rates for BTEX compounds dissolved in source area groundwater (Farhat, *et al.* 2002). Average first-order decay constants of 0.22 per year (yr⁻¹), 0.41 yr⁻¹, 0.18 yr⁻¹, 0.25 yr⁻¹, were calculated for benzene, toluene, ethylbenzene, and xylenes, respectively. These rates were calculated using historical data from source area wells with the highest BTEX concentrations. When data from the 180 most contaminated sites was evaluated, the average first-order decay rate for benzene decreased from 0.22 yr⁻¹ to 0.16 yr⁻¹. Benzene concentration changes at these 180 sites were more likely to be related to LNAPL dissolution rates.

2.5.2 Bemidji Oil Release Site

In 1979, a crude oil pipeline near Bemidji, Minnesota ruptured and released approximately 450,000 gallons of crude oil into a glacial outwash aquifer. In 1982, the site was selected for a long-term interdisciplinary study by the US Geological Survey. A study performed by Landon and Hult (1991) represents the investigation identified during the literature search that had objectives most similar to those of this fuel weathering study.

The purpose of the Landon and Hult study was to evaluate oil loss rates at a spill site in order to refine contaminant source-term reduction estimates for fate and transport models. Oil samples were collected from various locations within mobile LNAPL pools over a 10-year period to establish oil loss rates. Rather than chemical composition, changes in oil specific gravity and kinematic viscosity were used to calculate oil-mass loss rates. Based on sample results, annual oil-mass loss ranged from 0.1 to 1.25 percent, and total cumulative oil losses after approximately 10 years of weathering were reported to be as much as 11 percent. Important conclusions from this investigation included:

- Oil-mass loss rates were found to vary spatially (i.e., to depend upon location within the oil pool);
- Oil-mass loss rates were found to vary temporally (i.e., to change based on relative age of the release):
- Volatilization of low-molecular-weight compounds was suspected to be the primary weathering mechanism.

Weathering rates for individual chemicals were not determined as part of the Landon and Hult (1991) study. However, depletion rates for BTEX compounds in refined petroleum products such as JP-4 and gasoline are expected to be greater than the total oilmass loss rates observed in mobile LNAPL at the Bemidji site.

2.5.3 Internal Biomarkers and Hydrocarbon Ratios

At oil release sites, the extent of oil or analyte depletion within soils or sediment has been estimated utilizing an internal biomarker or standard. For crude oil, the saturated pentacyclic (5-ring) triterpane known as hopane has been used because of its resistance to degradation (Douglas *et al.*, 1994 and 1996). As biodegradation proceeds, the relative

concentration of hopane remaining in the oil increases because of the removal of other more easily degraded compounds. As proposed by Douglas *et al.* (1994), the percent of oil depletion can be estimated by comparing the concentration of hopane in the weathered oil (H_1) with the concentration in the initial source oil (H_0) using the following equation:

% oil depletion =
$$[1 - (H0 / H_1)] \times 100$$
 eq. 2.4

In addition, the amount of depletion of any one analyte within the oil can be determined using these hopane values in combination with the analyte concentration in the degraded oil (C_1) and in the source oil (C_0) as shown:

% analyte depletion =
$$[1 - ((C1 / C_0) (H0 / H_1))] \times 100$$
 eq. 2.5

The use of these equations to determine total oil and analyte depletion is considered to be conservative (i.e., to provide minimum depletion estimates) because the hopane degrades very slowly (Douglas *et al.*, 1996). Equation 2.5 was used to determine analyte depletion in shoreline sediment samples following the ExxonTM Valdez oil spill. Analyte depletion in these samples ranged from 30 to 70 percent 16 months after the spill (Douglas *et al.*, 1996). It also was noted during this study that the relative degree of PAH depletion decreased with increasing ring numbers and increased alkylation.

Similarly, hydrocarbon ratios have been used to determine the degree of change in oil/fuel composition with time and weathering. A ratio that is frequently used to assess biodegradation is the n-C₁₇/pristane ratio. The n-C₁₇ compound is simply a saturated 17-carbon alkane. Pristane is a 19-carbon isoalkane, or isoprenoid, that is more resistant to biodegradation than the alkane n-C₁₇. In a study performed by Christensen and Larsen (1993) on biodegradation of residual diesel fuel in soils, the n-C₁₇/pristane ratio had the highest correlation factor with fuel residence time in soils of any similar n-alkane/isoalkane ratio. Based on the results of this study, Christensen and Larsen (1993) determined that the n-C₁₇/pristane ratio could be used to determine the age of a diesel oil spill within a range of plus or minus 2 years at a 95-percent level of confidence. The data also suggested that the n-alkanes biodegrade at a zero-order rate within residually contaminated soils.

2.5.3 BTEX Ratios

For refined petroleum products with higher initial BTEX concentrations (e.g., gasoline), ratios of the BTEX compounds have been used to estimate the relative state of degradation. As noted by Kaplan *et al.* (1996), BTEX results offer an excellent means of evaluating fuel alteration resulting from dissolution and volatilization. Comparing concentration ratios of the BTEX compounds in groundwater samples will typically show that benzene and toluene will be enriched relative to ethylbenzene and xylenes. However, in soil samples ethylbenzene and xylenes are preferentially retained relative to benzene and toluene.

Kaplan *et al.* (1996) suggest that a useful parametric ratio to evaluate gasoline partitioning is (benzene+toluene)/(ethylbenzene+xylenes). Based on their results, the average (B+T)/(E+X) ratio ranged from 0.74 to 0.88 for newly dispensed gasoline, whereas, the average ratio for free product, water, and soil were 0.65, 0.97, and 0.48,

respectively. In laboratory studies by Kaplan *et al.* (1996), (B+T)/(E+X) ratios of 1.0 to 5.0 have been found for water in contact with fresh gasoline. At fuel release sites where groundwater samples are collected in the source area and the (B+T)/(E+X) ratio falls within this range, a recent release is indicated. At sites where the gasoline release is more than 10 years old, the ratio in the vicinity of the source area typically is less than 0.5. Ratios greater than 5.0 typically are encountered at sites where the groundwater samples are collected at a distance from the source area, and benzene and toluene concentrations are relatively higher than ethylbenzene and xylenes concentrations because of dissolution effects.

SECTION 3

SELECTION OF STUDY SITES

The primary objective of this study was to determine a range of natural *in-situ* weathering rates for mobile LNAPL associated with jet fuel and gasoline releases based on the existing literature and data collected from sites with mobile LNAPL contamination. Because no case studies identified in the literature quantitatively evaluated source strength reduction of the BTEX constituents within mobile LNAPL, field sampling of representative sites was determined to be necessary. The site selection criteria for the fuel weathering study are presented in Section 3.1. Sites included within the study are summarized in Section 3.2.

3.1 SITE SELECTION CRITERIA

To evaluate a site's potential as a candidate for the fuel weathering study, the following selection criteria were considered:

- 1. Presence of recoverable mobile LNAPL in the subsurface environment as a result of a jet fuel or gasoline release;
- 2. Known date of fuel release;
- 3. Single release confined to a relatively short period of time;
- 4. Minimal engineered remediation of the site and mobile LNAPL;
- 5. Availability of historic LNAPL analytical results, including BTEX;
- 6. Depth to groundwater less than 40 feet below ground surface (bgs) (for ease of sampling); and
- 7. Department of Defense (DoD) sites (for ease of access).

Identifying sites that met all of the above-listed criteria proved to be a difficult task. Consequently, the criteria served as guidelines for site selection rather than rigid selection parameters. Each of the criteria and their consideration in site selection are briefly discussed below.

JP-4 fuel release sites were preferred for the study because they are common at Air Force bases and JP-4 has a relatively high mass fraction of BTEX (Figure 2.3). Source reduction (i.e., BTEX depletion) estimates using mobile LNAPL sampling data from these types of fuel release sites were anticipated to be more representative because of the higher initial BTEX concentrations. However, due to the difficulty of finding an adequate number of sites meeting the selection criteria, gasoline, JP-5, and JP-8 release sites also were included in the study. While benzene, toluene, and ethylbenzene

concentrations are less than 0.40 wt% in JP-8 (Mayfield, 1996), and less than 0.05 wt% in JP-5 (based on the fresh sample collected at Beaufort MCAS), it was hoped that concentrations of total xylenes, naphthalene, and methylnaphthalenes could be used to evaluate mobile LNAPL weathering rates for JP-5 and JP-8.

Recoverable mobile LNAPL was loosely defined during initial site screening as sufficient free product in a site monitoring well to allow collection of relatively undiluted product samples. One inch of mobile LNAPL was considered to be the minimum required thickness for site consideration.

Locating sites with a known date of fuel release (criterion 2) where the release was a one-time event confined to a relatively short period of time (criterion 3) was difficult, especially when combined with the requirement for recoverable mobile LNAPL (criterion 1). For many petroleum release sites, the specific date(s) of release is not documented and at best can be approximated based on known historical site activities. In addition, one-time releases of sufficient volume to produce a long-term mobile LNAPL in the subsurface environment are rare. Moreover, when such releases occur, they frequently trigger emergency response actions that compromise satisfaction of the fourth selection criterion (minimal site remediation).

Sites where limited or no site remediation had occurred were preferred for assessing *in situ* LNAPL weathering rates. Soil venting activities, such as SVE, bioventing, and bioslurping will increase volatilization and biodegradation of the BTEX fraction in LNAPL; therefore, a BTEX weathering evaluation of the mobile LNAPL remaining at such sites would be biased. Sites where limited product recovery or soil excavation has occurred were not excluded from consideration.

Historical mobile LNAPL BTEX sampling results were considered in lieu of a known spill or release date. The availability of BTEX concentrations from a previous sampling event could help define BTEX depletion curves for the mobile LNAPL. Historical LNAPL BTEX results at least 3 years old were desired, but such data were seldom available.

Sites with shallow groundwater (less than 40 feet bgs) were selected so that Geoprobe[®] sampling could be performed. This requirement precluded the selection of sites in arid regions with thick vadose zones and deep water tables. As a result, many of the sites selected for the study are located in coastal regions with shallower water tables.

During the original fuel weathering study, funding and liability issues restricted the study to DOD sites. During the site selection process for the fuel weathering update, industrial sites were considered for inclusion. However, site selection criterion #4 is typically not fulfilled on industrial sites, because catastrophic releases at these sites trigger legally required emergency response cleanup actions.

3.2 FUEL WEATHERING STUDY SITES

Eight primary sites were selected for the study. A ninth primary site was added during the update phase of this project. Summary information for the original eight primary sites was submitted to AFCEE prior to field sampling activities (Appendix A). In addition, samples from four secondary sites were collected and analyzed to support the

study. Summary site data for the primary and secondary sites are provided in Table 3.1. The primary sites are designated as primary because these sites have large and persistent LNAPL plumes present. The secondary sites all have relatively small LNAPL plumes resulting from small fuel releases. The secondary sites were not resampled during the update phase of this study because there was insufficient LNAPL present at these sites.

Based on the site-selection criteria summarized in Section 3.1, sample data from one gasoline, seven JP-4, three JP-5, and two JP-8 fuel release sites were collected to evaluate mobile LNAPL weathering. Table 3.1 provides summary information for each site, including fuel type, volume and date of fuel release, and hydrogeologic information (e.g., soil type, approximate depth of water table, groundwater velocity, and free product or mobile LNAPL thickness). Figure 3.1 illustrates the geographic distribution of the selected sites. The fuel weathering study work plan and site-specific addenda (Appendix A) provide additional information on the primary sites selected for the study. Further information on sample collection methods is presented in Section 4.

TABLE 3.1 SITE SUMMARY FUEL WEATHERING STUDY

Site/Location	Fuel Type	Date of Release	Spill Age (years) ^{a/}	Amount Released (gallons)	Soil Type ^{b/}	Depth to Water Table (feet bgs ^{c/})	Groundwater Velocity (feet/year)	Free Product Thickness (feet) and Date	References
Primary Sites									
Tank 349 Offutt AFB, NE	Gasoline	1990	13	Unknown	Clay/Sand	39-42	11	2.23(6/96)	Parsons, 1997
Bldg 1610 Shaw AFB, SC	JP-4	June 1994	9	Unknown	Sand	29-33	400	2.5(8/96)	Parsons, 1998
Pipeline Leak Site Myrtle Beach AFB, SC	JP-4	January 1981	22	123,000	Clay/Sand	2-8.5	420	3.79(11/95)	ECT, 1996
Tank 1 Area, DFSP-Charleston, Hanahan, SC	JP-4	October 1975	28	83,000	Clay/Sand	18-22	62	1.77(5/96)	USGS, 1997
Spill Site No. 2 Eaker AFB, AR	JP-4	October 1973	30	Unknown	Sandy Silt	8-14	16	1.18(8/97)	Halliburton NUS, 1996
AGE Area ^{d/} Seymour Johnson AFB, NC	JP-4	January, 1985	18	Unknown	Sand	4-9	130	0.55(7/01)	NA ^{e/}
Tank Farm C Beaufort MCAS, SC	JP-5	June 1990	13	10,600	Silty Sand	2-8	20	0.13(5/96)	USGS, 1996
Day Tank 1, Facility 293 Cecil Field NAS, FL	JP-5	1981	22	497,000	Silty Sand	5-8	6	0.78(8/96)	ABB, 1995a; 1996
Bldg 4522 Seymour Johnson AFB, NC	JP-8	December 1995	8	5,000	Sand	4-9	130	2.8(4/96)	Parsons, 1996c
Secondary Sites									
KC-135 Crash Site Wurtsmith AFB, MI	JP-4	October 1988	15	3,000	Sand	9-12	110	0.22(3/91)	Parsons, 1996a
Washrack/Treatment Area McChord AFB, WA	JP-4	1975	28	100,000	Silty Gravel	11-15	NA	0.14(4/94)	EA, 1994
Day Tank 865 Beaufort MCAS, SC	JP-5	1974	29	60,000	Silty Sand	2-8	7	0.15(5/97)	ABB, 1995b
JP-8 Release Site Pope AFB, NC	JP-8	April 1996	7	700	Sand	6-9	100	0.01(7/96)	Parsons, 1996b

Spill age is calculated from the release date of the draft fuel weathering report update.
 Represents soil type at the capillary fringe/water table.
 Feet below ground surface.
 This site was added during the update phase of this project.
 NA = not available.

SECTION 4

COLLECTION OF SITE DATA

To assess the effects of mobile and residual LNAPL weathering as they apply to soil and groundwater, samples of each medium (i.e., soil, groundwater, and mobile LNAPL) were collected from the study sites listed in Table 3.1. Where possible, samples were collected at each site within the area impacted by mobile LNAPL to determine weathering effects on mobile LNAPL in relation to contaminant concentrations in soil at the capillary fringe and in groundwater. Samples collected by Parsons during 1997 and 1998 field sampling events form the foundation for this study; however, samples collected prior to 1997 by other organizations also have been included, where appropriate. LNAPL and groundwater samples collected as part of the fuels weathering study update were collected between July 2001 and July 2002. Table 4.1 provides a summary of the origin and types of samples collected and analyzed for the nine primary and four secondary fuel weathering study sites.

The following subsections provide a summary of soil, mobile LNAPL, and groundwater collection procedures. A brief description of the laboratory analytical methods used for this study also is provided. The work plan provides further information about sample collection and analysis procedures (Appendix A).

4.1 SOIL SAMPLING

Soil samples for the study were collected using a truck-mounted Geoprobe[®] direct push rig. At most of the selected sites, soil samples were collected from a minimum of two separate borings. To maximize the possibility of obtaining soil samples within areas of measurable mobile LNAPL, boreholes were generally placed as close as possible to monitoring wells displaying maximum mobile LNAPL thickness for the site. Soil samples typically were collected from approximately 1 foot above the water table for the purpose of evaluating weathering of residual LNAPL in the capillary fringe. The collected soil samples were then shipped in soil sampling jars to an offsite laboratory for analysis.

Soil samples were submitted to the US Environmental Protection Agency (USEPA) National Risk Management Research Laboratory (NRMRL) (formerly the Kerr Research Laboratory), in Ada, Oklahoma. Section 4.4 summarizes the soil, mobile LNAPL, and groundwater analytical methods utilized for the study. Soil samples were not collected during the update phase of this project.

TABLE 4.1 ORIGIN OF SAMPLE DATA FUEL WEATHERING STUDY

Site	Dates of Sample Collection	Sample Type ^{a/}	Samples Collected By b/	Samples Analyzed By ^{c/}
Primary Sites				
Tank 349 Offutt AFB, NE	November 1994 June 1996 June 1997 October 1998 January 2002	S,GW,FP GW,FP S,GW,FP FP GW,FP	USACE/Parsons Parsons Parsons Parsons URS Corp.	NRMRL NRMRL EAL, NRMRL EAL, NRMRL OBG
Building 1610 Shaw AFB, SC	March 1997 March 1998 July 2002	S,GW,FP S,GW,FP GW,FP	Parsons Parsons Proterra Inc.	EAL, NRMRL EAL, NRMRL OBG
Pipeline Leak Site Myrtle Beach AFB, SC	March 1997 July 2001	S,GW,FP GW,FP	Parsons Parsons	EAL, NRMRL OBG
DFSP-Charleston, Tank 1 Area Hanahan, SC	December 1993 May 1995 May 1997 February 2002	FP FP S,GW,FP GW,FP	USGS USGS Parsons IT Corp.	NRMRL NRMRL EAL, NRMRL OBG
Spill Site No. 2 Eaker AFB, AR	August 1997 October 2001	S,GW,FP GW,FP	USACE Parsons	EAL, NRMRL OBG
Tank Farm C Beaufort MCAS, SC	August 1997	S,GW,FP	Parsons	EAL, NRMRL
Day Tank 1, Facility 293 Cecil Field NAS, FL	May 1997 February 2002	S,GW,FP GW,FP	Parsons Tetratech NUS	EAL, NRMRL OBG
Bldg 4522 Seymour Johnson AFB, NC	July 1996 May 1997 March 1998 July 2001	S,GW,FP S,GW,FP S,GW,FP GW,FP	USACE Parsons Parsons Parsons	NRMRL EAL, NRMRL EAL, NRMRL OBG
Former AGE Facility	July 2001	GW,FP	Parsons	OBG
Seymour Johnson AFB, NC				
Secondary Sites				
KC-135 Crash Site Wurtsmith AFB, MI	August 1996	S,GW	Parsons ES	NRMRL
Washrack/Treatment Area McChord AFB, WA	September 1997	FP	McChord Contractor	NRMRL
Day Tank 865 Beaufort MCAS, SC	May 1997	S,FP	Parsons ES	NRMRL
JP-8 Release Site Pope AFB, NC	July 1996	S,GW,FP	USACE	NRMRL

a/ S = soil; GW = groundwater; FP = free product or mobile light nonaqueous phase liquid (LNAPL).
 b/ USACE = US Army Corps of Engineers, Kansas City District Office; USGS = United States Geological Survey, Water Resource Division, Columbia, SC.

c/ EAL = Evergreen Analytical Laboratory, Wheat Ridge, Colorado; NRMRL = USEPA National Risk Management Research Laboratory, Ada, Oklahoma; OBG = O'Brian Gere Laboratories (Syracuse, NY).

4.2 MOBILE LNAPL SAMPLING

Whenever possible, mobile LNAPL samples were collected from two separate site monitoring wells. At the Seymour Johnson Air Force Base (AFB) and Beaufort MCAS sites, mobile LNAPL was present, and thus collected, at only one site monitoring well. No mobile LNAPL was encountered at the Wurtsmith AFB site.

It was originally proposed in the work plan (Appendix A) that mobile LNAPL, groundwater, and soil sampling would be performed in the same vertical continuum within one borehole. It was proposed that groundwater and mobile LNAPL samples would be collected from temporary monitoring points. Attempts were made to collect mobile LNAPL samples from temporary monitoring points at several sites. At these sites, the temporary monitoring points were located within 4 to 7 feet of monitoring wells that contained mobile LNAPL, and were screened to intersect the top of the water table. After monitoring point placement and some initial groundwater purging, the monitoring points were allowed to recharge for up to 15 hours, with the expectation that a sufficient amount of mobile LNAPL (5 to 10 mL) would flow into the monitoring point for sample collection. Only during the 1998 sampling event at Seymour Johnson could a mobile LNAPL sample be collected from a temporary monitoring point. At all other sites no more than a slight sheen of mobile LNAPL was detected in the temporary monitoring points, and mobile LNAPL samples had to be collected from site monitoring wells.

In order to minimize the effects of evaporation on volatile fuel constituents and to obtain samples representative of the mobile LNAPL present in site formations, mobile LNAPL samples generally were collected from site monitoring wells following an initial purging of mobile LNAPL present in the well casing. Because the rate of mobile LNAPL recovery was unknown, a "pre-purge" sample was collected from site monitoring wells in the event that sufficient mobile LNAPL recovery did not occur following initial purging. At most sites, at least one casing-volume of product was removed, and mobile LNAPL recovery was sufficient for "post-purge" sample collection within an hour or less. Other than the "pre-purge" samples from Beaufort Tank Farm C, Beaufort Day Tank 865, and the Cecil Field NAS site (monitoring well CEF-293-7), the mobile LNAPL samples submitted for laboratory analysis were "post-purge" samples. Mobile LNAPL samples were sent to NRMRL and Evergreen Analytical Laboratory (EAL) in Wheat Ridge, Colorado for analysis (Section 4.4).

During the update phase of this project, all LNAPL samples were collected from preexisting monitoring wells that contained LNAPL and that were sampled during the original fuel weathering study. LNAPL samples collected during the update were collected in the same manner as those samples collected during the original fuel weathering study. Samples collected during the update sampling were submitted to O'Brien and Gere (OBG) Laboratories for analysis.

4.3 GROUNDWATER SAMPLING

Groundwater samples usually were collected from two locations at each of the selected sites. At sites where the water table was less than 20 feet bgs, groundwater samples were collected from temporary monitoring points placed within the Geoprobe® boreholes created during soil sampling. The boreholes and monitoring points generally were placed within 5 to 7 feet of site monitoring wells displaying maximum mobile

LNAPL thickness. At sites where the groundwater depth was more than 20 feet bgs (i.e., Shaw AFB and Offutt AFB), groundwater samples were collected from existing site monitoring wells that contained mobile LNAPL. In addition, during the 1997 and 1998 sampling events at the Seymour Johnson AFB and Cecil Field NAS sites, one groundwater sample also was collected from an existing site monitoring well which contained mobile LNAPL. Groundwater samples were submitted to NRMRL for analysis.

During the update phase of this project, groundwater samples were collected from existing monitoring wells that contained LNAPL. Efforts were made to sample the same wells during the update phase that were previously sampled. However, in some instances, wells that were previously sampled could not be resampled due to lack of measurable LNAPL or well inaccessibility. In the cases where previously sampled wells could not be resampled, alternate wells were selected for sampling. The groundwater samples were collected by first removing the LNAPL from the well, then collecting a groundwater sample using a bailer or a peristaltic pump. It is possible that some emulsification of mobile LNAPL may have occurred in groundwater samples collected from these monitoring wells. After the groundwater sample was collected, a post-purge LNAPL sample was collected if the LNAPL had recovered sufficiently.

4.4 LABORATORY ANALYSIS

Table 4.2 presents a summary of the analytical methods performed by each laboratory. Analytical results from NRMRL, EAL, and OBG are provided in Appendix B.

4.4.1 National Risk Management Research Laboratory

NRMRL analyzed soil, groundwater, and mobile LNAPL samples from several study sites. Concentrations of BTEX, naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, and the various TMB isomers were determined for each matrix. In addition, soil samples were analyzed for total fuel carbon, and mobile LNAPL samples were analyzed for fuel density. Samples from the eight primary and four secondary sites (Table 4.1) were submitted to NRMRL for analysis.

4.4.2 Evergreen Analytical Laboratory

EAL analyzed mobile LNAPL samples collected from various study sites in order to determine K_{fw} values at equilibrium saturations. The EAL analyses generally were performed in accordance with procedures from the Cline *et al.* (1991) study. Saturated, equilibrium solutions of the collected fuels in contact with distilled, deionized, organic-free water were prepared in the laboratory. Two mL of fuel were added to 40 mL of water in glass vials having Teflon® septa (a 1:20 fuel to water ratio). Sample vials were agitated for approximately 30 minutes, then allowed to rest for 1 hour in an inverted position. The fuel and deionized water mixture was assumed to be at equilibrium at this point per Cline *et al.* 1991. Following mixing and stabilization, the aqueous phase and the organic (fuel) phase were analyzed separately for determination of BTEX concentrations by USEPA gas chromatography method SW8020 with photoionization detection (GC/PID).

TABLE 4.2 ANALYTICAL PROTOCOLS FOR SOIL, MOBILE LNAPL, AND GROUNDWATER SAMPLES FUEL WEATHERING STUDY

LABORATORY b/	NUMBER OF SAMPLES PER SITE	ANALYSIS ^{c/}	METHOD d/
NRMRL	2 to 3	BTEX + TMBs Napthalene and Methylnapthalenes Total Fuel Carbon	NRMRL SOP equivalent to USEPA SW8020A NRMRL SOP equivalent to USEPA SW8270
NRMRL	1 to 2	BTEX + TMBs Napthalene and Methylnapthalenes Density	GC/MS (Direct Injection) NRMRL SOP equivalent to USEPA SW8270 USEPA Method 2710F
EAL	1 to 2	BTEX (Aqueous Phase)	SW8021
OBG	2 to 3	BTEX (Aqueous Phase)	SW8021 and SW8260
NRMRL	1 to 2	BTEX + TMBs Napthalene and Methylnapthalenes	NRMRL SOP equivalent to USEPA E602 NRMRL SOP equivalent to USEPA SW8270
OBG	2 to 3	BTEX (Aqueous Phase)	SW8260
	NRMRL NRMRL EAL OBG NRMRL	LABORATORY b/ PER SITE NRMRL 2 to 3 NRMRL 1 to 2 EAL 1 to 2 OBG 2 to 3 NRMRL 1 to 2	LABORATORY b/ SAMPLES PER SITE ANALYSIS c/ NRMRL 2 to 3 BTEX + TMBs Napthalene and Methylnapthalenes Total Fuel Carbon NRMRL 1 to 2 BTEX + TMBs Napthalene and Methylnapthalenes Density EAL 1 to 2 BTEX (Aqueous Phase) OBG 2 to 3 BTEX (Aqueous Phase) NRMRL 1 to 2 BTEX + TMBs Napthalene and Methylnapthalenes

^a/LNAPL = Light nonaqeous phase liquid

b/ NMRL = National Risk Management Research Laboratory; EAL = Evergreen Analytical Laboratory; OBG = O'Brien and Gere Laboratory.

^{c/}BTEX = benzene, toluene, ethylbenzene, and total xylenes; TMBs = trimethylbenzene isomers.

d/SOP = Standard operating procedure; GC/MS = Gas chromatography/mass spectrometry.

4.4.3 O'Brien and Gere Laboratories

During the update phase of this project, LNAPL and groundwater samples were shipped to OBG for analysis. OBG analyzed the LNAPL and groundwater samples for VOCs via USEPA Methods SW8260B and SW8021 (Cline *et al.* 1991). The 8260B data were used to calculate BTEX weathering rates from LNAPL and groundwater as well as K_{fw} values at non-equilibrium (field) conditions. The 8021 data were used to calculate fuel/water partitioning coefficients at equilibrium (laboratory) conditions. The 8021 data are equivalent to the data generated by EAL using the Cline *et al.* (1991) method during the original fuel weathering study, in that both the water and LNAPL phases within each sample were analyzed.

SECTION 5

ANALYTICAL RESULTS AND DATA ANALYSIS

The primary objective of this study was to determine a range of natural weathering rates for mobile LNAPLs in order to refine modeling assumptions for the contaminant source-term reduction rate. The BTEX compounds were the primary focus of the study, as they typically represent the primary contaminants of concern at gasoline and jet fuel release sites. Naphthalene and methylnaphthalenes also were evaluated because these aromatic compounds can be contaminants of concern at sites containing releases of kerosene-based jet fuels (i.e., JP-5 and JP-8). In addition to the mobile LNAPL weathering analysis, K_{fw} values for BTEX compounds were determined based on field data and compared to laboratory-determined partitioning values. Lastly, residual LNAPL weathering rates in capillary fringe soils were compared to mobile LNAPL weathering rates.

5.1 RESULTS SUMMARY

Table 5.1 summarizes mobile LNAPL, groundwater, and soil analytical results for the remaining BTEX fraction based on fuel type, and includes sample data from the nine primary and four secondary sites. The mobile LNAPL and groundwater values shown represent analytical results obtained from EAL, NRMRL, and OBG. These data were collected during both the original fuels weathering study and the update. Soil values shown represent analytical results from NRMRL. A more complete listing of analytical results obtained from EAL, NRMRL, and OBG for each site, including naphthalene, methylnaphthalene, and TMB results, is provided in Appendix B.

5.1.1 Mobile LNAPL BTEX Results

Mobile LNAPL BTEX results varied considerably with fuel type. Total BTEX concentrations in mobile LNAPL collected at the fuel release sites ranged from 3,780 mg/L (JP-5) to 111,000 mg/L (gasoline). The most significant variations are apparent in the benzene and toluene fractions, where their concentrations varied over approximately 3 orders of magnitude for the different fuel types. Maximum benzene concentrations of 14,000 mg/L, 2,650 mg/L, 480 mg/L, and 25 mg/L were detected in mobile LNAPL from the gasoline, JP-4, JP-8, and JP-5 fuel release sites, respectively. Maximum toluene concentrations in mobile LNAPL ranged from 122 mg/L at the JP-5 sites to 58,000 mg/L at the gasoline site. Order-of-magnitude differences in the mobile LNAPL BTEX concentrations based on fuel type are consistent with differences in individual BTEX component concentrations among the fresh fuels (Figure 2.3).

TABLE 5.1
BTEX CONTENT IN MOBILE LNAPL, GROUNDWATER, AND SOIL RESULTING FROM GASOLINE AND JET FUEL RELEASES FUEL WEATHERING STUDY

Fuel Type	No. of	Benzene	;	Toluene		Ethylbenze	ene	Xylenes		Total BTE	X
Sample Matrix ^{a/}	Samples	Range	Average b/	Range	Average b/	Range	Average b/	Range	Average b/	Range	Average b/
JP-4 Jet Fuel											
Mobile LNAPL (mg/L) ^{6/}	36	< 0.025 - 2,650	730	< 0.025 - 6,650	1,620	0.075 - 7,360	1,550	0.075 - 26,300	7,660	0.15 - 34,800	11,800
Groundwater (mg/L)	10	0.002 - 20	2.7	0.001 - 8.8	1.4	0.043 - 3.9	0.53	0.025 - 18.8	2.9	0.14 - 43	7.4
Soil (mg/kg) ^{d/}	14	0.006 - 11	1.5	0.006 - 22	2.5	0.006 - 34	5.5	0.018 - 173	25	0.036 - 230	34
JP-5 Jet Fuel											
Mobile LNAPL (mg/L)	7	1.5 - 25	11.3	13.0 - 122	55	116 - 3,200	970	611 - 7,300	2,740	740 - 10,600	3,780
Groundwater (mg/L)	2	0.002 - 0.09	0.046	0.007 - 0.81	0.41	0.02 - 0.94	0.48	0.14 - 2.8	1.4	0.17 - 4.6	2.4
Soil (mg/kg)	6	0.012 - 3.3	0.94	0.079 - 19	6.3	1.5 - 155	57	0.093 - 425	145	6.9 - 600	208
JP-8 Jet Fuel											
Mobile LNAPL (mg/L)	9	< 0.025 - 480	156	< 0.025 - 1,239	676	63 - 4,040	1,253	1,000 - 7,530	4,690	1,070 - 10,600	6,590
Groundwater (mg/L)	4	0.19 - 0.85	550	0.068 - 4.1	2.0	0.22 - 0.84	0.47	0.69 - 3.2	1.8	1.2 - 9.0	4.8
Soil (mg/kg)	9	0.006 - 13	6.0	0.006 - 79	35	0.006 - 75	38	0.018 - 416	168	0.036 - 561	248
Gasoline											
Mobile LNAPL (mg/L)	10	955 - 14,000	6,840	12,300 - 58,000	38,300	9,260 - 18,000	12,900	32,600 - 84,000	53,000	55,900 - 165,000	111,000
Groundwater (mg/L)	8	1.9 - 38	22	21 - 44	33	3.6 - 4.7	4.1	9.0 - 79	22	27 - 121	75
Soil (mg/kg)	4	0.56 - 43	26	0.33 - 165	88	0.29 - 59	30	0.79 - 203	102	2.0 - 467	247

^{a'} Mobile (LNAPL) and groundwater analytical results obtained from EAL, NRMRL, and OBG. Soil analytical results obtained from NRMRL.

b/ Average = Arithmatic mean.

c/ mg/L = milligram per liter.

 $^{^{}d/}$ mg/kg = milligrams per kilogram.

5.1.2 Groundwater BTEX Results

Groundwater BTEX analytical results in the LNAPL source area also varied with fuel type. Groundwater concentrations at the gasoline site consistently exceeded USEPA (2002) MCLs for benzene (0.005 mg/L), toluene (1.0 mg/L), ethylbenzene (0.7 mg/L), and total xylenes (10 mg/L). At the jet fuel release sites where the effective solubility of the BTEX compounds in the LNAPL is significantly lower than in gasoline, MCL exceedances were less frequent. Maximum concentrations of benzene measured at the JP-4, JP-5, and JP-8 release sites exceeded the MCL; however, concentrations in some groundwater samples at the JP-5 and JP-8 sites were below the benzene MCL. Even at the JP-4 sites where fuel releases occurred more than 20 years prior to the sampling event, benzene concentrations in groundwater continued to exceed the MCL. Toluene and ethylbenzene concentrations in contaminant source-area groundwater at the JP-4 and JP-8 sites occasionally exceeded their MCLs, but no MCL exceedances were observed for these analytes in the two JP-5 site samples. Total xylenes concentrations in groundwater at the JP-4, JP-5, and JP-8 release sites were consistently below the MCL of 10 mg/L, indicating that dissolved xylene contamination is not likely to be a significant environmental concern at jet fuel release sites. However, xylene concentrations in groundwater at the gasoline site exceeded the MCL in all samples (Tables 2.1 and 5.1).

5.1.3 Soil BTEX Results

BTEX concentrations detected in capillary fringe soil samples did not vary as significantly with fuel type as did mobile LNAPL and groundwater BTEX concentrations. Maximum benzene concentrations of 43 milligrams per kilogram (mg/kg), 13 mg/kg, 11 mg/kg, and 3.3 mg/kg were measured at the gasoline, JP-8, JP-4, and JP-5 release sites, respectively. Similarly, maximum concentrations of toluene were greatest at the gasoline site (165 mg/kg), followed by the JP-8 sites (79 mg/kg), JP-4 sites (22 mg/kg), and JP-5 sites (19 mg/kg). Surprisingly, maximum soil concentrations of ethylbenzene (155 mg/kg) and total xylenes (425 mg/kg) were detected in the capillary fringe soil sample collected at the Cecil Field NAS JP-5 release site; however, comparatively low concentrations of ethylbenzene and xylenes were detected in the mobile LNAPL sample collected near this location (3,200 mg/L and 7,300 mg/L, respectively).

5.2 MOBILE LNAPL WEATHERING

Mobile LNAPL weathering was assessed by evaluating the mass fraction reduction of the individual BTEX constituents as well as of total BTEX. BTEX concentrations in mobile LNAPL samples were compared to assumed initial BTEX concentrations in fresh fuel that are believed to be conservatively low as described in Section 2.1.2.4. Using the known dates of the product releases and the assumed initial BTEX compositions for the various fuels, the degree of mobile LNAPL weathering (i.e., BTEX mass fraction depletion) that has occurred with time was determined for each release site.

5.2.1 Assumed Initial Fuel Compositions

Initial concentrations of BTEX, naphthalene, and methylnaphthalenes in gasoline, JP-4, JP-5, and JP-8 that are believed to be conservatively low were assumed. The

assumed initial concentration for each fuel type is based on the following literaturederived or laboratory-measured values presented in Section 2.1.2.4:

- JP-4 Initial values from Smith *et al.* (1981);
- JP-5 at Cecil Field NAS Initial values from Hughes *et al.* (1984);
- JP-5 at Beaufort MCAS Initial values based on Beaufort MCAS fresh JP-5 sample;
- JP-8 Initial values from Mayfield (1996); and
- Gasoline Initial values from Tojado and Ray (1987).

Further discussion of the assumed fuel compositions for JP-4, JP-5, JP-8, and gasoline in relation to site-specific mobile LNAPL results is presented in Sections 5.2.3, 5.2.4, 5.2.5, and 5.2.6, respectively.

5.2.2 Kinetics of Weathering

As discussed in Section 2, LNAPL weathering in the subsurface environment results from a complex combination of physical, chemical, and biological processes. Weathering rates, or compound-specific depletion rates, are a function of these processes. Thus, the reaction kinetics that determines the rate of contaminant depletion are difficult to predict. For this study, no literature findings were identified that explained reaction kinetics for the overall weathering of a mobile LNAPL, and for most sites, only a few data points were available for estimating contaminant depletion rates. Because of these limitations, contaminant depletion in this study was evaluated using both zero-order and first-order reaction kinetics.

5.2.2.1 Zero-Order Weathering

Zero-order weathering or decay is described by the following differential equation:

$$dC / dt = -k_0$$
 eq. 5.1

As shown on Figure 5.1, zero-order, or linear, weathering assumes that contaminant depletion in the mobile LNAPL occurs at a constant rate (k_0) . In addition, the rate of depletion of the contaminant is not reduced as the contaminant becomes increasingly more depleted with time and weathering of the mobile LNAPL. Solving this differential equation gives:

$$C = C_0 - k_0 t$$
 eq. 5.2

where: C = contaminant concentration (wt%) at time "t"

 C_0 = contaminant concentration (wt%) at time "zero"

 k_0 = zero-order rate constant or slope (wt% per year)

Solving for k_0 , eq. 5.2 can be written as:

$$k_0 = (C_0 - C) / t$$
 eq. 5.3

For zero-order weathering, the amount or percent of annual contaminant depletion can be compared to the concentration at time zero (C_0) by the following:

%
$$C_0$$
 Reduced / Year = $\underline{[(C0 - C)/C_0] \times 100}$ eq. 5.4
Sample Date - Spill Date (years)

5.2.2.2 First-Order Weathering

First-order weathering is described by the following differential equation:

$$dC / dt = -k_1t$$
 eq. 5.5

As shown on Figure 5.2, the rate of contaminant depletion changes with time under the first-order weathering assumption. Under this scenario, the rate of contaminant depletion is proportional to the amount of contaminant that is present at any time "t." The first-order weathering curve shown on Figure 5.2 is an exponential curve, where the amount of contaminant remaining in the LNAPL approaches zero with time, but never reaches a zero concentration. Solving this differential equation gives:

$$C = C_0 e^{-k_1 t}$$
 eq. 5.6

where: C = contaminant concentration in wt% at time "t"

 C_0 = contaminant concentration in wt% at time "zero"

e = base of natural logarithms (approximately 2.72)

 k_1 = first-order rate constant (years⁻¹ or 1/years)

Solving for k_1 , eq. 5.6 can be written as:

$$k_1 = -\ln (C/C_0) / t$$
 eq. 5.7

For first-order weathering, the yearly percent of contaminant depletion can be determined as follows:

% Reduction / Year =
$$(1 - e^{-k_1 t}) \times 100$$
 eq. 5.8

As discussed in Sections 2.3.1 and 2.3.2, the dissolution and volatilization of a compound is controlled by the amount (mole fraction) of that compound in the LNAPL under equilibrium conditions. Therefore, the rate of contaminant depletion resulting from dissolution or volatilization also may be proportional to the contaminant concentration, indicating first-order weathering may be more appropriate, especially if one of these weathering mechanisms predominates.

5.2.3 Weathering in JP-4 Mobile LNAPL

Weathering or depletion rates for the BTEX and naphthalene compounds were evaluated at six JP-4 release sites with spill ages ranging between approximately 3 and 28

years. At the McChord AFB site, only one sampling event was performed. At the remaining sites, analytical data from more than one sampling event were evaluated.

Initial composition values for JP-4 were assumed to be equivalent to concentrations reported by Smith *et al.* (1981). For each of the BTEX compounds, composition values presented by Smith *et al.* (1981) are slightly lower than the values presented by Hughes *et al.* (1984) (Figure 2.3), and therefore are more conservative for use in estimating BTEX depletion rates. However, it should be noted that the Hughes *et al.* (1984) study considered a larger sample database than the Smith *et al.* (1981) study, and is considered the preeminent study on JP-4 jet fuel composition.

5.2.3.1 Range of Weathering Rates for the Six JP-4 Sites

Mobile LNAPL weathering rates for the JP-4 sites were determined for the BTEX constituents, total BTEX, naphthalene, methylnaphthalene, and TMBs. For these analyses, rate constants k_0 and k_1 were determined for each sample result by solving equations 5.3 and 5.7. Annual contaminant mass reduction rates, based on zero-order and first-order weathering assumptions, were determined for each sample result by solving equations 5.4 and 5.8, respectively. These calculations can be performed with a known contaminant concentration at only one-point in time relative to the known spill date and fresh product contaminant concentrations. Thus, weathering rates determined using this method are hereafter referred to as "one-point" weathering rates.

Using this method, constituent weathering rates were determined for each site during each sampling event. For sites where there were multiple sampling events conducted, benzene and total BTEX weathering rates were averaged across all of the sampling events to determine average weathering rates through the life of each LNAPL plume. The results of these calculations are summarized in Table 5.2. As shown, minimum, maximum, and average values for the rate constants k_0 and k_1 and annual contaminant reduction rates based on zero-order and first-order weathering are presented. In addition, assumed initial concentrations (Smith *et al.*, 1981) and average remaining concentrations during each sampling event are shown for comparison purposes. In some cases, the average remaining concentration detected during a particular round exceeded the initial concentration. This could be the result of sampling variability or a continuing source.

As shown in Table 5.2, the weathering rates determined for each site vary significantly between sample collection rounds. The observed trend in calculated compound-specific weathering rates is that the earliest weathering rates are the highest and rates tend to decrease with each successive sampling round. This indicates that as a fuel LNAPL plume ages, it weathers at a slower rate. Thus, weathering rates will be highest in new fuel plumes and lowest in older LNAPL plumes following a first-order decay curve. These observations indicate that the rate at which an LNAPL plume weathers is dependant upon the concentration of each contaminant within the LNAPL plume. For example, in the case of a relatively recent spill, the contaminant concentrations within the LNAPL would be relatively high (close to concentrations measured within fresh fuel). Thus, the contaminant concentration gradient from the LNAPL to groundwater would be relatively steep, resulting in more-rapid migration of contaminant mass from the LNAPL to groundwater. In the case of an older plume, the contaminant concentrations within the LNAPL would be expected to be relatively low, and the contaminant concentration

TABLE 5.2 FUEL RELATED COMPOUND (ONE POINT) $^{\rm n/}$ WEATHERING RATES IN JP-4 MOBILE LNAPL FUEL WEATHERING STUDY

			Assumed Initial	Average Remaining			ZER	O ORDER						FIRST	ORDER		
Site	Approximate	Number of	Conc. $(C_0)^{c/}$	Conc. (C)	Rat	te Constar			Reduced/Y	ear f/	1 Г	Rate	Constant			eduction/	Year h/
Analyte	Spill Age ^{b/}	Samples	(wt%) d/	(wt %)	min	max	avg	min	max	avg		min	max	avg	min	max	avg
Shaw AFB, SC	2.8	•	•		•										l.		
Benzene		2	0.50	0.4704	0.07	0.12	0.10	14.9	23.4	19.2	1	0.19	0.38	0.28	17.5	31.4	24.
Toluene		2	1.33	0.9598	0.25	0.37	0.31	18.8	27.5	23.1		0.27	0.51	0.39	23.3	40.2	31.
Ethylbenzene		2	0.37	0.2946	0.07	0.09	0.08	19.0	24.5	21.8		0.27	0.41	0.34	23.7	33.6	28.
Total Xylenes		2	2.32	1.9860	0.44	0.52	0.48	18.8	22.6	20.7		0.27	0.35	0.31	23.3	29.8	26.
Total BTEX		2	4.52	3.7108	0.83	1.10	0.96	18.4	24.3	21.3		0.26	0.40	0.33	22.6	33.1	27.
1,2,3-Trimethylbenzene		2	0.00	0.8736													
1,2,4-Trimethylbenzene		2	1.01	1.6866													
1,3,5-Trimethylbenzene		2	0.42	0.9759													
Naphthalene		2	0.50	0.3303	0.11	0.13	0.12	22.9	25.6	24.2		0.36	0.44	0.40	30.4	35.9	33.
1-MethylNaphthalene		2	0.78	0.3250	0.21	0.23	0.22	27.4	29.9	28.6		0.51	0.63	0.57	40.1	46.8	43.
2-MethylNaphthalene		2	0.56	0.5376	0.09	0.12	0.11	15.6	22.0	18.8		0.20	0.34	0.27	18.5	28.7	23.
Total Naphthalenes		2	1.84	1.1929	0.42	0.48	0.45	22.6	26.3	24.4		0.25	0.47	0.41	29.8	37.5	33.
Shaw AFB, SC	3.8	-	1.01	1.1727	0.12	0.10	0.15	22.0	20.5	21.1	1	0.55	0.17	0.11	27.0	37.5	33.
Benzene	2.0	2	0.50	0.1863	0.08	0.09	0.08	15.2	18.0	16.6	1	0.23	0.30	0.26	20.3	26.0	23.
Toluene		2	1.33	0.3931	0.08	0.05	0.08	18.0	19.2	18.6		0.23	0.34	0.32	26.1	29.1	27
Ethylbenzene		2	0.37	0.3351	0.24	0.26	0.23	16.6	16.9	16.8		0.30	0.34	0.32	23.0	23.7	23
Fotal Xylenes		2	2.32	0.1333	0.00	0.37	0.00	15.9	16.9	15.9		0.24	0.27	0.27	21.5	21.7	21.
Total BTEX		2	4.52	1.6392	0.37	0.37	0.76	16.5	17.2	16.9		0.24	0.24	0.24	22.8	24.3	23.
1,2,3-Trimethylbenzene		2	0.00	0.8997	0.73	0.78	0.70	10.5	17.2				0.28	0.27		24.3	23.
1,2,4-Trimethylbenzene		2	1.01	0.8997	0.02	0.04	0.03	1.9	3.9	2.9		0.02	0.04	0.03	1.9	4.1	3.0
1,3,5-Trimethylbenzene		2	0.42	0.2704	0.02	0.04	0.03	8.7	10.2	9.4		0.02	0.04	0.03	10.0	12.0	11.
Naphthalene		2	0.42	0.1638	0.04	0.04	0.04	8.7 17.5	18.1	9.4 17.8		0.11	0.13	0.12		26.2	
		2							21.2	21.0				0.30	24.9 33.3	34.9	25.
1-MethylNaphthalene			0.78	0.8997	0.16	0.17	0.16	20.7				0.40	0.43				34.
2-MethylNaphthalene		2 2	0.56	0.2704	0.07	0.08	0.08	13.1	14.4	13.8		0.18	0.21	0.19	16.6	18.8	17.
Total Naphthalenes	0.1	2	1.84	0.1638	0.32	0.34	0.33	17.5	18.3	17.9		0.29	0.31	0.30	25.0	26.8	25.
Shaw AFB, SC	8.1		0.50	0.4256	0.04	0.05		0.5	40.2		1			0.45			
Benzene		4	0.50	0.1256	0.04	0.05	0.05	8.5	10.3	9.2		0.14	0.23	0.17	13.5	20.2	15.
Toluene		4	1.33	0.3558	0.12	0.12	0.12	8.9	9.2	9.0		0.16	0.17	0.16	14.5	15.6	15.
Ethylbenzene		4	0.37	0.1538	0.03	0.03	0.03	7.2	7.2	7.2		0.11	0.11	0.11	10.2	10.2	10.
Total Xylenes		4	2.32	1.4103	0.10	0.13	0.11	4.1	5.5	4.8		0.05	0.07	0.06	4.9	7.0	6.0
Total BTEX		4	4.52	2.0455	0.29	0.32	0.30	6.5	7.1	6.7		0.09	0.11	0.10	8.8	10.0	9.3
1,2,3-Trimethylbenzene		4	0.00	0.5897													
1,2,4-Trimethylbenzene		4	1.01	1.4423													
1,3,5-Trimethylbenzene		4	0.42	0.4712													
Naphthalene		4	0.50	0.1080	0.05	0.05	0.05	9.5	10.0	9.6]	0.18	0.20	0.19	16.5	18.5	17.
Benzene								8.5	23.4	15.0	1				13.5	31.4	21.
BTEX								6.5	24.3	15.0					8.8	33.1	20

TABLE 5.2 (Continued)
FUEL RELATED COMPOUND (ONE POINT)^{a/} WEATHERING RATES IN JP-4 MOBILE LNAPL
FUEL WEATHERING STUDY

			Assumed Initial	Average Remaining			ZER	O ORDER						FIRST	ORDER		
Site	Approximate	Number of	Conc. $(C_o)^{c/}$	Conc. (C)	Ra	te Constar			Reduced/Y	ear f/	1 [Rate	Constant			eduction/	ear h/
Analyte	Spill Age ^{b/}	Samples	(wt%) d/	(wt %)	min	max	avg	min	max	avg		min	max	avg	min	max	avg
Myrtle Beach AFB, SC	16.2	· ·															
Benzene		2	0.50	0.0177	0.03	0.03	0.03	5.8	6.1	6.0	1	0.18	0.26	0.22	16.3	23.0	19.6
Toluene		2	1.33	0.0009	0.08	0.08	0.08	6.2	6.2	6.2		0.44	0.46	0.45	35.9	37.1	36.5
Ethylbenzene		2	0.37	0.1299	0.01	0.02	0.01	3.2	4.9	4.0		0.04	0.10	0.07	4.3	9.1	6.7
Total Xylenes		2	2.32	0.4240	0.11	0.13	0.12	4.7	5.4	5.1		0.09	0.13	0.11	8.3	12.3	10.3
Total BTEX		2	4.52	0.5726	0.23	0.26	0.24	5.1	5.7	5.4		0.11	0.16	0.13	10.3	14.4	12.3
1,2,3-Trimethylbenzene		2	0.00	0.3210													
1,2,4-Trimethylbenzene		2	1.01	0.7357	0.01	0.02	0.02	1.2	2.2	1.7		0.01	0.03	0.02	1.3	2.7	2.0
1,3,5-Trimethylbenzene		2	0.42	0.3787	0.00	0.01	0.00	-0.8	2.0	0.6		-0.01	0.02	0.01	-0.7	2.4	0.8
Naphthalene		2	0.50	0.1219	0.02	0.03	0.02	4.3	5.1	4.7		0.07	0.11	0.09	7.0	10.1	8.5
1-MethylNaphthalene		2	0.78	0.1527	0.04	0.04	0.04	4.8	5.1	5.0		0.09	0.11	0.10	8.9	10.4	9.6
2-MethylNaphthalene		2	0.56	0.2178	0.02	0.02	0.02	3.4	4.2	3.8		0.05	0.07	0.06	4.8	6.7	5.7
Total Naphthalenes		2	1.84	0.4924	0.08	0.09	0.08	4.2	4.8	4.5		0.07	0.09	0.08	6.9	9.0	7.9
Myrtle Beach AFB, SC	20.6																
Benzene		2	0.50	0.0190	0.02	0.02	0.02	4.6	4.7	4.7	1	0.14	0.18	0.16	13.4	16.6	15.0
Toluene		2	1.33	0.0018	0.06	0.06	0.06	4.9	4.9	4.9		0.31	0.33	0.32	26.9	28.1	27.5
Ethylbenzene		2	0.37	0.1230	0.01	0.01	0.01	2.6	3.9	3.2		0.04	0.08	0.06	3.7	7.4	5.6
Total Xylenes		2	2.32	0.0966	0.10	0.11	0.11	4.5	4.8	4.7		0.13	0.21	0.17	12.2	18.7	15.4
Total BTEX		2	4.52	0.2404	0.20	0.21	0.21	4.5	4.7	4.6		0.12	0.18	0.15	11.6	16.1	13.8
1,2,3-Trimethylbenzene		2	0.00	0.2650													
1,2,4-Trimethylbenzene		2	1.01	1.0700													
1,3,5-Trimethylbenzene		2	0.42	0.1550	0.01	0.02	0.01	2.4	3.7	3.1		0.03	0.07	0.05	3.3	6.7	5.0
Naphthalene		2	0.50	0.1450	0.02	0.02	0.02	3.4	3.5	3.5		0.06	0.06	0.06	5.7	6.0	5.8
				Benzene				4.6	6.1	5.3	1				13.4	23.0	17.3
				BTEX				4.5	5.7	5.0					10.3	16.1	13.1
DFSP-Charleston, SC	18.2																
Benzene		1	0.50	0.0013			0.03			5.5]			0.33			27.9
Toluene		1	1.33	0.0057			0.07			5.5				0.30			25.9
Ethylbenzene		1	0.37	0.0478			0.02			4.8				0.11			10.6
Total Xylenes		1	2.32	0.1871			0.12			5.1				0.14			12.9
Total BTEX		1	4.52	0.2419			0.24			5.2				0.16			14.9
1,2,3-Trimethylbenzene		1	0.00	0.0778													
1,2,4-Trimethylbenzene		1	1.01	0.1750			0.05			4.5				0.10			9.2
1,3,5-Trimethylbenzene		1	0.42	0.0992			0.02			4.2				0.08			7.6
Naphthalene		1	0.50	0.0582			0.02			4.9				0.12			11.2
1-MethylNaphthalene		1	0.78	0.1899			0.03			4.2				0.08			7.5
2-MethylNaphthalene		1	0.56	0.2246			0.02			3.3				0.05			4.9
Total Naphthalenes		1	1.84	0.4728			0.08			4.1				0.07			7.2

TABLE 5.2 (Continued) FUEL RELATED COMPOUND (ONE POINT) WEATHERING RATES IN JP-4 MOBILE LNAPL FUEL WEATHERING STUDY

			Assumed Initial	Average Remaining			ZER	O ORDER					FIRST	ORDER		
Site	Approximate	Number of	Conc. $(C_o)^{c/}$	Conc. (C)	Rat	te Constar			Reduced/Y	ear f/	Ra	te Constan			eduction/	Year h/
Analyte	Spill Age ^{b/}	Samples	(wt%) d/	(wt %)	min	max	avg	min	max	avg	min	max	avg	min	max	avg
DFSP-Charleston, SC	19.6		(, +)	(, 5)			8			8			8			
Benzene		2	0.50	0.0135	0.02	0.03	0.02	4.8	5.1	5.0	0.15	0.61	0.38	13.8	45.7	29.
Toluene		2	1.33	0.0043	0.07	0.07	0.07	5.1	5.1	5.1	0.28	0.32	0.30	24.2	27.2	25.
Ethylbenzene		2	0.37	0.1401	0.00	0.02	0.01	1.3	5.0	3.2	0.02	0.20	0.11	1.5	18.5	10
Total Xylenes		2	2.32	0.4419	0.07	0.12	0.10	3.2	5.0	4.1	0.05	0.23	0.14	4.9	20.6	12.
Total BTEX		2	4.52	0.5998	0.17	0.23	0.20	3.8	5.1	4.4	0.07	0.25	0.16	6.7	22.0	14.
1,2,3-Trimethylbenzene		2	0.00	0.1401												
1,2,4-Trimethylbenzene		2	1.01	0.2734	0.03	0.04	0.04	3.4	4.1	3.7	0.05	0.08	0.07	5.3	7.9	6.6
1,3,5-Trimethylbenzene		2	0.42	0.1096	0.01	0.02	0.02	3.3	4.2	3.8	0.05	0.09	0.07	5.3	8.5	6.9
Naphthalene		2	0.50	0.1163	0.02	0.02	0.02	3.7	4.1	3.9	0.07	0.08	0.08	6.4	8.0	7.2
1-MethylNaphthalene		2	0.78	0.2246	0.03	0.03	0.03	3.5	3.8	3.6	0.06	0.07	0.06	5.8	6.6	6.2
2-MethylNaphthalene		2	0.56	0.3005	0.01	0.01	0.01	2.1	2.6	2.4	0.03	0.04	0.03	2.6	3.7	3.2
Total Naphthalenes		2	1.84	0.6413	0.06	0.06	0.06	3.2	3.4	3.3	0.05	0.06	0.05	5.0	5.5	5.2
DFSP-Charleston, SC	21.9										•					
Benzene		3	0.50	0.0000	0.02	0.02	0.02	4.6	4.6	4.6	0.38	0.55	0.50	31.8	42.5	38.
Toluene		3	1.33	0.0101	0.06	0.06	0.06	4.5	4.6	4.6	0.18	0.41	0.29	16.5	33.9	24.
Ethylbenzene		3	0.37	0.0490	0.01	0.02	0.01	3.2	4.5	4.0	0.05	0.16	0.11	5.3	14.8	10.
Total Xylenes		3	2.32	0.2250	0.08	0.11	0.10	3.5	4.5	4.2	0.06	0.18	0.14	6.2	16.7	13.
Total BTEX		3	4.52	0.2841	0.18	0.21	0.20	3.9	4.6	4.3	0.09	0.20	0.16	8.2	18.4	14.
1,2,3-Trimethylbenzene		3	0.00	0.1134												
1,2,4-Trimethylbenzene		3	1.01	0.2174	0.03	0.04	0.04	3.3	4.2	3.6	0.06	0.11	0.08	5.7	10.3	7.3
1,3,5-Trimethylbenzene		3	0.42	0.0967	0.01	0.02	0.01	3.1	3.9	3.5	0.05	0.08	0.07	5.1	8.1	6.7
Naphthalene		3	0.50	0.0802	0.02	0.02	0.02	3.5	4.1	3.9	0.07	0.10	0.09	6.4	9.6	8.3
1-MethylNaphthalene		3	0.78	0.2144	0.02	0.03	0.03	3.0	3.5	3.3	0.05	0.07	0.06	4.7	6.5	5.9
2-MethylNaphthalene		3	0.56	0.2748	0.01	0.02	0.01	1.6	2.8	2.3	0.02	0.04	0.03	1.9	4.2	3.3
Total Naphthalenes		3	1.84	0.5694	0.05	0.06	0.06	2.7	3.5	3.2	0.04	0.06	0.06	4.0	6.2	5.4
DFSP-Charleston, SC	26.4									,	- "					
Benzene		3	0.50	0.0027	0.02	0.02	0.02	3.8	3.8	3.8	0.17	0.23	0.21	16.0	20.7	18.
Toluene		3	1.33	0.1010	0.04	0.05	0.05	2.9	3.8	3.5	0.06	0.27	0.19	5.5	23.6	17.
Ethylbenzene		3	0.37	0.0920	0.01	0.01	0.01	1.6	3.6	2.8	0.02	0.12	0.07	2.1	11.0	6.8
Total Xylenes		3	2.32	0.4924	0.04	0.09	0.07	1.7	3.7	3.0	0.02	0.15	0.09	2.3	13.8	8.5
Total BTEX		3	4.52	0.6881	0.10	0.17	0.15	2.3	3.7	3.2	0.04	0.16	0.10	3.5	14.8	9.
1,2,3-Trimethylbenzene		3	0.00	0.1030												
1,2,4-Trimethylbenzene		3	1.01	0.2600	0.03	0.03	0.03	2.7	3.1	2.8	0.05	0.07	0.05	4.5	6.3	5.
1,3,5-Trimethylbenzene		3	0.42	0.0897	0.01	0.01	0.01	2.8	3.2	3.0	0.05	0.07	0.06	5.0	6.9	5.8
Naphthalene		3	0.50	0.1267	0.01	0.01	0.01	2.7	3.0	2.8	0.05	0.06	0.05	4.5	5.6	5.
1-MethylNaphthalene		3	0.78								1					
2-MethylNaphthalene		3	0.56													
Total Naphthalenes		3	1.84													

TABLE 5.2 (Continued) FUEL RELATED COMPOUND (ONE POINT) WEATHERING RATES IN JP-4 MOBILE LNAPL FUEL WEATHERING STUDY

			Assumed Initial	Average Remaining			ZER	O ORDER					FIRST	ORDER		
Site	Approximate	Number of	Conc. $(C_o)^{c/}$	Conc. (C)	Ra	te Constai			Reduced/Y	ear f/		Rate Const			eduction/	Year h/
Analyte	Spill Age ^{b/}	Samples	(wt%) d/	(wt %)	min	max	avg	min	max	avg	mi			min	max	avg
	~F9r		(, 4)	(, .)	BENZEN		8	3.8	5.5	4.7			8	13.8	45.7	28.8
Eaker AFB, AR	23.9															
Benzene		2	0.50	0.0586	0.02	0.02	0.02	3.2	4.2	3.7	0.0	6 0.30	0.18	5.9	26.2	16.0
Toluene		2	1.33	0.0000	0.06	0.06	0.06	4.2	4.2	4.2	0.5	4 0.54	0.54	41.7	41.7	41.7
Ethylbenzene		2	0.37	0.3547	0.00	0.00	0.00	-0.2	0.5	0.2	0.0	0.01	0.00	-0.2	0.5	0.2
Total Xylenes		2	2.32	1.3371	0.01	0.07	0.04	0.6	3.0	1.8	0.0	0.05	0.03	0.6	5.0	2.8
Total BTEX		2	4.52	1.7504	0.08	0.15	0.12	1.9	3.3	2.6	0.0	2 0.06	0.04	2.4	6.1	4.3
1,2,3-Trimethylbenzene		2	0.00	0.3511												
1,2,4-Trimethylbenzene		2	1.01	1.1200												
1,3,5-Trimethylbenzene		2	0.42	0.5992												
Naphthalene		2	0.50	0.1337	0.02	0.02	0.02	3.0	3.1	3.1	0.0	5 0.06	0.06	5.2	5.5	5.4
1-MethylNaphthalene		3	0.78	0.2455	0.02	0.02	0.02	2.7	3.1	2.9	0.0	4 0.06	0.05	4.2	5.4	4.8
2-MethylNaphthalene		3	0.56	0.4472	0.00	0.01	0.00	0.3	1.4	0.8	0.0	0.02	0.01	0.3	1.6	1.0
Total Naphthalenes		3	1.84	0.8264	0.04	0.05	0.04	2.1	2.6	2.3	0.0	3 0.04	0.03	2.8	3.9	3.3
Eaker AFB, AR	28.0															
Benzene		2	0.50	0.1106	0.01	0.02	0.01	2.0	3.6	2.8	0.0	3 0.22	0.12	2.9	19.4	11.1
Toluene		2	1.33	0.0013	0.05	0.05	0.05	3.6	3.6	3.6	0.2	4 0.26	0.25	21.1	23.2	22.2
Ethylbenzene		2	0.37	0.3450	0.00	0.00	0.00	-0.7	1.2	0.2	-0.0	1 0.01	0.00	-0.6	1.4	0.4
Total Xylenes		2	2.32	1.3650	0.00	0.06	0.03	0.2	2.8	1.5	0.0	0.03	0.03	0.2	5.1	2.7
Total BTEX		2	4.52	1.6954	0.06	0.14	0.10	1.3	3.1	2.2	0.0	2 0.08	0.05	1.6	7.4	4.5
1,2,3-Trimethylbenzene		2	0.00	0.3300												
1,2,4-Trimethylbenzene		2	1.01	1.2000												
1,3,5-Trimethylbenzene		2	0.42	0.5900												
Naphthalene		2	0.50	0.1600	0.01	0.01	0.01	2.4	2.5	2.4	0.0	4 0.04	0.04	3.8	4.2	4.0
						BTEX BENZEN	E	1.3 2.0	3.3 4.2	2.4 3.2				1.6 2.9	7.4 26.2	4.4 13.6
						DENZEN	Ľ	2.0	4.2	3.2				2.9	20.2	13.0
McChord AFB, WA	22.3															
Benzene		1	0.50	0.0000			0.02			4.5			0.54			41.7
Toluene		1	1.33	0.0000			0.06			4.5			0.58			44.2
Ethylbenzene		1	0.37	0.0000			0.02			4.5			0.53			40.9
Total Xylenes		1	2.32	0.0000			0.10			4.5			0.56			42.8
Total BTEX		1	4.52	0.0000			0.20			4.5			0.56			42.8
1,2,3-Trimethylbenzene		1	0.00	0.0065												
1,2,4-Trimethylbenzene		1	1.01	0.0052			0.05			4.5			0.24			21.0
1,3,5-Trimethylbenzene		1	0.42	0.0005			0.02			4.5			0.30			26.0
Naphthalene		1	0.50	0.0000			0.02			4.5			0.54			41.7
1-MethylNaphthalene		1	0.78	0.0155			0.03			4.4			0.18			16.1

TABLE 5.2 (Continued)

FUEL RELATED COMPOUND (ONE POINT) $^{\!\!\! a\prime}$ WEATHERING RATES IN JP-4 MOBILE LNAPL fuel weathering study

			Assumed Initial	Average Remaining			ZER	O ORDER						FIRST	ORDER		
Site	Approximate	Number of	Conc. $(C_o)^{c/}$	Conc. (C)	Rat	te Constar	nt k ₀ e/	% C _o I	Reduced/Y	ear f/		Rate	Constant	$k_1^{\ g/}$	% Re	duction/Y	∫ear h/
Analyte	Spill Age ^{b/}	Samples	(wt%) d/	(wt %)	min	max	avg	min	max	avg	n	in	max	avg	min	max	avg
2-MethylNaphthalene		1	0.56	0.0143			0.02			4.4				0.16			15.1
Total Naphthalenes		1	1.84	0.0298			0.08			4.4				0.18			16.9
Seymour Johnson AFB, NC	16.6																
Benzene		2	0.50	0.0231	0.03	0.03	0.03	5.5	6.0	5.8	0.	15	0.33	0.24	13.6	28.1	20.9
Toluene		2	1.33	0.2580	0.05	0.08	0.06	3.9	5.9	4.9	0.	06	0.22	0.14	6.0	19.6	12.8
Ethylbenzene		2	0.37	0.1610	0.01	0.02	0.01	2.3	4.5	3.4	0.	03	0.08	0.06	2.8	8.1	5.4
Total Xylenes		2	2.32	1.5000	0.03	0.07	0.05	1.4	2.9	2.1	0.	02	0.04	0.03	1.5	3.9	2.7
Total BTEX		2	4.52	1.9421	0.15	0.16	0.16	3.3	3.6	3.4	0.	05	0.06	0.05	4.6	5.4	5.0
1,2,3-Trimethylbenzene		2	0.00	0.2400	NA	NA	NA	NA	NA	NA	N	Α	NA	NA	NA	NA	NA
1,2,4-Trimethylbenzene		2	1.01	1.0150	NA	NA	NA	NA	NA	NA	N	Α	NA	NA	NA	NA	NA
1,3,5-Trimethylbenzene		2	0.42	0.3400	0.00	0.01	0.00	-0.1	2.4	1.1	0.	00	0.03	0.01	-0.1	3.1	1.5
Naphthalene		2	0.50	0.1040	0.02	0.03	0.02	4.5	5.1	4.8	0.	08	0.11	0.10	7.8	10.6	9.2

Note: Calculated values shown have been rounded.

^{a/} Analyte weathering rates in free-phase product calculated based on assumed initial analyte concentrations in fresh JP-4 fuel and one point in time free-phase product sample results.

b/ Approximate age of spill as of the most recent sampling event.

^{c/} Assumed initial concentrations from Smith et al., 1981.

d/ wt% = weight percent.

 $^{^{}e'}$ k_0 = zero order rate constant or slope; units in weight percent per year.

^{f/} Annual mass fraction reduction as a percent of the initial concentration; calculated using equation 5.4.

 g^{\prime} k_1 = first order rate constant or exponential decay rate; units in year or 1/year.

^{h/} Annual mass fraction reduction as a percent of the initial concentration; calculated using equation 5.8.

^{i/} Result indicates a non-detect or near non-detect value; as appropriate, weathering rate calculations for this result were based off the method detection limit.

^{`--- =} Negative value; measured concentration is greater than the assumed initial concentration.

gradients from the LNAPL plume to groundwater would be decreased. In this case, the decreased concentration gradients would slow contaminant migration from the LNAPL into groundwater.

Based on the mobile LNAPL sample results shown, the average zero-order BTEX and naphthalene weathering rates range from 2.0 to 21 %/yr, and 2.0 to 24 %/yr, respectively. The average first-order BTEX and naphthalene weathering rates range from 4.0 to 43 %/yr and 4.0 to 42 %/yr, respectively. The annual zero-order weathering rates are consistently lower than corresponding first-order rates. This negative variance between first-order and zero-order weathering rates is related to the underlying assumptions of the calculation methods, as discussed in Sections 2.3 and 5.2.2.

First-order weathering rates that were calculated using non-detect or near non-detect concentration values are significantly higher than reduction rates calculated for more moderate compound depletion. This was particularly evident at the McChord AFB site where virtually no BTEX or naphthalenes were detected in a single sample collected 24 years following the fuel release. For this site, first-order reduction rates were estimated at more than 40 %/yr. This occurrence highlights the limitation of using a single sample collected several years after the fuel release to estimate LNAPL weathering rates. Use of a 40 %/yr or similar weathering rate determined from non-detect or near non-detect concentrations would tend to overestimate contaminant source-term reductions for fate and transport modeling. (Note: When non-detect concentrations were observed during this study, weathering rates were calculated as if the compound was present at a concentration equal to the method detection limit.)

The McChord AFB data set also exemplifies the danger of using data from very old spills to determine weathering rates for a particular LNAPL plume. It is not known how long BTEX concentrations within the LNAPL plume at this site have been similar to or below the method detection limit. If the BTEX concentrations have been near or below the method detection limit for several years, then the calculated BTEX weathering rate does not accurately portray BTEX weathering at this site as there has effectively been no measurable weathering since BTEX concentrations were reduced to such low levels. Highly weathered LNAPL spills pose little to no risk to the groundwater, and calculation of weathering rates may only be an academic exercise.

As shown in Table 5.2, the range of average weathering rates were relatively broad for the BTEX and naphthalene compounds. If the high-biased first-order weathering rates at McChord AFB are excluded, the highest weathering rates were measured for Shaw AFB. At this site, the average zero-order total BTEX weathering rate was 15 %/yr, and average zero-order naphthalene/methylnaphthalene rates ranged from 17 to 21 %/yr. Average first-order weathering rates were higher (21 %/yr for BTEX and 25 to 30 %/yr for naphthalene and methylnaphthalenes). It is important to note that Shaw AFB is both the youngest LNAPL plume included in this study and the spill that has the most exact spill date. The lowest weathering rates were calculated for the Eaker AFB site (the oldest release), where the average total first-order and zero-order BTEX reduction rates were 2.4 %/yr and 4.4 %/yr, respectively. These observations indicate that weathering rates decrease with plume age, indicating that first order kinetics are more representative than zero-order kinetics for calculating LNAPL weathering rates.

The relatively low weathering rates observed at the Eaker site, and the relatively high weathering rates observed at the Shaw site, are also likely related to the soil types and groundwater flow velocities at each site. Groundwater at the Eaker site flows much more slowly than groundwater at the Shaw site, and the soils at Eaker are much finer-grained than at Shaw (Table 3.1). It is likely that the fine-grained soils and the slow groundwater flow rates at Eaker serve to retard contaminant mass migration from the LNAPL plume to groundwater and soil vapor. The result is relatively slow LNAPL component weathering rates at Eaker and relatively rapid LNAPL weathering rates at Shaw, where soil and groundwater conditions tend to promote contaminant mass migration out of the LNAPL plume. These observations indicate that LNAPL weathering rates will vary significantly from site to site, depending upon soil and groundwater conditions.

5.2.3.2 Combining JP-4 Site Data to Assess Weathering Rates

Very few fuel release sites have sufficient data available to determine the progression of mobile LNAPL BTEX depletion from the time of spill release until the time of complete BTEX removal (with the possible exception of the Shaw AFB site). However, comparing and compiling data from all JP-4 sites, regardless of differences in geologic or hydrogeologic effects, provides some insight into the relationship between BTEX depletion in mobile LNAPL and spill age. Figure 5.3 is a compilation of average total BTEX concentrations in mobile LNAPL from the six primary JP-4 sites. Similarly, Figure 5.4 represents a compilation of average benzene data from the six JP-4 sites.

Zero-order and first-order curves were fitted to the plotted data to evaluate BTEX and benzene weathering in mobile LNAPL with time. Considering the combined data from five of the six (excluding Eaker) JP-4 sites, the first-order curves appear to better match the general trend of the data. As shown on Figure 5.3, the zero-order curve greatly underestimates total BTEX depletion in the first eight years following a JP-4 release as indicated by the Shaw AFB site data (Table 5.2). The first-order curve better approximates the rapid depletion of BTEX initially observed at Shaw AFB, and also matches data collected from the Myrtle Beach and Charleston sites.

The benzene first-order curve shown on Figure 5.4 provides a reasonably good approximation of benzene weathering in mobile LNAPL at five of the six JP-4 sites (although the fit for data from Charleston AFB is mixed). As illustrated by Figures 5.3 and 5.4, the average Eaker AFB concentrations for total BTEX and benzene appear to better match that expected for a spill release that is between 5 and 10 years old for total BTEX and 5 to 8 years old for benzene, not 24 years old. The McChord data was excluded from the curve fits and associated calculations presented in Figures 5.3 and 5.4 because the majority of the compounds of interest were not detected at this highly weathered site.

Considering the total BTEX and benzene mobile LNAPL data for the JP-4 sites taken as a whole (except McChord), the first-order curves shown on Figures 5.3 and 5.4 provide potential default values for total BTEX and benzene weathering, respectively. Based on these results, it appears that a default first-order rate for total BTEX weathering from JP-4 mobile LNAPL could be assumed to be approximately 12 %/yr. For benzene weathering, a first-order weathering rate of approximately 19.5 %/yr is estimated considering all of the JP-4 site data.

FIGURE 5.3
TOTAL BTEX WEATHERING RATES CONSIDERING AVERAGE DATA FROM THE JP-4
RELEASE SITES

FIGURE 5.4
BENZENE WEATHERING CONSIDERING AVERAGE DATA FROM THE JP-4 RELEASE SITES

FUEL WEATHERING STUDY

Time (yrs)

5.2.3.3 Dissolution-Dominated Weathering

JP-4 site data suggest that BTEX mobile LNAPL weathering rates at the JP-4 sites is predominantly a function of dissolution. This is evidenced by comparing the relatively high weathering rates observed at Shaw and Myrtle Beach, where groundwater flow rates are relatively high, with the lower weathering rates observed at Eaker, where groundwater flow rates are relatively low. As discussed in Sections 2.3.1 and 2.3.2, dissolution and volatilization of LNAPL compounds are a function of their concentration in the mobile LNAPL as well as site-specific properties such as stratigraphy and groundwater flow rate. As concentrations in the mobile LNAPL decrease, the compound depletion rate decreases. This Raoult's Law behavior is apparent in the first-order weathering trend illustrated on Figures 5.3 and 5.4. Applied to this study, it appears that the decreased BTEX depletion rate with time is likely the result of decreasing BTEX dissolution flux to groundwater and/or decreasing BTEX volatilization flux to soil gas.

A comparison of compound specific weathering rates (Table 5.2) indicates that dissolution may be the predominant weathering mechanism acting to reduce chemical concentrations in mobile LNAPL. The most likely explanation for the different compound specific weathering rates observed is related to the solubilities of each of the compounds. Benzene and toluene are much more soluble in water than ethylbenzene and xylene. Thus benzene and toluene would be expected to weather at higher rates than ethylbenzene and xylene if the dominant weathering mechanism is dissolution into groundwater. The weathering rate data collected during this project indicates that benzene and toluene weathering rates are generally higher than ethylbenzene and xylene weathering rates, indicating that LNAPL weathering is dominated by dissolution into groundwater at most sites.

A comparison of BTEX weathering rates between the JP-4 sites also indicates that BTEX weathering may be dominated by dissolution. At the Eaker AFB site, the LNAPL plume is reported to be approximately 30 years old, while the LNAPL plume at the Shaw AFB site is reported to be only 9 years old. However, the total BTEX concentration in the source area at Eaker AFB (3.5 wt%) is much higher than the total BTEX concentration at the Shaw AFB site (1.94 wt%) despite the fact that the Eaker plume is much older than the Shaw plume. One likely explanation for the higher BTEX concentration and lower mobile LNAPL weathering rates at the Eaker AFB site is the significantly lower groundwater velocities and presence of fine-grained soils at Eaker. Under equilibrium conditions, lower groundwater velocities would create a lower dissolution flux for mobile LNAPL depletion (Section 2.4.2). As shown on Table 3.1, the Eaker AFB site has the lowest estimated groundwater velocity, 16 feet per year (ft/yr), of the four sites where groundwater velocity and mobile LNAPL data are available. Significantly higher groundwater velocities have been observed at Shaw AFB (400 ft/yr), Myrtle Beach AFB (420 ft/yr), Seymour Johnson (130 ft/yr) and Defense Fuel Supply Point (DFSP)-Charleston (62 ft/yr). These sites also have sandy soils and are located in areas having high precipitation. A combination of high groundwater velocities, sandy soils, and high precipitation/infiltration will enhance rates of dissolution and LNAPL weathering. No information was obtained regarding groundwater velocity for the McChord AFB site; however, high precipitation rates in the Seattle/Tacoma area (Figure 3.1) are likely to enhance BTEX dissolution, much the same way as high groundwater velocity.

5.2.3.4 Weathering and Spill Age

As shown on Table 5.2, mobile LNAPL weathering rates for total BTEX generally decrease with increasing spill age. This is particularly evident comparing the average total BTEX reduction rates at the Shaw AFB, Myrtle Beach AFB, DFSP-Charleston, and Eaker AFB sites. For example, at Shaw AFB the average BTEX first-order weathering rates estimated at 2.8, 3.8, and 8.1 years after release were 27.9 %/yr, 23.6 %/yr, and 9.3 %/yr respectively (Table 5.2). A similar trend of decreasing weathering rates with spill age also was apparent for the naphthalene compounds.

The exceptions to this observation are BTEX component weathering rates calculated for the Charleston site. At Charleston, the calculated BTEX component weathering rates actually increase through the first three sampling events. These apparent exceptions are related to increasing BTEX component concentrations through time (Table 5.2), which in turn are most likely due to changes in groundwater flow characteristics. BTEX data from the Shaw AFB, Myrtle Beach AFB, and DFSP-Charleston sites all indicate that first-order benzene depletion rates in excess of 20 %/yr and first-order total BTEX depletion rates in excess of 12 %/yr occur during the first 20 years of mobile LNAPL weathering.

5.2.3.5 Site-Specific Weathering Based on Multiple Sampling Events

At the Shaw AFB and DFSP-Charleston sites, mobile LNAPL samples were collected from the same site monitoring wells during multiple sampling events. At the Shaw AFB site, mobile LNAPL samples were collected from site monitoring wells approximately 3 years, 4 years, and 8 years after the JP-4 release (Table 4.1). At the DFSP-Charleston site, mobile LNAPL samples were collected from site monitoring wells approximately 18 years, 20 years, 22 years, and 26 years following the fuel release. For these two sites, BTEX concentrations detected in mobile LNAPL samples collected during these sampling events were plotted together with the assumed initial BTEX concentrations in fresh JP-4 jet fuel (Smith *et al.*, 1981). A simple best-fit regression analysis was then performed on the plotted data to determine zero-order and first-order weathering rate constants and BTEX reduction rates. These results are discussed in the following subsections.

5.2.3.5.1 Shaw AFB

The Shaw AFB site is the most "controlled" site that was evaluated based on its known spill date and certainty that additional spills have not occurred. BTEX weathering rates calculated from multiple sampling events at the Shaw AFB site assuming zero-order and first-order decay are presented on Figures 5.5 and 5.6, respectively. As shown on these figures, rate constants (k_0 and k_1) and annual reduction rates were determined using analytical results from NRMRL and OBG.

Figures 5.5 and 5.6 represent data collected from monitoring wells 1610-1, 1610-2, and 1610-3 at Shaw AFB. Data from monitoring well 1610-22 were not included because this well was only sampled during the 2002 sampling event. Calculations

presented on Figure 5.5 indicate that zero-order total BTEX reduction at the Shaw AFB site (calculated over the life of the plume) is occurring at approximately 15 %/yr. Calculations presented on Figure 5.6 indicate that first-order BTEX reduction is occurring at approximately 20 %/yr. Benzene, toluene, ethylbenzene, and total xylene first-order weathering rates are also significantly higher than the respective zero-order weathering rates (Figures 5.5, 5.6, and Table 5.2). At Shaw, calculated first-order weathering rates in mobile LNAPL appear to be highest for toluene at approximately 25 %/yr, while the calculated weathering rates for the remaining BTEX components and total BTEX are all approximately 18 %/yr to 21 %/yr.

Comparing Figures 5.5 and 5.6, the R² values for both the zero-order line fits and the first order curve fits are very similar. Thus, both the zero-order and first-order weathering rate assumptions appear to be equally valid for the limited data shown. Therefore, these data do not indicate whether zero-order or first-order weathering more accurately depicts BTEX depletion in mobile LNAPL at the Shaw AFB site. Nonetheless, the data plotted in Figures 5.5 and 5.6, and the calculated R² values, indicate that the initial BTEX concentration assumption (i.e., values determined by Smith *et al.* [1981]) for JP-4 is reasonable, and that total BTEX and BTEX component contaminant mass is weathering from the LNAPL plume at Shaw at 14 %/yr to 25 %/yr. However, the low magnitude of some of the coefficients of determination (R²) (as low as 0.2), indicate a relatively high degree of variance between the data and the predictive trend line in some cases (total xylenes). In these cases, the degree to which the weathering rates derived from the best-fit curves are representative of actual conditions is somewhat speculative.

5.2.3.5.2 DFSP-Charleston

Zero-order and first-order BTEX weathering for the DFSP-Charleston site based on mobile LNAPL sample results are presented on Figures 5.7 and 5.8, respectively. Weathering rates shown on these two figures were determined using NRMRL and OBG analytical data obtained from monitoring well EW-6 only. The data set was limited to well EW-6 because this is the only well that was sampled during all four sampling events conducted at Charleston.

The zero- and first-order weathering rates calculated using data collected from multiple sampling events at Charleston (Figures 5.7 and 5.8) are generally significantly lower than the corresponding rates calculated for Shaw AFB (Figures 5.5 and 5.6). The lower magnitudes of the Charleston weathering rates are likely related to the ages of the two plumes. The Shaw plume is approximately 9 years old while the Charleston plume is approximately 28 years old. As discussed in Section 2.3.1, the Shaw plume would be expected to weather more rapidly because the BTEX concentrations in the Shaw LNAPL plume are relatively high, and the resulting concentration gradient between the LNAPL plume and the groundwater is relatively steep. The Charleston LNAPL plume would be expected to weather more slowly because the BTEX concentrations in this relatively old plume are relatively low. The lower concentration gradient between the LNAPL and the groundwater at Charleston contributes to a relatively low LNAPL weathering rate. The data presented on Figures 5.5 through 5.8 support this observation. Comparison of total BTEX weathering rates in samples collected from three wells at the DFSP-Charleston site indicates the degree to which these rates can vary spatially in a mobile LNAPL

plume (Figure 5.9). Assuming first-order weathering, total BTEX reductions at the DFSP-Charleston site appear to range from 6 to 18 %/yr depending upon sample location. A review of the DFSP-Charleston site data did not provide any indication as to why the total BTEX weathering rates vary to this degree. Each of these monitoring wells is located downgradient from the original spill location and within approximately 70 feet of each other. Extraction well EW-6 does not appear to be located in a different hydrogeologic setting relative to monitoring wells MW-103 and WQ27B. However, visual observations of mobile LNAPL samples collected in May 1997 indicated that the mobile LNAPL from EW-6 was darker in color and likely more weathered than the sample collected from MW-103. These apparent differences in weathering rates within a single site underscores the importance of collecting several mobile LNAPL samples from each site so that an average weathering rate can be calculated.

5.2.4 Weathering in JP-5 Mobile LNAPL

Weathering rates for BTEX, naphthalene, and methylnaphthalene compounds were evaluated at two JP-5 release sites: Beaufort MCAS and Cecil Field NAS. One mobile LNAPL sampling event was performed at each site during May 1997. Cecil Field was sampled a second time in February 2002 as part of the fuel weathering study update. The approximate spill ages are 13 years for the Beaufort MCAS site and 22 years for the Cecil Field NAS site.

Assumed initial concentrations of BTEX, naphthalene, and methylnaphthalenes in fresh JP-5 were based on two data sets. For the Beaufort MCAS site, the initial mobile LNAPL concentrations were assumed to equal concentrations detected by NRMRL in a fresh JP-5 sample from Beaufort MCAS collected in 1997. For the Cecil Field NAS site, the initial mobile LNAPL concentrations were assumed to equal concentrations reported by Hughes *et al.* (1984) for fresh JP-5.

One-point BTEX, naphthalene, and methylnaphthalene weathering rates at the two JP-5 sites were evaluated using zero-order equations 5.3 and 5.7 and first-order equations 5.4 and 5.8. Calculation results are summarized in Table 5.3 and the following subsections.

5.2.4.1 Beaufort MCAS

At the Beaufort MCAS site, zero-order and first-order weathering rates were found to range between 4.1 %/yr and 8.2 %/yr and 4.7 %/yr and 12 %/yr, respectively, for the target compounds. Because the benzene concentrations detected in mobile LNAPL at the site were higher than the assumed initial concentration, no weathering rate constants or reduction rates could be determined for this compound. The estimated reduction rates for toluene, ethylbenzene, and xylenes indicate that these compounds are being depleted from JP-5 mobile LNAPL at approximately the same rate. As shown in Table 5.3, assumed initial concentrations and average remaining concentrations for xylenes are approximately two orders of magnitude higher than the toluene concentrations, and one order of magnitude higher than the ethylbenzene concentrations. Nonetheless, concentrations for each of these compounds are well below their respective concentrations in JP-4 (Figure 2.3). In view of these significantly lower fresh fuel and mobile LNAPL concentrations, groundwater MCLs for toluene, ethylbenzene, and

FIGURE 5.9
COMPARISON OF FIRST-ORDER TOTAL BTEX WEATHERING AT FOUR WELLS
DFSP-CHARLESTON, SOUTH CAROLINA
FUEL WEATHERING STUDY

TABLE 5.3 ${\rm FUEL\,RELATED\,COMPOUND\,(ONE\,POINT)^{a'}\,WEATHERING\,RATES\,IN\,JP-5\,MOBILE\,LNAPL}$ ${\rm FUEL\,WEATHERING\,STUDY}$

Site	Approximate Spill Age ^{b/}	Number of	Assumed Initial Conc. (C ₀) ^{c/}	Average Remaining Conc.(C)	ZED	O-ORDER	EIDCT	ORDER
			(wt%) ^{d/}	` '		% Reduction/Year ^{f/}		% Reduction/Year ^{h/}
Analyte	(years)	Samples	(Wt%)	(wt%)	Rate Constant k ₀ e/	% Reduction/Year	Rate Constant k ₁ ^{g/}	% Reduction/Year
Beaufort MCAS, SC	7.2							
Benzene		1	0.000	0.000	i/			
Toluene		1	0.005	0.002	0.00	9.1	0.147	13.7
Ethylbenzene		1	0.042	0.014	0.00	9.1	0.148	13.8
Total Xylenes		1	0.239	0.076	0.02	9.5	0.159	14.7
Total BTEX		1	0.286	0.092	0.03	9.4	0.157	14.5
Naphthalene		1	0.120	0.057	0.01	7.4	0.105	9.9
1- Methylnaphthalene		1	0.227	0.160	0.01	4.1	0.048	4.7
2- Methylnaphthalene		1	0.295	0.186	0.02	5.1	0.064	6.2
Total Naphthalenes		1	0.642	0.403	0.03	5.2	0.065	6.2
Cecil Field NAS, FL	16.0							
Benzene		1	0.000	0.003	0.00			
Toluene		1	0.000	0.015	0.00			
Ethylbenzene		1	0.000	0.315	-0.02			
Total Xylenes		1	0.020	0.599	-0.04			
Total BTEX		1	0.020	0.933	-0.06			
Naphthalene		1	0.886	0.235	0.04	4.6	0.083	8.0
1- Methylnaphthalene		1	0.266	0.287	0.00			
Methylnaphthalene		1	0.452	0.416	0.00	0.5	0.005	0.5
Total Naphthalenes		1	1.605	0.937	0.04	2.6	0.034	3.3
Cecil Field NAS, FL	20.7							
Benzene		1	0.000	0.005				
Toluene		1	0.000	0.005				
Ethylbenzene		1	0.000	0.012				
Total Xylenes		1	0.020	0.100				
Total BTEX		1	0.020	0.122				
Naphthalene		1	0.886	0.074	0.019	3.3	0.0554	5.4

Note: Calculated values shown have been rounded.

a' Analyte weathering rates in free-phase product calculated based on an assumed initial concentration in fresh JP-5 jet fuel and free-phase product sample results measured at a single point in time.

^{b/}Approximate age of the spill as of the most recent sampling event.

^{c/} For Beaufort MCAS results, the assumed initial concentration of analytes is equal to the NRMRL concentration for a fresh JP-5 sample collected from Beaufort MCAS in May 1997. For Cecil Field Results, Hughes et al. (1984) JP-5 composition values were used.

d/wt% = weight percent.

 $^{^{}e/}$ k_0 = zero order rate constant or slope; units in weight percent per year.

^{ff} Annual mass fraction reduction as a percent of the initial concentration; calculated using equation 5.4.

 g/k_1 = first order rate constant or exponential decay rate; units in years or 1/years.

^{h/} Annual mass fraction reduction as a percent of the initial concentration; calculated using equation 5.8.

^{`--- =} Negative value; measured concentration is greater than the assumed initial concentration.

xylenes are unlikely to be exceeded by partitioning of these compounds from the fuel into site groundwater (Section 5.1.2).

BTEX, naphthalene, and methylnaphthalene weathering rates at the Beaufort Tank Farm C site generally fall within the same range as the JP-4 rates for these compounds shown in Table 5.2. A rough interpolation of the average JP-4 reduction rates shown in Table 5.2 for Shaw AFB (a 4-year-old spill) and Myrtle Beach AFB (a 16-year-old spill) would give rates comparable to those determined for JP-5 at the Beaufort Tank Farm C site (a 7-year-old spill).

5.2.4.2 Cecil Field NAS

spAt the Cecil Field NAS site, weathering rates could be estimated only for naphthalene and 2-methylnaphthalene. Measured mobile LNAPL concentrations for all other analytes exceeded the assumed initial values. Relative to the naphthalene and 2-methylnaphthalene rates computed for the Beaufort MCAS site, estimated reduction rates at the Cecil Field NAS site are substantially lower.

5.2.5 Weathering in JP-8 Mobile LNAPL

Weathering rates for BTEX, naphthalene, and methylnaphthalene compounds were evaluated at two JP-8 release sites: Pope AFB and Seymour Johnson AFB, Building 4522. One mobile LNAPL sampling event was performed at the Pope AFB site in July 1996, approximately 3 months after the fuel release. Three mobile LNAPL sampling events were performed at the Seymour Johnson AFB site in the first 2.3 years following the fuel release

5.2.5.1 Pope AFB

Approximately 3 months after the JP-8 release at Pope AFB, the US Army Corps of Engineers (USACE) collected one mobile LNAPL sample for analysis by the NRMRL. No benzene or toluene were detected in the mobile LNAPL sample, and ethylbenzene and xylenes concentrations were approximately 90 percent lower than the assumed initial concentrations. Zero-order and first-order reduction rates were calculated based on this single sample result; however, the very low to non-detectable concentrations of BTEX in the sample prevented meaningful determination of LNAPL weathering rates. Compared to the other fuel release sites, a relatively small volume (700 gallons) of fuel was released at the Pope AFB site (Table 3.1), and no free-phase product was evident at the site approximately 6 months after the fuel release (Dalzell, 1997). It appears that significant volatilization may have rapidly reduced the BTEX fraction in this small spill.

5.2.5.2 Seymour Johnson AFB

One-point weathering rates determined for the Seymour Johnson AFB site are presented in Table 5.4. Weathering rates presented in this table are based on six samples collected over approximately 6 years from three monitoring wells. As with the JP-4 data shown in Table 5.2, the estimated weathering rates calculated from the Seymour Johnson AFB samples vary significantly. The average reduction rates suggest that weathering is slowest for ethylbenzene, most likely as a result of its lower effective water solubility

TABLE 5.4
FUEL COMPONENT (ONE POINT)^{a/} WEATHERING RATES IN JP-8 MOBILE LNAPL FUEL WEATHERING STUDY

	Approximate		Assumed Initial	Average Remaining)-ORDEI						ORDER		
Site	Spill Age ^{b/}	Number of	Conc. $(C_o)^{c/}$	Conc. (C)	Rate	e Constan	it k ₀ e/	% Re	duction/	Year ^{f/}	Rate	Constan	$t k_1^{g/}$	% Re	duction/	Year h/
Analyte	(years)	Samples	(wt%) d/	(wt%)	min	max	avg	min	max	avg	min	max	avg	min	max	avg
Seymour Johnson AFB, NC	0.6															
Benzene		1	0.03	0.031			0.00			6			0.06			6
Toluene		1	0.21	0.206			0.00			2			0.02			2
Ethylbenzene		1	0.15	0.156												
Total Xylenes		1	1.13	0.949			0.30			26			0.29			25
Total BTEX		1	1.52	1.342			0.29			19			0.21			19
Naphthalene		1	0.25													
1- Methylnaphthalene		1	0.43													
2- Methylnaphthalene		1	0.35													
Total Naphthalenes		1	1.04													
Seymour Johnson AFB, NC	1.5															
Benzene		2	0.03	0.025	0.01	0.01	0.01	16.2	16.4	16	0.19	0.19	0.19	16.9	17.1	17
Toluene		2	0.21	0.131	0.05	0.05	0.05	24.8	25.9	25	0.31	0.32	0.32	26.5	27.1	27
Ethylbenzene		2	0.15	0.149	0.00	0.00	0.00	0.6	1.7	1	0.01	0.02	0.01	0.6	1.7	1
Total Xylenes		2	1.13	0.769	0.24	0.26	0.25	21.2	22.8	22	0.25	0.28	0.27	22.4	24.2	23
Total BTEX		2	1.52	1.073	0.30	0.32	0.31	19.6	21.0	20	0.23	0.25	0.24	20.6	22.2	21
Naphthalene		2	0.25	0.349	0.06	0.06	0.06	23.8	25.2	24	0.29	0.31	0.30	25.3	26.9	26
1- Methylnaphthalene		2	0.43	0.717	0.16	0.16	0.16	37.8	38.1	38	0.55	0.56	0.55	42.2	42.6	42
2- Methylnaphthalene		2	0.35	0.270	0.04	0.05	0.04	10.7	12.8	12	0.12	0.14	0.13	10.9	13.2	12
Total Naphthalenes		2	1.04	0.164	0.26	0.27	0.27	25.1	26.3	26	0.31	0.33	0.32	26.8	28.2	27
Seymour Johnson AFB, NC	2.3															
Benzene		2	0.03	0.015	0.01	0.01	0.01	35.7	36.1	36	0.74	0.76	0.75	52.1	53.0	53
Toluene		2	0.21	0.104	0.06	0.06	0.06	27.4	28.4	28	0.43	0.46	0.44	34.9	36.7	36
Ethylbenzene		2	0.15	0.126	0.02	0.02	0.02	13.5	15.5	15	0.16	0.19	0.18	14.9	17.4	16
Total Xylenes		2	1.13	0.575	0.32	0.33	0.17	28.6	29.5	29	0.46	0.49	0.48	37.0	38.7	38
Total BTEX		2	1.52	0.821	0.41	0.43	0.24	27.1	28.1	28	0.42	0.45	0.43	34.3	36.2	35
Naphthalene		2	0.25	0.315	0.06	0.07	0.07	25.3	26.2	26	0.38	0.40	0.39	31.4	32.8	32
1- Methylnaphthalene		2	0.43	0.622	0.12	0.58	0.35	27.6	39.4	34	0.44	0.99	0.71	35.3	63.0	49
2- Methylnaphthalene		2	0.35	0.203	0.05	0.13	0.09	15.0	24.6	20	0.18	0.36	0.27	16.7	30.3	24
Total Naphthalenes		2	1.04	0.135												

TABLE 5.4 (Continued)

FUEL WEATHERING STUDY

	Approximate		Assumed Initial	Average Remaining			ZERO	-ORDEI	₹				FIRST-	ORDER		
Site	Spill Age ^{b/}	Number of	Conc. $(C_o)^{c/}$	Conc. (C)	Rat	e Constan	$t k_0^{e/}$	% Re	duction/	Year ^{f/}	Rate	Constan	$\mathbf{k_1}^{\mathrm{g}}$	% Re	duction/	Year h/
Analyte	(years)	Samples	(wt%) d/	(wt%)	min	max	avg	min	max	avg	min	max	avg	min	max	avg
Seymour Johnson AFB, NC	5.6															
Benzene		1	0.03	0.048												
Toluene		1	0.21	0.047			0.03			14			0.26			23
Ethylbenzene		1	0.15	0.150			0.00			0			0.00			0
Total Xylenes		1	1.13	0.570			0.10			9			0.12			11
Total BTEX		1	1.52	0.815			0.13			8			0.11			10
Naphthalene		1	0.25	0.120			0.02			9			0.13			12
1- Methylnaphthalene		1	0.43													
2- Methylnaphthalene		1	0.35													
Total Naphthalenes		1	1.04													

Note: Calculated values shown have been rounded.

^{a/} Analyte weathering rates in free-phase product calculated based on assumed initial analyte concentration in fresh JP-8 fuel and free-phase product sample results collected at one point in time.

^{b/} Approximate age of spill as of the most recent sampling event.

c/ Assumed initial concentrations from Mayfield, 1996.

d/ wt% = weight percent.

 $^{^{}e/}$ k_0 = zero order rate constant or slope; units in weight percent per year.

^{f/} Annual mass fraction reduction as a percent of the initial concentration; calculated using equation 5.4.

 $^{^{}g/}$ k_1 = first order rate constant or exponential decay rate; units in year⁻¹ or 1/year.

^{h/} Annual mass fraction reduction as a percent of the initial concentration; calculated using equation 5.8.

i/ Result indicates a non-detect or near non-detect value; as appropriate, weathering rate calculations for this result were based off the method detection limit.

^{`--- =} Negative value; measured concentration is greater than the assumed initial concentration.

(effective water solubility values for JP-8 were not identified in the literature; however, the relative effective water solubility values for the BTEX compounds are expected to be very similar to those shown in Table 2.1 for JP-4 and gasoline). The single-point calculations presented in Table 5.4 indicate that zero-order benzene and total BTEX weathering rates ranged from 6 %/yr to 36 %/yr and 8 %/yr to 28 %/yr, respectively. The first-order weathering rates calculated for benzene and total BTEX ranged from 6 %/yr to 53 %/yr and 10 %/yr to 35 %/yr, respectively. The average single-point first-order weathering rate for benzene and total BTEX was approximately 25 %/yr and 21 %/yr, respectively. This average weathering rate is very similar to average first-order benzene (21 %/yr) and total BTEX (20 %/yr) weathering rates computed for Shaw AFB (Table 5.2). This similarity indicates that the two releases, which are both approximately the same age, are weathering at approximately the same rate.

The LNAPL plume at Shaw might be expected to weather faster than the LNAPL plume at Seymour Johnson because the Shaw plume consists of JP-4, which has a much higher initial concentration of BTEX components than JP-8 (Section 2.1.2). In addition, the higher groundwater flow rate at Shaw relative to the rate at Seymour Johnson (Table 3.1) would also be expected to result in more-rapid LNAPL weathering at Shaw, as discussed in Section 2.3.1. One possible explanation for the observed weathering rates at these sites is that the water table at Seymour Johnson is much shallower than at Shaw. The combination of a shallow water table and sandy soils would be expected to result in increased weathering rates as both infiltration of precipitation and soil vapor exchange with atmospheric air would be increased. Thus, LNAPL weathering rates at Seymour Johnson may result from significant volatilization and recharge-related dissolution.

Mobile LNAPL sample results from the multiple sampling events at Seymour Johnson AFB, as well as zero-order and first-order best-fit curves, are shown on Figures 5.10 and 5.11, respectively. The calculated zero-order and first-order weathering rates depicted on Figures 5.10 and 5.11 are similar on a compound-specific basis. The first-order, multipoint weathering rates for benzene and total BTEX were both approximately 25 %/yr, while the zero-order weathering rates for benzene and total BTEX were 19 %/yr and 22 %/yr, respectively. No conclusions can be reached regarding whether zero-order or firstorder weathering more accurately depicts BTEX depletion in mobile LNAPL at the Shaw AFB site, as the R² values for both zero-order and first-order fits are very similar. Nonetheless, the data plotted on Figures 5.10 and 5.11, and the calculated R^2 values, indicate that the initial BTEX concentration assumptions (i.e., values determined by Mayfield [1996]) for JP-8 are reasonable, and that total BTEX and BTEX component contaminant mass is weathering from the LNAPL plume at Seymour Johnson at 8%/yr to 32 %/yr. For the weathering rate curves shown on Figures 5.10 and 5.11, coefficient of determination (R²) values ranged from 0.57 to 0.97, indicating varying degrees of "goodness of fit" for the trend lines (see Appendix C).

5.2.6 Weathering in Gasoline Mobile LNAPL

BTEX weathering in gasoline mobile LNAPL was evaluated at the Offutt AFB site. Compared to the other fuel weathering sites, where the dates of the fuel releases are known with some confidence, mobile LNAPL at the Offutt AFB site most likely is the result of chronic, long-term leakage from former USTs which ended in 1990 when the

gasoline tanks were closed. The Offutt AFB site was selected for inclusion in the study because of the existence of historical BTEX analytical results for mobile LNAPL.

5.2.6.1 One-Point Weathering Rates

Fuel component one-point weathering rates for the Offutt AFB site are presented in Table 5.5. Rates provided in this table were calculated from BTEX analytical results for each of four LNAPL sampling events conducted following closure of the source USTs. Initial BTEX concentrations were assumed to be equal to those determined by Ghassemi *et al.* (1984) for fresh gasoline. Single point weathering rates calculated for the first sample collection round are calculated using starting concentrations from Ghassemi *et al.* (1984) (Figure 2.3). Single-point weathering rate calculations for subsequent sampling rounds assume that the starting concentrations are equal to the concentrations detected in each well during the previous round, and rates are calculated over the time interval between rounds. Initial evaluation of the site weathering rates indicated significant variability by sampling location; therefore, one-point weathering rates are presented in Table 5.5 for each sampled monitoring well.

Comparison of the mobile LNAPL sample results with the assumed initial concentrations in fresh gasoline indicates that the mobile LNAPL at the Offutt AFB site is only slightly weathered. The most significant BTEX reductions in mobile LNAPL were observed in the sample collected from MW349-8 approximately 6 years after tank closure. At this location, more than 90 percent of the benzene was depleted from the mobile LNAPL, and the total BTEX concentration was reduced by approximately 50 percent. Higher weathering rates (i.e., lower analyte concentrations) at MW349-7 and MW349-8 relative to MW349-1 may be the result of their locations further from the original source area. Mobile LNAPL at MW349-7 and MW349-8 is likely to be older than that at MW349-1. In all cases, benzene and toluene appear to have weathered at faster rates than xylenes and ethylbenzene. Assuming that the initial concentrations reported by Ghassemi et al. (1984) are representative of this site, little to no reduction in ethylbenzene concentrations has occurred in mobile LNAPL at the site. Relatively low groundwater velocities and resulting lower dissolution potential at the Offutt AFB site may be a primary reason for the lower BTEX weathering rates (Table 3.1). In many cases, weathering rates for this site could not be calculated because detected concentrations exceeded assumed initial concentrations. These apparent increases in contaminant concentrations (e.g., MW349-8) may indicate that groundwater flow patterns have changed such that "fresher" LNAPL has moved into the MW349-8 area. Alternatively, the low ethylbenzene weathering rates observed at Offutt may indicate that the initial concentrations reported by Ghassemi et al. (1984) are not representative of this site.

Single-point, zero-order benzene and total BTEX weathering rates calculated from data collected at Offutt AFB averaged 8 %/yr and 3 %/yr, respectively. Single-point, first-order benzene and total BTEX weathering rates averaged 12 %/yr and 3.4 %/yr respectively. BTEX components in gasoline LNAPL would be expected to weather at higher rates than BTEX components in jet fuel (Section 2.3). However, LNAPL variability at this site makes it impossible to generate a single set of representative weathering rates.

TABLE 5.5
FUEL COMPONENT (ONE POINT)^{a/} WEATHERING RATES IN GASOLINE MOBILE LNAPL
FUEL WEATHERING STUDY

				Initial			Remaining				ZERO	ORDER					FIRST	ORDER		
Site	Approximate	Time between		Conc. $(C_o)^{c/}$			Conc. (C)		F	ate Constant	$k_0^{e/}$	%	Reduced/Year	r ^{f/}	R	ate Constant k	g/ 1	%	Reduction/Yes	ar ^{h/}
Analyte	Spill Age (years) ^{b/}	events (years)		(wt%) d/			(wt %)													
Offutt AFB, NE	4.5	4.5	MW349-1	MW349-7		MW349-1	MW349-7		MW349-1	MW349-7		MW349-1	MW349-7		MW349-1	MW349-7		MW349-1	MW349-7	
Benzene			1.50	1.50		1.12	0.76		0.085	0.165		5.65	11.02		0.065	0.152		6.30	14.07	
Coluene			5.90	5.90		5.57	3.88		0.074	0.453		1.26	7.67		0.013	0.094		1.29	8.97	
Ethylbenzene			1.30	1.30		1.40	1.26			0.010			0.75			0.008			0.76	
otal Xylenes			5.90	5.90		5.70	5.69		0.044	0.048		0.75	0.81		0.008	0.008		0.76	0.82	
otal BTEX			14.60	14.60		13.79	11.59		0.182	0.675		1.25	4.63		0.013	0.052		1.27	5.05	
Japhthalene			0.44	0.44		0.25	0.29		0.042	0.146		9.65	7.42		0.126	0.090		11.85	8.61	
Offutt AFB, NE	6.1	1.6	MW349-1	MW349-8		MW349-1	MW349-8		MW349-1	MW349-8		MW349-1	MW349-8		MW349-1	MW349-8		MW349-1	MW349-8	
Benzene			1.12	1.50		1.16	0.13			0.226			15.05		T	0.404			33.26	
Toluene			5.57	5.90		5.03	1.66		0.541	0.698		6.03	11.84		0.063	0.209		6.14	18.86	
Ethylbenzene			1.40	1.30		1.57	1.36													
Total Xylenes			5.70	5.90		5.22	4.39		0.486	0.248		5.29	4.21		0.055	0.049		5.38	4.75	
Total BTEX			13.79	14.60		12.98	7.54		0.808	1.163		3.63	7.96		0.037	0.109		3.67	10.31	
Offutt AFB, NE	7.1	1.0	MW349-1	MW349-6		MW349-1	MW349-6		MW349-1	MW349-6		MW349-1	MW349-6		MW349-1	MW349-6		MW349-1	MW349-6	
Benzene			1.16	1.50		1.15	1.31		0.009	0.027		0.76	1.80		0.008	0.019		0.76	1.91	
Toluene			5.03	5.90		5.56	5.62			0.039			0.66			0.007			0.68	
Ethylbenzene			1.57	1.30		1.54	1.84		0.033			2.11			0.021			2.11		
Total Xylenes			5.22	5.90		5.96	6.05													
Total BTEX			12.98	14.60		14.22	14.83													
,2,3-Trimethylbenzene						0.48	0.54													
1,2,4-Trimethylbenzene						2.06	2.17													
,3,5-Trimethylbenzene Naphthalene				0.44		0.60 0.30	0.63 0.29			0.021			4.89			0.060			5.82	
Offutt AFB, NE	11.6	4.5	MW349-1	0.44 MW349-6	MW349-8	0.30 MW349-1	0.29 MW349-6	MW349-8	 MW349-1	0.021 MW349-6	MW349-8	MW349-1	4.89 MW349-6	MW349-8	MW349-1	0.000 MW349-6	MW349-8	MW349-1	MW349-6	MW349-
Benzene	11.0	4.3	1.15	1.50	0.13	0.58	0.6000	0.16	0.126	0.140		10.89	10.7		0.151	0.154		13.98	14.3	
Toluene			5.56	5.90	1.66	5.80	4.9000	2.5	0.120	0.143			2.5		0.131	0.134			2.7	
Ethylbenzene			1.54	1.30	1.36	1.70	1.8000	1.7		0.008			0.5			0.005			0.5	
otal Xylenes			5.96	5.90	4.39	8.30	7.2000	7.6												
otal BTEX			14.22	14.60	7.54	16.38	14.5000	11.96		0.065			0.4			0.004			0.4	
,2,3-Trimethylbenzene			0.48	14.60		0.65	0.5800	0.77												
,2,4-Trimethylbenzene			2.06	14.60		2.80	2.9000	3.1												
,3,5-Trimethylbenzene			0.60	14.60		0.73	0.6100	0.87		0.004			0.7			0.007			0.7	
Naphthalene			0.30	14.60		0.37	0.1800	0.87		0.021			7.4			0.093			8.9	
		zero order	first order	_																
Average Benzene Weathering Rate		7.98	12.1																	
Average Total BTEX Weathering Ra	ite	3.16	3.4																	

Note: Calculated values shown have been rounded.

^{a/} Analyte weathering rates in free-phase product calculated based on assumed initial analyte concentrations in fresh JP-4 fuel and free-phase product sample results measured at one point in time.

b/ Approximate age of spill as of the most recent sampling event.

c/ Assumed initial concentrations from Smith et al., 1981.

d wt% = weight percent.

 e^{-k} k_0 = zero order rate constant or slope; units in weight percent per year.

^{fl} Annual mass fraction reduction as a percent of the initial concentration; calculated using equation 5.4.

 g^{\prime} k_1 = first order rate constant or exponential decay rate; units in year or 1/year.

h Annual mass fraction reduction as a percent of the initial concentration; calculated using equation 5.8.

^{i/} Result indicates a non-detect or near non-detect value; as appropriate, weathering rate calculations for this result were based off the method detection limit.

^{`--- =} Negative value; measured concentration is greater than the assumed initial concentration.

5.3 FUEL/WATER PARTITIONING COEFFICIENTS (K_{FW})

5.3.1 Site-Specific Results

Mobile LNAPL and groundwater data from the nine primary sites selected for the study were used to determine "field" and "laboratory" $K_{\rm fw}$ values for the BTEX compounds. As defined in Section 2.3.1.2, equation 2.2, $K_{\rm fw}$ is the concentration of a compound in fuel ($C_{\rm f}$) divided by its equilibrium concentration in water in contact with the fuel ($C_{\rm w}$). The "field" $K_{\rm fw}$ was calculated using groundwater and mobile LNAPL analytical results from NRMRL and OGB. The "laboratory" $K_{\rm fw}$ values were determined using mobile LNAPL samples in laboratory-based equilibrium partitioning experiments performed by EAL and OBG in accordance with procedures outlined by Cline *et al.* (1991) (Section 4.4.2). The field and laboratory $K_{\rm fw}$ values were determined to evaluate the validity of the equilibrium assumption (Section 2.3.1.3) when performing dissolution modeling. Values for $K_{\rm fw}$ determined from field and laboratory data are presented in Table 5.6.

The "laboratory" $K_{\rm fw}$ values for the BTEX compounds were expected to be lower than the "field" $K_{\rm fw}$ values because laboratory mixing and resulting dissolution was expected to produce maximum or equilibrium concentrations of target analytes in deionized water in contact with the fuel LNAPL. However, many of the field $K_{\rm fw}$ values determined using mobile LNAPL and actual groundwater results are lower than the laboratory values. Of the nine field and laboratory data sets presented in Table 5.6, data from the Offutt AFB, Seymour Johnson aerospace ground equipment (AGE) storage area, Beaufort MCAS, and Cecil Field sites generally conformed to the initial prediction. For the other sites, the field $K_{\rm fw}$ values for the BTEX compounds were generally higher than the laboratory values, indicating higher BTEX concentrations in groundwater than in the deionized water analyzed after equilibrium conditions were supposedly established at the laboratory.

The comparison of field and laboratory data generally suggest that dissolution of BTEX from mobile LNAPL to groundwater samples collected from within the mobile LNAPL source area may be more complete (i.e., closer to equilibrium) than the results obtained from the laboratory partitioning experiments. It is also possible that the groundwater samples collected in the field contained some emulsified LNAPL, resulting in higher BTEX concentrations than actually occurred *in situ*. The lower-than-expected BTEX concentrations in the aqueous-phase samples analyzed using the Cline *et al.* (1991) (SW8021) procedures as compared to the field groundwater results also could be at least partially attributable to 1) differences in analytical methods and 2) groundwater properties (e.g., pH, temperature, pressure, and/or salinity) and site physical properties (groundwater flow rate, soil type, precipitation, and water table fluctuations) that may have effected the dissolution and solubility of BTEX in the field relative to the laboratory.

Results of the fuel/water partitioning experiment do not necessarily refute use of equilibrium assumptions in estimating groundwater concentrations of BTEX compounds at gasoline and jet fuel release sites. However, the data presented in Table 5.6 suggest that using laboratory-derived estimates of $K_{\rm fw}$ to estimate equilibrium analyte concentrations in groundwater in the LNAPL source area may underestimate actual

 $TABLE~5.6 \\ FUEL-WATER PARTITIONING COEFFICIENTS~(K_{fw})~FOR~FUEL~RELEASE~SITES$

	Approximate	Fuel-Water Partitioning Coefficients (K_{fw}) Ethyl-								
Data Source/Site	Spill Age ^{a/} (years)	Benzene	Toluene	benzene	o-Xylene	m&p -Xylene	Total Xylenes			
Gasoline										
Cline et al., 1991	Fresh Gasoline	350	1,250	4,500	3,630	4,350	$NA^{b/}$			
Offutt AFB, NE	12.1									
Equilibrium (Method 8021) (5 Data Points) c/		383	1,455	5,551	4,863	6,330	4,619			
Field (Method 8260) ^{d/} (6 Data Points)		287	1,087	2,921	1,932	3,045	2,411			
JP-4 Jet Fuel										
Smith et al., 1981	Fresh JP-4	2,455	2,754	4,786	7,079	3,715	NA			
Shaw AFB, SC	8.1									
Equilibrium (Method 8021) (6 Data Points)		263	926	3,565	1,455	3,213	2,523			
Field (Method 8260) (8 Data Points)		522	1,471	3,903	2,226	2,665	3,814			
Myrtle Beach AFB, SC	20.6									
Equilibrium (Method 8021) (3 Data Points)		644	1,508	4,679	10,974	4,454	4,842			
Field (Method 8260) (3 Data Points)		1,023	6,288	12,263	2,969	26,011	22,062			
DFSP-Charleston, SC	26.4									
Equilibrium (Method 8021) (5 Data Points)		e/	1,066	4,103	3,005	4,584	7,622			
Field (Method 8260) (4 Data Points)		1,782	2,366	5,419	4,962	6,998	12,692			
Eaker AFB, AR	28.0									
Equilibrium (Method 8021) (3 Data Points)		253	e/	2,946	2,606	2,424	2,391			
Field (Method 8260) (4 Data Points)		1,137	439	3,432	5,721	3,661	3,726			
Seymour Johnson AFB, AGE Area	Unknown									
Equilibrium (Method 8021) (2 Data Points)		981	1,638	3,235	1,733	2,187	2,061			
Field (Method 8260) (2 Data Points)		153	760	3,141	2,805	3,663	3,397			
JP-5 Jet Fuel										
Beaufort MCAS, SC										
Equilibrium (EAL) (1 Data Point)	Fresh JP-5 Sample	455	1,500	4,568	NA	NA	4,815			
Beaufort MCAS, SC	11.5									
Equilibrium (EAL) (1 Data Point)		558	1,250	4,571	2,538	4,857	3,741			
Field (NRMRL) (2 Data Points)		341	345	761	1,283	1,004	1,116			
Cecil Field NAS, FL (MW CEF-293-9)	20.7									
Equilibrium (EAL) (1 Data Point)		253	1,470	5,818	e/	5,308	5,043			
Field (NRMRL) (2 Data Points)		6,381	2,757	4,493	4,548	1,867	1,740			
JP-8 Jet Fuel										
Seymour Johnson AFB, NC (MW-1S, 1997)	5.6									
Equilibrium (EAL) (2 Data Points)		240	1,005	3,127	2,894	3,384	3,087			
Field (NRMRL) (3 Data Points)		566	344	3,219	1,606	4,234	3,546			
Pope AFB, NC (MW-1S, 1998)	12.6									
Field (NRMRL) (1 Data Point)		50	13	5,484	9,248	2,521	7,284			

^{a/} Approximate age of spill as of the most recent sampling event.

NA = not available or not analyzed.

 $^{^{}c\prime} \quad \text{Results calculated from "equilibrium" concentrations determined by Evergreen Analytical Laboratory.}$

derivation Results calculated from mobile LNAPL and groundwater concentrations as determined by the National Risk Management Research Laboratory.

 $⁻⁻⁻⁼K_{fw}$ could not be calculated because this analyte was not detected above the method detection limit.

groundwater concentrations. For example, if the benzene concentration in mobile LNAPL at a JP-4 release site is known to be 1,250 mg/L, the Smith *et al.* (1981) K_{fw} value of 2,455 indicates that the benzene concentration in groundwater immediately adjacent to the water-LNAPL boundary is approximately 0.51 mg/L (obtained by rearranging equation 2.2 to solve for C_w ; $C_w = 1,250 \, [mg/L] / 2,455 = 0.51 \, mg/L$).

However, $K_{\rm fw}$ results presented in Table 5.6 indicate that a benzene $K_{\rm fw}$ of 923 (average of five field values for JP-4 sites) is more appropriate. The application of a benzene $K_{\rm fw}$ of 923 to the benzene concentration of 1,250 mg/L in LNAPL indicates that the predicted benzene concentration in groundwater would be approximately 1.35 mg/L, which is significantly higher than the groundwater concentration predicted using the Smith *et al.* (1981) benzene $K_{\rm fw}$.

Although equilibrium LNAPL/water partitioning coefficients can be used to estimate analyte concentrations in groundwater or LNAPL, determination of site-specific field $K_{\rm fw}$ values where possible is desirable. However, care must be taken during groundwater sampling to avoid inclusion of emulsified fuel in the water sample.

A consistent relationship between mobile LNAPL weathering and fuel/water partitioning was not observed. This is specifically demonstrated by the five JP-4 sites, where field and laboratory values for $K_{\rm fw}$ do not vary consistently with increasing spill age. The wide variation in $K_{\rm fw}$ values calculated for the JP-4 sites, coupled with a lack of a consistent relationship between $K_{\rm fw}$ and spill age, indicates that the partitioning coefficient between mobile LNAPL and groundwater is dependant on site-specific conditions such as groundwater flow rate, soil type, precipitation, groundwater geochemistry, and water table fluctuations.

In addition, review of the $K_{\rm fw}$ data presented in Table 5.6 indicates that $K_{\rm fw}$ also is dependant upon fuel type. Fuel types that contain relatively high concentrations of the BTEX components, such as gasoline, tend to have relatively low $K_{\rm fw}$ values with respect to fuel types that contain relatively low concentrations of BTEX components. Thus, the partitioning coefficient between fuel LNAPL and groundwater appears to be partially dependant upon the concentration of BTEX components within the LNAPL phase. This variability in partitioning coefficients with fuel compound concentrations in LNAPL would be expected to follow Roults Law (Section 2.3.1).

5.3.2 Source-DK Modeling of LNAPL and Groundwater Concentrations

A review of data from 366 petroleum (predominantly gasoline) contaminated sites was used to estimate average decay rates for BTEX compounds dissolved in source area groundwater (Farhat, *et al.*, 2002). Average first-order decay constants of 22 %/yr, 41 %/yr, 18 %/yr, and 25 %/yr, were calculated for benzene, toluene, ethylbenzene, and xylenes, respectively. These rates were calculated using historical data from source area wells with the highest BTEX concentrations. No attempt was made to distinguish sites that had mobile LNAPL. When only data from the 180 most-contaminated sites was evaluated, the average first-order decay rate for benzene decreased from 22 %/yr to 16 %/yr. Benzene decay rates at the 180 most-contaminated sites are more likely to representative of sites containing mobile LNAPL.

The Source-DK model was used to estimate the LNAPL weathering rate at the Shaw AFB Building 1610 Site. The Shaw AFB site was selected because it has a known spill date, initial LNAPL analysis of BTEX fractions, three LNAPL and groundwater sampling events, and reasonable assurance that no additional spills have occurred. Site-specific data on LNAPL plume dimensions and the initial mass fraction of benzene were used as input data for the "Tier 2 Box Model." No biodegradation was assumed in this model run.

The Source-DK Model predicted that benzene concentrations in the LNAPL would be reduced at a first-order rate of 18 %/yr. The average benzene loss rate based on three LNAPL sampling events is 17 %/yr. The model predicted a dissolved benzene concentration of 2.1 mg/L at the six-year point; actual site data shows an average concentration of 2.5 mg/L. The model also predicted groundwater concentrations of benzene over the next 50 years. Based on the predicted LNAPL weathering rate, groundwater concentrations of benzene will approach the 5-microgram per liter (µg/L) MCL in approximately 40 years (mid-range estimate).

The data set generated for the Source-DK model (GSI, 2002) includes groundwater BTEX results from source areas at 366 sites. Readers who are interested in estimating source decay rates for gasoline sites are encouraged to use the methodology presented in the user's guide for this model.

5.4 COMPARISON OF RESIDUAL AND MOBILE LNAPL WEATHERING

Weathering effects on residual-LNAPL-contaminated soils were compared to mobile LNAPL weathering in an effort to compare LNAPL weathering in capillary fringe soils with LNAPL weathering in the free-phase product. The primary weathering mechanisms thought to enhance weathering of residual LNAPL in soils include increased volatilization and biodegradation. Little to no BTEX depletion in mobile LNAPL is expected to occur as a result of biodegradation, yet biodegradation is a significant weathering mechanism for residually-contaminated soils (Section 2.3.3). Section 5.4.1 presents a brief quantitative evaluation of BTEX weathering in residual and mobile LNAPLs. Section 5.4.2 presents a qualitative comparison of hydrocarbon weathering in mobile and residual LNAPL through the use of soil and free product chromatograms from the DFSP-Charleston site.

5.4.1 BTEX Weathering

BTEX weathering in residual and mobile LNAPL was compared by converting soil analytical results reported on a mass per mass basis (i.e., mg/kg) to a mass per volume basis typical of mobile LNAPL results (i.e., micrograms per milliliter [μ g/mL], mg/mL, or mg/L). The following relationship was used to estimate the concentration of BTEX compounds in residual LNAPL based on soil analytical results:

$$C_s = [BTEX (mg/kg) / TPH (mg/kg)] \times LNAPL density (\mu g/mL)$$

eq. 5.9

where: C_s = estimated residual LNAPL BTEX concentration ($\mu g/mL$) TPH = total petroleum hydrocarbons in residual LNAPL

Note: TPH concentrations in soil were estimated by NRMRL analysis of total fuel carbon.

Table 5.7 presents the BTEX concentrations in residual LNAPL estimated using equation 5.9, and compares these estimates to the mobile LNAPL analytical results at the eight primary sites.

Based on the results presented in Table 5.7, BTEX concentrations in residual LNAPL at Offutt and Shaw AFBs were generally attenuated relative to concentrations in mobile LNAPL. At Offutt AFB, estimated concentrations of toluene, ethylbenzene, and xylenes in capillary fringe soils were 5 to 23 percent less than their respective concentrations in mobile LNAPL. Based on the 1997 Shaw AFB soil data, BTEX concentrations in residual LNAPL were 1 to 34 percent less than in mobile LNAPL. Soil samples collected at Shaw AFB in 1998 contained much lower BTEX concentrations at a depth of 27 feet bgs than soil samples collected at a depth of 33 feet bgs in 1997. This data indicates that the 27 foot interval samples may have been above the smear zone.

At DFSP-Charleston, the estimated residual LNAPL concentrations of BTEX exceed the mobile LNAPL concentrations. As indicated on Figures 5.7 and 5.8, the total BTEX concentration in mobile LNAPL at EW-6 has been reduced by almost 99 percent. While BTEX concentrations in mobile LNAPL at EW6 are extremely low, the total BTEX concentration of 230 mg/kg in soil at 13 feet bgs near EW-6 was the highest total BTEX concentration measured in soil at any of the JP-4 sites (Table 5.1). While significant BTEX depletion is evident in mobile LNAPL, significant BTEX contamination appears to persist in soils near this location.

Overall, residual LNAPL concentrations of BTEX in soil at most sampled locations, estimated using equation 5.9, exceed measured mobile LNAPL concentrations for these compounds. Predicted residual LNAPL concentrations calculated from soil analytical results for seven of the eight primary sites, Charleston was not included because the LNAPL results were close to the method detection limits, which are approximately 1 to 7 times higher than the mobile LNAPL analytical results. AFCEE (1995) note that use of the BTEX/TPH relationship contained in equation 5.9 to compare residual and mobile LNAPL concentrations results in overestimation of the residual BTEX concentration, especially within the LNAPL source area. In theory, the residual BTEX concentrations should never exceed the mobile LNAPL BTEX concentrations. A significant source of error in equation 5.9 is the TPH term. TPH analysis is prone to underestimation of the total fuel residual in the soil. Underestimation of TPH would lead to the false conclusion that the BTEX fraction in soil residuals exceeds the BTEX fraction in mobile LNAPL.

5.4.2 Comparison of Soil and Mobile LNAPL Chromatograms

A qualitative comparison of residual LNAPL and mobile LNAPL weathering was performed by evaluating chromatograms of soil and free product samples. Figure 5.12 presents GC/FID results for mobile LNAPL samples collected from two wells (MW-103 and EW-6) at the DFSP-Charleston site. Soil sample GC/FID results for one soil boring (CHSB3) advanced in the original source area at the DFSP-Charleston site are presented on Figure 5.13. Results presented on these two figures are from samples collected in

TABLE 5.7
COMPARISON OF ESTIMATED RESIDUAL AND MOBILE LNAPL BTEX CONCENTRATIONS
FUEL WEATHERING STUDY

Fuel Type	Sample	Free Product Sample	Approximate	Depth to Product	Depth of Soil Sample			Ethyl-	Total	Total
Site	Date	Location	Spill Age ^{a/}	(feet btoc) ^{b/}	(feet bgs) ^{c/}	Benzene	Toluene	benzene	Xylenes	BTEX
Gasoline										
Offutt AFB, NE	Nov-94	MW349-1	4	39.60	39.5					
Estimated Residual LNAPL d/ (µg/mL)e/						16,034	39,335	9,141	32,217	96,727
Mobile LNAPL ^{f'} (μg/mL) Estimated Residual / Mobile						8,280 1.94	41,100 0.96	10,300 0.89	42,080 0.77	101,760 0.95
JP-4 Jet Fuel										
Shaw AFB, SC Estimated Residual LNAPL (µg/mL) Mobile LNAPL (µg/mL) Estimated Residual / Mobile	Mar-97	MW1610-2	3	32.38	33.0	2,225 2,250 0.99	3,220 4,890 0.66	916 1,340 0.68	6,619 8,530 0.78	12,980 17,010 0.76
Shaw AFB, SC Estimated Residual LNAPL (µg/mL) Mobile LNAPL (µg/mL) Estimated Residual / Mobile	Mar-98	MW1610-2	4	28.24	27.0	101 1,250 0.08	168 2,830 0.06	561 1,040 0.54	2,687 7,180 0.37	3,517 12,300 0.29
Myrtle Beach AFB, SC Estimated Residual LNAPL (µg/mL) Mobile LNAPL (µg/mL) Estimated Residual / Mobile	Mar-97	MW8I	16	3.7	9.5	1,536 211 7.28	8.4 7.5 1.12	3,324 1,360 2.44	9,666 4,262 2.27	14,535 5,841 2.49
DFSP-Charleston (Tank 1), SC Estimated Residual LNAPL (µg/mL) Mobile LNAPL (µg/mL) Estimated Residual / Mobile	May-97	EW-6	22	15.92	13.0	85 0.025 3415	1,764 1.35 1307	2,789 91.3 31	14,082 351 40	18,721 444 42
Eaker AFB, AR Estimated Residual LNAPL (μg/mL) Mobile LNAPL (μg/mL) Estimated Residual / Mobile	Aug-97	MW316	24	13.86	12.0	2,658 900 2.95	10 0.025 384	4,086 2,960 1.38	20,011 15,400 1.30	26,764 19,260 1.39

TABLE 5.7 (Continued)
COMPARISON OF ESTIMATED RESIDUAL AND MOBILE LNAPL BTEX CONCENTRATIONS
FUEL WEATHERING STUDY

Fuel Type Site	Sample Date	Free Product Sample Location	Approximate Spill Age ^{a/}	Depth to Product (feet btoc) ^{b/}	Depth of Soil Sample (feet bgs) ^{c/}	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total BTEX
JP-5 Jet Fuel Beaufort Tank Farm C, SC Estimated Residual LNAPL (μg/mL) Mobile LNAPL (μg/mL) Estimated Residual / Mobile	May-97	BFT-401-3	7	6.98	4.0	7.6 2.2 3.41	93 13 7.16	557 116 4.80	1,820 611 2.98	2,477 742 3.34
Cecil Field NAS, FL Estimated Residual LNAPL (µg/mL) Mobile LNAPL (µg/mL) Estimated Residual / Mobile	May-97	CEF-293-9	16	8.54	8.5	27 24 1.13	479 122 3.92	3,925 2,520 1.56	10,574 4,787 2.21	15,004 7,453 2.01
JP-8 Jet Fuel										
Seymour Johnson AFB, NC Estimated Residual LNAPL (µg/mL) Mobile LNAPL (µg/mL) Estimated Residual / Mobile	May-97	MW1S	2	5.08	5.5	386 194 1.99	2,311 1,030 2.24	2,004 1,170 1.71	10,441 5,990 1.74	15,142 8,384 1.81
Seymour Johnson AFB, NC Estimated Residual LNAPL (µg/mL) Mobile LNAPL (µg/mL) Estimated Residual / Mobile	Mar-98	MW1S	3	3.11	3.0	181 47 3.84	1,020 602 1.69	1,440 800 1.80	6,016 3,040 1.98	8,658 4,489 1.93

Approximate age of spill at time of sampling event.

b/ feet btoc = feet below top of well casing.

c/ feet bgs = feet below ground surface.

Estimated mass per unit volume concentration in residual LNAPL calculated using equation 5.9 and NRMRL soil sample results.

 $[\]mu$ g/mL = micrograms per milliliter.

Mobile LNAPL concentration as determined by NRMRL.

FIGURE 5.12 CHROMATOGRAMS FOR TWO JP-4 MOBILE LNAPL SAMPLES DFSP-CHARLESTON, SOUTH CAROLINA FUEL WEATHERING STUDY

FREE PRODUCT SAMPLE CH-W103-FP 97C0813

FREE PRODUCT SAMPLE CH-EW6-FP 97C0814

Source: AD Little (1998).

FIGURE 5.13 JP-4 IMPACTED SOIL CHROMATOGRAM RESULTS WITH DEPTH **DFSP-CHARLESTON, SOUTH CAROLINA FUEL WEATHERING STUDY**

May 1997 and analyzed by AD Little (1998). During this sampling event, the water table was measured approximately 15 to 16 feet bgs.

Chromatograms for the soil samples indicate that concentrations of single-ring aromatic hydrocarbons (e.g., BTEX) in residual LNAPL generally increase with depth, and likely approach concentration levels comparable to mobile LNAPL near the water table. The chromatographic peaks for the BTEX compounds occur within the first 10 minutes of the analysis (i.e., between 0.00 and 10.00 on the x-axis of the chromatograms). As shown on Figure 5.13, concentrations of BTEX compounds in soils at the 3.5-, 5.5-, and 7.5-foot depths are relatively low. In contrast, soil samples collected at 9.5 and 11 feet bgs appear to retain the general chromatographic signature of the JP-4 mobile LNAPL samples (Figure 5.12). BTEX weathering appears to be approximately the same in these deeper soils as the weathering observed in mobile LNAPL from EW-6 (evidenced by the similarities between the chromatogram from the 11 foot depth interval and the chromatogram from the EW-6 LNAPL sample), but more significant than that observed in mobile LNAPL from MW-103. As discussed in Sections 2.5.1 and 5.2.3.5.2, mobile LNAPL weathering appears to vary spatially at fuel-contaminated sites. Residual LNAPL weathering rates most likely vary with proximity to saturated LNAPL lenses and mobile LNAPL pools.

In theory, sites with more-porous soils and without impermeable covers should promote greater residual LNAPL volatilization and biodegradation. Sites which are not subject to large and frequent water-level variations also should produce a more-weathered residual LNAPL because these soils would not be regularly "recontaminated" with mobile LNAPL as the water table rises and falls. Based on our study, it is impossible to predict residual LNAPL weathering rates from the limited soil sampling performed at each site. Several soil samples need to be collected at each depth interval to more accurately estimate the remaining BTEX fraction in residual LNAPL in the soil column.

SECTION 6

CONCLUSIONS

6.1 REVIEW OF PROJECT OBJECTIVES

The overall purpose of this study is to improve the scientific database for estimating natural LNAPL weathering rates and source-term reduction rates which are incorporated into natural attenuation models. Specifically, the primary objective was to document a range of BTEX weathering rates for the mobile LNAPL fraction based on data collected from sites with documented mobile LNAPL plumes with known release dates. Secondary objectives of this study included an evaluation of the degree of contaminant partitioning of BTEX from mobile LNAPL to groundwater, and comparison of weathering effects on the mobile LNAPL fraction and on residual LNAPL present in capillary fringe soils.

Based on our literature review, little information has been published regarding rates of natural weathering of the BTEX compounds from mobile fuel LNAPLs. As a result, the rate of reduction of the contaminant source term in groundwater models is often left to professional judgment. This uncertainty has generally resulted in the use of overly conservative LNAPL weathering rates to evaluate contaminant fate and transport and the suitability of natural attenuation as a remedial alternative. These conservative assumptions extend the estimated timeframe for achieving cleanup goals and inflate projected LTM and site management costs. When appropriate input data are available, the new SourceDK model (GSI, 2002) is a useful tool for predicting LNAPL and groundwater concentrations of BTEX over time, and the source decay term for use in groundwater fate and transport models.

The following tasks were completed to meet the stated primary and secondary objectives:

- A literature search to assess existing information regarding weathering of LNAPLs;
- Selection of eight primary sites where the time of release is generally known and free-phase jet fuel or gasoline remain *in situ*;
- Sampling of soil, groundwater, and free-phase LNAPLs at the primary sites;
- Evaluation of data obtained from the eight primary sites and from four secondary sites to assess contaminant concentrations in site media in relation to such factors as age of the fuel release, fuel type, and site geology and hydrogeology;

- Calculation of site specific LNAPL weathering rates and LNAPL to groundwater diffusion coefficients:
- Calculation of estimated residual and mobile LNAPL BTEX concentration ratios;
 and
- A "beta test" of the new SourceDK model (GSI, 2002) was completed using LNAPL and groundwater data from a Shaw AFB JP-4 jet fuel spill.

6.2 SUMMARY OF FINDINGS

- Significant research has been completed on multiple "fresh" samples of JP-4 and JP-8 so that the magnitude of the initial BTEX fraction in these fuels is well-known. The assumption that initial BTEX values in mobile LNAPL at JP-4 and JP-8 release sites are equal to concentrations reported by Smith *et al.* (1981) and Mayfield (1996) appears reasonably valid for predicting BTEX depletion in mobile LNAPL. Initial fuel composition results for gasoline studies are more varied, and results for JP-5 are very limited.
- BTEX weathering rates in mobile LNAPL will vary from site to site and are influenced by many factors including spill age, the relative solubility of individual compounds, free-product geometry, and the rate at which groundwater and precipitation contacts mobile LNAPL.
- As demonstrated by the DFSP-Charleston and Offutt AFB site data, the BTEX fraction remaining in mobile LNAPL samples collected from different locations on the same site will vary. It is likely that samples collected near the center of the LNAPL "plume" will exhibit lower rates of weathering than samples collected at the leading edge of the plume. Based on Raoult's Law, weathering of BTEX from LNAPL via dissolution and volatilization is expected to follow first-order kinetics, which predicts that the rate of BTEX removal from the free phase will be reduced as the concentrations of BTEX in the free phase decrease over time. While this phenomenon is difficult to prove with only one or two historical data points per site, the occurrence of first-order weathering kinetics appears to be validated when average remaining BTEX fractions from five JP-4 sites are plotted together. Based on the data obtained for this study, weathering rates decreased as the age of the spill increased.
- Based on Table 5.2, the average total BTEX, first-order weathering rate for six JP-4 sites is approximately 15.1 %/yr. Based on all of the data collected, this appears to be a reasonable default value for estimating total BTEX weathering from JP-4 LNAPL.
- If mathematically-inflated rates from McChord AFB data are excluded, the range of total BTEX first-order weather rates is 4.3 to 28 %/yr. If a more conservative first-order weathering rate is desired for BTEX fate and transport modeling, the mean of the total BTEX weathering rate data set of 13 %/yr would provide a conservative estimate for JP-4 fuels.

- As predicted by their relatively high solubilities, benzene and toluene exhibit higher weathering rates than ethylbenzene and xylenes. Because benzene is a known human carcinogen with a federal MCL of 5 μg/L, benzene weathering rates will generally determine the timeframe for fuel spill remediation. Based on Table 5.2, the average benzene first-order weathering rate for six JP-4 sites is approximately 23.3 %/yr. Based on all of the data collected, this appears to be a reasonable default value for estimating benzene weathering from JP-4 LNAPL.
- If mathematically inflated rates from McChord AFB data are excluded, the range of benzene first-order weather rates is 11.1 to 39 %/yr. If a more conservative first-order weathering rate is desired for benzene fate and transport modeling, the median of the first order benzene weathering rate data set of 22 %/yr would provide a conservative estimate for JP-4 fuels.
- Dissolution appears to be the primary weathering mechanism that influences
 mobile LNAPL weathering rates. Significantly lower BTEX weathering rates in
 mobile LNAPL were apparent at sites with low groundwater velocities. This
 observation is supported by mass transfer theory, which predicts that BTEX flux
 from LNAPL to groundwater would increase in a rapidly moving groundwater
 where dissolved BTEX concentrations would be diluted by the constant influx of
 clean water.
- LNAPL and groundwater data from the Shaw AFB JP-4 spill was used for a "beta test" of the new SourceDK Tier 2 Box Model (GSI, 2002). Results showed excellent agreement between predicted LNAPL weathering rates for benzene and actual benzene weathering rates base on 6 years of LNAPL sampling. Predicted source area groundwater concentrations of benzene (no biodegradation option) were also within 20% of average source area benzene concentrations measured after 6 years of weathering.
- Although initial BTEX fractions in JP-8 are lower than JP-4, the calculated first-order weathering rate for the Seymour Johnson JP-8 site was 21 %/yr for total BTEX and 25 %/yr for benzene (Table 6.1). These average weathering rates are very similar to average first-order benzene (21 %/yr) and total BTEX (20 %/yr) weathering rates computed for Shaw AFB (Table 5.2). This similarity indicates that the two releases, which are both approximately the same age, are weathering at approximately the same rate. Thus, the first-order weathering rates calculated for JP-4 should provide reasonable estimates for JP-8 LNAPL plumes. Benzene and total BTEX first-order weathering rates for JP-4 and JP-8 are shown in Table 6.1.
- The Source-DK model provides a useful tool for estimating both LNAPL and soil residual decay rates and future groundwater concentrations in close proximity to the source area. The ability of this model to provide accurate predictions depends upon the quality of the input data. In order to make high quality source decay predictions using the Source-DK model, actual fuel component concentration data overtime from LNAPL and groundwater, high quality soil and hydraulic data, and geochemical data are required. As demonstrated with Shaw AFB site data (Section 5.3.2), a complete set of LNAPL and groundwater data is very useful in verifying the predictions of the SourceDK model.

TABLE 6.1
SUMMARY OF BENZENE AND TOTAL BTEX FIRST ORDER WEATHERING
RATES IN JP-4AND JP-8 MOBILE LNAPL
FUEL WEATHERING STUDY

	Benzene	Total BTEX
	(% Reduction/year) ^{a/}	(% Reduction/year)
JP-4 Mobile LNAPL		
Average of 6 sites	23.3	15.1
Range Excluding McChord	11 to 39	4 to 28
Conservative Estimate	12.8	12.8
JP-8 Mobile LNAPL ^{b/}		
Range	6 to 53	10 to 35
Conservative Estimate	25.1	21.4

^{a/} Weight percent per year calculated using equation 5.8.

^{b/}Summary of 6 samples collected over 5 years from the Seymour Johnson AFB site.

6.3 RECCOMENDATIONS

Based on the findings of this project, the following recommendations are made concerning the proper estimation of LNAPL and source area weathering rates:

- Whenever possible, LNAPL samples should be collected and analyzed for BTEX and other contaminants of concern. Biennial (i.e., every other year) sampling should be sufficient to establish LNAPL weathering patterns and rates. If possible, the initial LNAPL in the well should be purged to allow product from the formation to be sampled and analyzed.
- The chemical composition of LNAPL at a site is spatially variable; therefore, it is prudent to collect samples from at least three wells, if possible so that the calculated weathering rates are representative of the entire LNAPL plume. The average mass fractions of BTEX components can then be used as input to source decay and groundwater fate and transport models.
- When LNAPL is absent in wells, soil samples should be collected in the free product smear zone. Several smear zone locations should be sampled, with samples collected from at least two depths per boring. Samples should be analyzed for BTEX, TPH, and other contaminants of concern. Both Total Extractable Petroleum Hydrocarbons (TEPH) and Total Volatile Petroleum Hydrocarbons (TVPH) should be analyzed and the results summed to provide a total number representative of a wide range of carbon values. Fuel compound weathering rates can than be calculated from the soil data to estimate how long the residual contaminant mass will continue to act as a secondary source of contaminant mass to groundwater.
- As a last resort, groundwater samples from the source area can be used to estimate
 the strength of the mobile or residual LNAPL source. As demonstrated in our
 findings, water samples may not be at equilibrium with LNAPL or soil residuals,
 and analyte concentrations in groundwater samples may be biased high due to
 inclusion of emulsified LNAPL in the samples.
- In the absence of site-specific LNAPL or source area soil data, the data presented in this report can be used in conjunction with default data provided in the SourceDK Model to make an order-of-magnitude estimate of source BTEX decay rates. However, site-specific factors such as groundwater velocity, soil type, water infiltration rates, fuel type, and spill age should be used as appropriate to refine the estimated source decay rates using the information provided in this report (e.g., by comparison to site-specific weathering rates derived for sites having similar conditions).

SECTION 7

REFERENCES

- ABB Environmental Services, Inc. (ABB). 1995a. Alternate Procedures Request, Day Tank 1, Facility 293, NAS Cecil Field, Jacksonville, Florida. Tallahassee. August.
- ABB. 1995b. Final Draft, Day Tanks 551 and 865, MCAS Beaufort, South Carolina. November.
- ABB. 1996. Contamination Assessment Report Addendum, North Fuel Farm Area, NAS Cecil Field, Jacksonville, Florida. Tallahassee. August.
- Abriola and Pinder. 1985. A Multiphase Approach to the Modeling of Porous Media Contamination by Organic Compounds-1. Equation Development. *Water Resources Research*. 21(1) pp 11-18. January.
- Air Force Center for Environmental Excellence (AFCEE), 1995. Technical Protocol for Implementing Intrinsic Remediation with Long-Term Monitoring for Natural Attenuation of Fuel Contamination Dissolved in Groundwater, Revision 0. Vol I. Air Force Center for Environmental Excellence, Brooks Air Force Base, Texas. November 11.
- AFCEE. 1998. Handbook for Remediation of Petroleum-Contaminated Sites (A Risk-Based Strategy). Technology Transfer Division, Brooks Air Force Base, Texas. April.
- Alberta Research Council. 1993. Composition of Canadian Summer and Winter Gasolines. Canadian Petroleum Products Institute Report 94-5. Ottawa, Canada.
- American Petroleum Institute (API). 1985. Laboratory Study on Solubilities of Petroleum Hydrocarbons in Groundwater, API Publication No. 4395.
- American Society for Testing and Materials (ASTM). 1995. Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites. Designation E1739-95. West Conshohocken, Pennsylvania. November.
- Arthur D. Little, Inc (AD Little). 1987. *Installation Restoration Program Toxicology Guide*. Cambridge Massachusetts. June.
- AD Little. 1998. Study of Environmental Alteration of Military Jet Fuels, Draft. Report Provided to Parsons Engineering Science, Inc. Cambridge, Massachusetts. 2 December.

- Baedecker, M. J., Cozzarelli, I. M., and Hopple, J.A., 1987. *The Composition and Fate of Hydrocarbons in a Shallow Glacial-Outwash Aquifer*, in Franks, B. J., ed., U.S. Geological Survey Program on Toxic Waste Ground-Water Contamination, Proceedings of the Technical Meeting, Pensacola, Florida, March 23-27, 1987; U.S. Geological Survey Open-File Report 87-109, p. C23-C24.
- Baedecker, M. J., and Cozzarelli, I. M., 1991. *Geochemical Modeling of Organic Degradation Reactions in an Aquifer Contaminated with Crude Oil*, in Mallard, G. E., and Aronson, D. A., eds., U.S. Geological Survey Toxic Substances Hydrology Program--Proceedings of the Technical Meeting, Monterey, California, March 11-15, 1991: U.S. Geological Survey Water-Resources Investigations Report 91-4034, p. 627-632.
- Baedecker, M. J., I. M. Cozzarelli, D. I. Siegel, D. C. Bennett, and R. P. Eganhouse. 1993. Crude Oil in a Shallow Sand and Gravel Aquifer III. Biogeochemical Reactions and Mass Balancing Modeling in Anoxic Groundwater. *Applied Geochemistry*, 8 (6): 569-586.
- Barker, J.F., G. C. Patrick, and D. Major. 1987. Natural Attenuation of Aromatic Hydrocarbons in a Shallow Sand Aquifer. *Groundwater Monitoring Review*, 7, Winter: 64-71.
- Blake, S.B. and R.A. Hall. 1984. Monitoring Petroleum Spills with Wells: Some Problems and Solutions. *Proceedings of Fourth National Symposium on Aquifer Restoration and Ground Water Monitoring*, National Water Well Association.
- Borden, R.C., and C.M. Kao. 1992. Evaluation of Groundwater Extraction for Remediation of Petroleum-Contaminated Aquifers. *Water Environment Research*, 64(1):28-36.
- Bruce, L. G. 1993. Refined Gasoline in the Subsurface. AAPG Bulletin, 77(2): 212-224.
- Bruce, L., Miller, T., and Hockman, B., 1991. Solubility Versus Equilibrium Saturation of Gasoline Compounds A Method to Estimate Fuel/Water Partition Coefficient Using Solubility or K_{oc}, In, A. Stanley, editor, *NWWA/API Conference on Petroleum Hydrocarbons in Ground Water*: NWWA/API, p. 571-582.
- Christensen, L.B. and T.H. Larsen. 1993. Method for Determining the Age of Diesel Oil Spills in the Soil. *Ground Water Monitoring Review*. Fall.
- Cline, P.V., J.J. Delfino, and P.S. Rao. 1991. Partitioning of Aromatic Constituents into Water from Residually Held NAPL in Unsaturated Soil Columns. *Journal of Contaminant Hydrology*, 25: 914-920.
- Dalzell, B. 1997. 23rd CES/CEV, Pope Air Force Base, North Carolina. Telephone Conversation. February 6.
- Dean-Ross, D. 1993. Fate of Jet Fuel JP-4 in Soil. *Bulletin of Environmental Contamination and Toxicology*, 51:596-599.
- Dean-Ross, D., H. Mayfield, and J. Spain. 1992. Environmental Fate and Effects of Jet Fuel JP-8. Chemosphere, 24(2): 219-228.

- Dietz, D.N. 1980. *The Intrusion of Polluted Water into a Groundwater Body and the Biodegradation of a Pollutant*. Paper presented at Proceedings of the National Conference on Control of Hazardous Material Spills, US Environmental Protection Agency, Louisville, Kentucky. May 13-15.
- Douglas, G.S., R.C. Prince, E. L. Butler, W.G. Steinhauer. 1994. The Use of Internal Chemical Indicators in Petroleum and Refined Products to Evaluate the Extent of Biodegradation. In *Hydrocarbon Bioremediation*. Eds R. E. Hinchee, B. C. Alleman, R. E. Hoeppel, and R. N. Miller. Lewis Publishers. Ann Arbor, MI: 219-236.
- Douglas, G.S., A.E. Bence, R.C. Prince, S.J. McMillen, and E.L. Butler. 1996. Environmental Stability of Selected Petroleum Hydrocarbon Source and Weathering Ratios. *Environmental Science and Technology*. 30, pp 2332-2339.
- Durrant, G.C., Schirmer, M., Einarson, M.D., Wilson, R.D., and D.M., Mackay, 1999. Assessment of the Dissolution of Gasoline Containing MTBE at LUST Site 60, Vandenberg Air Force Base, California. *Proc. Petroleum Hydrocarbons and Organic Chemicals in Groundwater: Prevention, Detection, and Restoration*. National Groundwater Association, Houston Tx. November. 158-166.
- Eganhouse, R. P. Baedecker, M. J., Phinney, C.S., and Hopple, J.A., 1988. Composition and Alteration of Hydrocarbons in Ground Water, in Ragone, S.E., ed., U.S. Geological Survey Program on Toxic Waste Ground-Water Contamination, Proceedings of the Technical Meeting, Cape Cod, Massachusetts, October 21-25, 1985: U.S. Geological Survey Open-File Report 86-481, p. C27-28.
- Environmental Consulting and Technology, Inc. (ECT). 1996. Draft Groundwater Mixing Zone and Monitoring Plan Application, Myrtle Beach, South Carolina. Tampa, Florida. January.
- Farhat, S.K., Newell, C.J., deBlanc, P.C., Gonzales, J.R., 2002. Source Attenuation Decision Support System and Database for Estimating Remediation Timeframes. *Proceedings of the Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds*. Battelle Press, May 2002.
- Farr, A.M., Houghtalen, R.J., and McWhorter, D.B., 1990, Volume estimation of light nonaqueous phase liquids in porous media: *Ground Water*, v. 28, no. 1, p. 48-56.
- Farr, J., G. Apostolakis, M. Collins, R.C. Crouch, G. Fogg, M. Reinhard, and K. Snow. 1996. Senate Bill 1764 Advisory Committee Recommendations Report Regarding California's Underground Storage Tank Program. Submitted to the California State Water Resources Control Board. May 31.
- Fried, J.J., P. Muntzer, and L. Zilliox. 1979. Ground-Water Pollution by Transfer of Oil Hydrocarbons. *Groundwater*, 17: 586-594.
- Garg, S., and W.G. Rixey. 1999. The Dissolution of Benzene, Toluene, M-xylene, and Naphthalene from a Residually Trapped Non-Aqueous Phase Liquid Under Mass Transfer Limited Conditions. *Journal of Contaminant Hydrogeology*. 36(1999); 313-331.

- Geller, J.T., and J.R. Hunt. 1993. Mass Transfer from Non-Aqueous Phase Organic Liquids in Water-Saturated Porous Media. *Water Resources*, 29(1993); 833-845.
- Ghassemi, M., A. Panahloo, and S. Quinlivan. 1984. Physical and Chemical Characteristics of Some Widely Used Petroleum Fuels: A Reference Database for Assessing Similarities and Differences Between Synfuel and Petrofuel Products. *Energy Sources* 7:377-401.
- Gundlach, E.R., P.D. Boehm, M. Marchand, R.M. Atlas, D.M. Ward, and D.A. Wolfe. 1993. The Fate of Amoco Cadiz Oil. *Science*, Vol. 221, pp 122-129.
- Groundwater Services Inc. (GSI), 2002. *SourceDKTM Users Manual Version 1.0*. Prepared for the Air Force Center for Environmental Excellence. July 2002.
- Halliburton NUS. 1996. RCRA Facility Investigation Final Report, Eaker AFB, Arkansas. Oak Ridge, Tennessee. May.
- Hall, R., S.B. Blake, and S.C. Champlin, Jr. 1984. Determination of Hydrocarbon Thickness in Sediments Using Borehole Data. *Proceedings of Fourth National Symposium on Aquifer Restoration and Ground Water Monitoring, National Water Well Association*.
- Hayden, N. J., T. C. Voice, M.D. Annable, and R. B. Wallace. 1992. Prediction of Leachate Concentrations in Petroleum Contaminated Soils. In *Hydrocarbon Contaminated Soils*. Eds E. J. Calabrese, and P. T. Kostecki. Lewis Publishers. Vol II: 395-406.
- Hillel, D. 1980. Soil Physics. Academic Press. New York.
- Hughes, B. M., G. G. Hess, K. Simon, S. Mazer, W. D. Ross, and M. T. Wininger. 1984.
 Variability of Major Organic Components in Aircraft Fuels. ESL-TR-8402. 3
 Vols. Engineering and Services Laboratory, Air Force Engineering and Services Center, Tyndall Air Force Base, Florida. June 27.
- Hughes, J.P., C.R. Sullivan, and R.E. Zinner. 1988. Two Techniques for Determining the True Hydrocarbon Thickness in an Unconfined Sandy Aquifer: In *Proceedings of the Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Detection, and Restoration Conference*: NWWA/API, p. 291-314.
- Huling, S.G. and J.W. Weaver. 1991. *Dense Nonaqueous Phase Liquids*. EPA Groundwater Issue, EPA/540/4-91-002. USEPA, R.S. Kerr Environmental Research Laboratory, Ada, Oklahoma.
- Hunt, J.M. 1979. Petroleum Geochemistry and Geology. W.H. Freeman. San Francisco, California.
- Hunt, J.R., Sitar, N., and Udell, K.S., 1988, Nonaqueous phase liquid transport and cleanup, 1. Analysis of mechanisms: *Water Resources Research*, v. 24, no. 8, p. 1247-1258.

- Huntley, D., Hawk, R.N., and Corley, H.P., 1994, Nonaqueous phase hydrocarbon in a fine-grained sandstone 1.Comparison between measured and predicted saturations and mobility: *Ground Water*, v. 32, no. 4, p. 626-634.
- Huntley, D. and G.D. Beckett. 1997. Lifespan of LNAPL Sources. Oral Presentation at the Seventh Annual West Coast Conference on Contaminant Soils and Groundwater, Oxnard, California. March 10-13.
- Hutchins, S. R., G. W. Sewell, D. A. Kovaks, and G. A. Smith. 1991. Biodegradation of Aromatic Hydrocarbons by Aquifer Organisms under Denitrifying Conditions. *Environmental Science and Technology*, 25 (1): 68-76.
- Johnson, R.L., and Pankow, J.F., 1992, Dissolution of dense chlorinated solvents in groundwater, 2. Source functions for pools of solvents: *Environmental Science and Technology*, v. 26, no. 5, p. 896-901.
- Johnson, T. E., and P. K. Kreamer. 1994. Physical and Mathematical Modeling of Diesel Fuel Liquid and Vapor Movement in Porous Media. *Ground Water*, 32 (4): 551-560.
- Journal of Water Pollution Control Federation. 1990. *Groundwater*: A Review of the 1989 Literature. 62 (5): 700-737.
- Kaplan, I.R., Y. Galperin, H. Alimi, R. Lee, and S. Lu. 1996. Patterns of Chemical Changes During Environmental Alteration of Hydrocarbon Fuels. *Groundwater Monitoring Review*, pp 113-124. Fall.
- LaGrega, M.D., P.L. Buckingham, J.C. Evans. 1994. Hazardous Waste Management. McGraw-Hill, Inc.
- Landon, M. K., and Hult, M.F., 1991. Evolution of Physical Properties and Composition of a Crude Oil Spill, in Mallard, G. E., and Aronson, D.A., eds. *U.S. Geological Survey Toxic Substances Hydrology Program. Proceedings of the Technical Meeting, Monterey, California*, March 11-15, 1991: U.S. Geological Survey Water Resources Investigations Report 91-4034, p. 641-645.
- Law, R.J. 1980. Changes in the Composition of Oil from the "Amoco Cadiz." The Science of the Total Environment. Elsevier Scientific Publishing Company. Amsterdam, Netherlands. 15. pp 37-49.
- Lundy, D.A. 1997. A RBCA Approach to Free-Phase LNAPL Recovery. Presented at the 1997 API/NGWA Conference on Petroleum Hydrocarbons and Organic Chemicals in Groundwater: Prevention, Detection, and Remediation. Houston, Texas. November 12-14.
- Martel, C.R., 1987. *Military Jet Fuels, 1944-1987*. Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio. November.
- Mayfield, H.T., 1996. *JP-8 Composition and Variability*. Armstrong Laboratory, Environics Directorate, Environmental Research Division, Tyndall AFB, Florida. March.

- McKee, J.E., F.B. Laverty, and R.M. Hertel. 1972. Gasoline in Groundwater. *Journal of the Water Pollution Control Federation*. 44(2), pp. 293-302.
- McKenna, E.J. and R.E. Kallio. 1965. The Biology of Hydrocarbons. *Ann. Rev. Microbiology*. 19, pp 183-208.
- Mercer, J.W., and Cohen, R.M., 1990, A review of immiscible fluids in the subsurface properties, models, characterization and remediation: *Journal of Contaminant Hydrology*, v.6, p. 107-163.
- Metcalf & Eddy, Inc. (M&E). 1993. *Chemical and Physical Characteristics of Crude Oil, Gasoline, and Diesel Fuel: A Comparative Study*. Submitted to Western States Petroleum Association. Santa Barbara, California. September 17.
- Miller, C. T., M. M. Poirier-McNeill, and A. S. Mayer. 1990. Dissolution of Trapped Nonaqueous Phase Liquids: Mass Transfer Characteristics. *Water Resources Research*, 26(11): 2783-2796.
- Montgomery, J.H. 1996. Groundwater Chemicals Desk Reference. Second Edition. CRC Lewis Publishers, Boca Raton, Florida.
- Nakles, D.V., J.W. Lynch, D. Edwards, J.G. Tell, T.L. Potter, R.P. Andes, and C.P.L. Barkan. 1996. *Risk-Based Management of Diesel-Contaminated Soil. Document R-897*. Prepared for the Association of American Railroads, Washington D.C. Prepared by Remediation Technologies, Inc., Monroeville, Pennsylvania. October.
- Neumann, Hans-Joachim, Paczynska-Lahme, Barbee, and Severin, Dieter. 1981. Composition and Properties of Petroleum. Halsted Press, New York.
- Newell, C.J., S.D. Acree, R.R. Ross, and S.G. Huling. 1995. *Light Nonaqueous Phase Liquids*. EPA Groundwater Issue, EPA/540/S-95/500. July.
- Owen, K. and T. Corey. 1990. Automotive Fuels Handbook. Society of Automotive Engineers. Warrendale, Pennsylvania.
- Parsons Engineering Science, Inc. (Parsons). 1996a. Remedial Action Plan for the Risk-Based Remediation of the KC-135 Crash Site, Wurtsmith Air Force Base, Michigan. Draft Final, Second Edition. February.
- Parsons. 1996b. Intrinsic Remediation Engineering Evaluation/Cost Analysis for Fire Protection Training Area No. 4, Pope Air Force Base, Fayetteville, North Carolina. Cary, North Carolina. April.
- Parsons. 1996c. Final Comprehensive Site Assessment of Building 4522, Seymour Johnson Air Force Base, North Carolina. Cary. July.
- Parsons. 1996d. *Draft Work Plan for Determining LNAPL Weathering at Various Fuel Release Sites*. For the Air Force Center for Environmental Excellence, Brooks Air Force Base, San Antonio, Texas. Denver, CO. October.
- Parsons. 1997. Draft Intrinsic Remediation Treatability Study for Tank 349 Site, Offutt Air Force Base, Nebraska. Denver, CO. November.

- Parsons, 1998. Draft Treatability Study in Support of Remediation by Natural Attenuation for Groundwater at Building 1613, Shaw Air Force Base, Sumter, South Carolina. Denver, Colorado. June.
- Parsons, 1999. Final Light Nonaqueous Phase Liquid Weathering at Various Fuel Release Sites. Prepared for the Air Force Center for Environmental Excellence, Brooks AFB, Texas. September.
- Peargin, T.R., 2001. Relative Depletion Rates of MTBE, Benzene, and Xylene from Smear Zone Non-Aqueous Phase Liquid. *Proceedings of the Sixth In-Situ and On-Site Bioremediation Symposium, San Diego, California*. No. 6(1), p. 67.
- Pfannkuch, H. 1984. Determination of the Contaminant Source Strength from Mass Exchange Processes at the Petroleum-Ground-Water Interface in Shallow Aquifer Systems. University of Minnesota. Presented in the *Proceedings of the NWWA/API Conference on Petroleum Hydrocarbons and Organic Chemicals in Groundwater Prevention, Detection and Restoration*. Houston, Texas. November 5-7.
- Potter, T.L. 1988. Analysis of Petroleum Product Residues in Soil and Water, Workshop presented at *Environmental and Public Health Effects of Soils Contaminated with Petroleum Products, Fourth National Conference*, 1988; University of Massachusetts at Amherst.
- Powers, S. E., C. O. Loureiro, L. M. Abriola, and W. J. Weber. 1991. Theoretical Study of the Significance of Nonequilibrium Dissolution of Nonaqueous Phase Liquids in Subsurface Systems. *Water Resources Research*, 27(4): 463-477.
- Rixey, W. G., P. C. Johnson, G. M. Deeley, D. L. Byers and I. J. Dortch. 1992. Mechanisms for the Removal of Residual Hydrocarbons from Soils by Water, Solvent, and Surfactant Flushing. In *Hydrocarbon Contaminated Soils*. Eds E. J. Calabrese, and P. T. Kostecki. Lewis Publishers. Vol I: 387-409.
- Rixey, W.G., 1996. The Long-Term Dissolution Characteristics of a Residually Trapped BTX Mixture in Soil. *Hazardous Waste and Hazardous Materials* 13(1996); 197-211.
- Schwille, F. 1967. *Petroleum Contamination of the Subsoil A Hydrological Problem*. In Joint Problems of Oil and Water Industries, Institute of Petroleum. London. 23-54.
- Schwille, F. 1984. Migration of Organic Fluids Immiscible. Pollutants in Porous Media, Ecological Studies. Vol 47, pp. 27-48. Springer-Verlag. New York.
- Seagren, E. A., B. E. Rittman, and A. J. Valocchi. 1993. Quantitative Evaluation of Flushing and Biodegradation for Enhancing In Situ Dissolution of Nonaqueous Liquids. *Journal of Contaminant Hydrology*, 12: 103-132.
- Sigsby, J.E., *et al.* 1987. Volatile Organic Compound Emissions from 46 In-Use Passenger Cars. *Environmental Science and Technology*. 21:466-475.

- Smith, C.F. 1996. DFSC-FQ, Defense Fuel Supply Center, Fort Belvoir, Virginia. Facsimile Transmittal. August 28.
- Smith, J.H., J.C. Harper, and H. Jaber, 1981. *Analysis and Environmental Fate of Air Force Distillate and High Density Fuels*. Prepared for Air Force Engineering and Services Center, Tyndall AFB, Florida. SRI International, Menlo Park, California. October.
- Song, H., X. Wang, and R. Bartha. 1990. Bioremediation Potential of Terrestrial Fuel Spills. *Applied and Environmental Microbiology*, 56 (3): 652-656.
- Tabak, M., and D. Lang. 1988. Predicting the Time Required to Remove VOCs from an Aquifer. In *Proceedings of the Second National Outdoor Action Conference National Groundwater Association*. Dublin, Ohio: 1451-1469.
- Testa, and D. L. Winegardner 1991. Restoration of Petroleum-Contaminated Aquifers. CRC Press/Lewis Publishers.
- Testa, S.M. and M.T. Pacskowski. 1989. Volume Determination and Recoverability of Free Hydrocarbon. *Groundwater Monitoring Review*. Winter.
- Tojado, S. and Ray R. 1987. Volatile Organic Compound Emissions from 46 In-use Passenger Cars. *Environmental Science and Technology* 21, No. 5.
- Unknown. 1994. Short-Term Weathering Rates of Buried Oils in Experimental Sand Columns over North Temperate Temperature Range. *Bulletin of Environmental Contamination and Toxicology* 53 (1) 46-53.
- US Army Corps of Engineers (USAEC) 1996. Draft Site Investigation Report, JP-4 Release Site, Air Mobility Command Ramp, Osan Air Base, Republic of Korea. Far East District and Pacific Ocean Division. January.
- US Environmental Protection Agency (USEPA). 2002. Drinking Water Regulations and Health Advisories. EPA 822-B-96-002. October.
- US Geological Survey (USGS). 1996. Assessment of Intrinsic Bioremediation of Jet Fuel Contamination in a Shallow Aquifer, Beaufort, South Carolina. Water-Resources Investigations Report 95-4262. Columbia, South Carolina.
- USGS. 1997. Remediation of Petroleum Hydrocarbon-Contaminated Groundwater in the Vicinity of a Jet-Fuel Tank Farm, Hanahan, South Carolina. Water-Resources Investigations Report 96-4251. Columbia, South Carolina.
- Vandermeulen, J.H., J.W. Thorpe, and K.E. Hellenbrand. 1994. Short-Term Weathering Rates of Buried Oils in Experimental Sand Columns over North-Temperate Temperature Range. *Bulletin of Environmental Contamination and Toxicology*. 53, pp 46-53.
- Voudrias, E. A., V. Nzengung, and C. Li. 1994. Removal of Light Nonaqueous Phase Liquids (LNAPLS) by Aquifer Flushing. Waste Management, 14(2): 115-126.

- Voudrias, E. A., and Y. Moon-Full. 1994. Dissolution of a Toluene Pool Under Constant and Variable Hydraulic Gradients with Implications for Aquifer Remediation. *Ground Water*, 32(2); 305-311. March-April
- Yang, X., Y., L. E. Ericson, and L. T. Fan. 1995. A Study of the Dissolution Rate-Limited Bioremediation of Soils Contaminated by Residual Hydrocarbons. *Journal of Hazardous Materials*. 41 (2-3): 299-313.
- Zurcher, F. and M. Thuer. 1978. Rapid Weathering Processes of Fuel Oil in Natural Waters: Analyses and Interpretations. *Environmental Science and Technology*. Volume 12, Number 7, pp 838-843.

APPENDIX A FUEL WEATHERING STUDY UPDATE WORK PLAN

FINAL

TECHNICAL MEMORANDUM

27 August 2001

To: Mr. Jerry Hansen, AFCEE/ERT

From: Mr. Bruce Henry, Parsons Engineering Science, Inc.

Subject: Final Work Plan for an Addendum to the Fuels Weathering Study (Parsons

ES, 1999a), Contract No. F41624-00-D-8024, Task Order No. 0024

This technical memorandum provides the scope of work for completing an addendum to the *Final Light Nonaqueous-Phase Liquid Weathering at Various Fuel Release Sites* (Fuels Weathering Study) (Parsons Engineering Science, Inc. [Parsons ES], 1999a). This work plan is based on the statement of work for Task Order No. 0024 of the Air Force Center for Environmental Excellence (AFCEE) Contract No. F41624-00-D-8024. This technical memorandum describes the background and objective of the addendum, lists the sites for which additional fuels data may be collected, and describes the sampling and laboratory protocols to be followed.

BACKGROUND

The primary objective of the Fuels Weathering Study (Parsons ES, 1999a) was to determine natural weathering rates for benzene, toluene, ethylbenzene, and xylenes (BTEX) in mobile light non-aqueous phase liquids (LNAPL, or free product). Rates were based on literature values and sample data collected from sites with mobile LNAPL plumes that are a result of past jet fuel or gasoline releases. Three secondary objectives were 1) to review the available literature as it pertains to natural weathering of fuel LNAPLs in the subsurface environment; 2) to compare weathering effects on the mobile LNAPL fraction and on residual LNAPL present in capillary fringe soils; and 3) to evaluate the degree of contaminant partitioning occurring from mobile LNAPL to groundwater.

OBJECTIVES

Results of the fuels weathering study were encouraging, however, the range of fuel types and the size of the statistical database for calculating fuel weathering rates was limited. Therefore, the objectives of this Fuels Weathering Study addendum are to expand the data set collected for the initial study in order to provide weathering rates for a greater range of fuel types, and to increase the size of the data set upon which rate calculations are based. Results of this addendum will be use to support and/or amend the conclusions developed in the Fuels Weathering Study (Parsons ES, 1999a).

Memorandum To Jerry Hansen 27 August 2001 Page 2

SCOPE OF WORK

The following tasks will be conducted for the Fuels Weathering Study addendum:

- Perform a literature review of recently published articles, papers, and conference proceedings at a local university.
- Collect data from published literature as well as from representative Department of Defense (DOD) projects. Site selection criteria established in the Fuels Weathering Study will be used for the selecting appropriate DOD sites.
- Conduct up to six site visits for the purpose of resampling mobile LNAPL and groundwater at sites where Parsons ES collected data for the Fuels Weathering Study.
- Two wells will be sampled at each site for analysis of BTEX, trimethylbenzenes (TMBs), and naphthalene in LNAPL and groundwater by USEPA Method SW8260B. In addition, LNAPL samples will be analyzed for equilibrium partitioning by USEPA Method SW8021B, in accordance with the methods of Cline, *et al.* (1991).
- The six sites will be sampled in two mobilizations of approximately 4 to 5 days in duration. A Parsons ES field technician will sample the wells with the aid of local Base personnel. Base personnel will be responsible for disposal of any investigation-derived waste generated as a result of the sampling.
- Except as amended in this technical memorandum, sampling will occur in accordance with the *Draft Work Plan for Determining LNAPL Weathering at Various Fuel Release Sites* (Parsons ES, 1999b).
- Up to six additional sets of samples for additional sites provided by Base personnel or AFCEE will be analyzed as above.
- Parsons ES will complete and submit a draft addendum to the Fuels Weathering Study summarizing the results of sampling and data collection. One set of responses to AFCEE comments will be prepared and incorporated into a final addendum.

Evaluation of weathering effects on mobile and residual LNAPL present in capillary fringe soils is not included in this effort. Therefore, soil samples will not be collected for this project.

Memorandum To Jerry Hansen 27 August 2001 Page 3

SITE SELECTION

Sampling conducted for the addendum by Parsons ES will primarily include sites and monitoring wells that were sampled for LNAPL and groundwater during the original Fuels Weathering Study. The facilities and sites sampled during the fuels weathering study are listed in Table 1. Preference will be given to sites that have not undergone active remediation. Because of the small amount of free product detected at some of the sites sampled during the original study, it is expected that those sites may no longer have sufficient quantities of LNAPL for sample collection.

Free product and groundwater sampling is planned to occur in two mobilizations. The initial mobilization is scheduled to occur in August 2001, and will include Seymour Johnson Air Force Base (AFB) in North Carolina, and Shaw AFB and Myrtle Beach AFB in South Carolina. Sites for the second mobilization will be selected at a later date, after confirming appropriate site conditions with Base personnel.

FIELD PROCEDURES FOR SAMPLE COLLECTION AND ANALYSIS

LNAPL and groundwater samples will be collected in a manner similar to that used for the initial Fuels Weathering Study. In executing the *Draft Work Plan for Determining LNAPL Weathering at Various Fuel Release Sites* (Parsons ES, 1999b) during the initial fuels weathering study, it was necessary to make variances from the work plan. For this addendum, sample collection will be completed so that the actual sample collection procedures used in the initial study are duplicated.

Sample Collection Procedures-

- Immediately after unlocking and opening the well, volatile organics within the well casing and the working space breathing zone will be measured with a photoionization detector (PID).
- An oil/water interface probe will be used to measure the depth to free product, the apparent free product thickness, and the depth to groundwater to the nearest 0.01 foot.
- Two to four free product samples and one groundwater sample will be collected at each monitoring well. Only two free product samples will be shipped to the laboratory for analysis. Free product will be collected from the initial column of free product in the well, and from the column of free product that recharges into the well following purging. If the well does not recharge with free product in a reasonable time (1 to 2 hours), the "prepurge" sample will be submitted for analysis. Samples will be collected with the following procedure:

Memorandum To Jerry Hansen 27 August 2001 Page 4

- At sites were free product is approximately 25 feet or less below the ground surface, high density polyethylene (HDPE) tubing will be slowly lowered down the well so that the end of the tubing is within the column of LNAPL. Two samples of product then will be collected from the well using a peristaltic pump. For sites where free product is more than 25 feet below ground (e.g. Shaw AFB) a disposable bailer will be used to collect LNAPL and groundwater samples.
- Once the "prepurge" sample vials have been filled, LNAPL will continue to be purged until at least one volume equivalent to the initial volume of LNAPL measured in the well casing has been removed.
- After the pre-purge LNAPL samples have been collected and LNAPL purged from the well, new sample tubing or a new bailer will be lowered through the LNAPL column into the water column. A water sample will be collected from the water below the LNAPL. For wells sampled with a peristaltic pump, a low flow purge not to exceed two casing volumes will be used to minimize purge volumes. For wells sampled with a bailer, groundwater will not be purged prior to collecting a groundwater sample to avoid disturbance and mixing of groundwater and LNAPL within the well and samples.
- After the groundwater samples have been collected, LNAPL will be allowed to recharge in the well for a period not to exceed two hours. The sample tubing will be raised so that it is within the LNAPL column and two LNAPL samples will then be collected. Similarly, "fresh" LNAPL samples will be collected with a bailer where a peristaltic pump cannot be used.
- Once all the samples have been collected, labeled, and placed in a cooler with ice, all sampling supplies will be removed from the well and placed in a plastic bag for disposal by the Base.
- Investigation-derived waste (IDW) is anticipated to include small volumes of LNAPL and groundwater, sample tubing, disposable bailers, nitrile gloves, and water used for decontamination of the oil/water interface probe. IDW will be disposed of by Base personnel.

Sample Identification and Chain-of-Custody Control, and shipment – Samples will be labeled so that they can be clearly identified as to the facility, monitoring well and sample matrix (i.e., water or LNAPL). Sample identification will be as follows:

FACILITY/WELL-ID/MATRIX/DATE

For example, for water and LNAPL samples collected from monitoring well MW1610-2 at Shaw Air Force Base (AFB) on 05 August 2001, the sample identification would be:

SH/MW1610-2/WATER/080501 SH/MW1610-2/LNAPL/080501 Memorandum To Jerry Hansen 27 August 2001 Page 5

Chain-of-custody forms will accompany all sample shipments and will clearly identify at which facilities samples were collected. After the samples are sealed and labeled, they will be packaged for transport to the laboratory via Federal Express overnight delivery

Sampling Records – Sampling records will be kept in accordance with the *Draft Work Plan for Determining LNAPL Weathering at Various Fuel Release Sites* (Parsons ES, 1999b), to include a field logbook narrative and sampling forms.

Sample Analysis – LNAPL and groundwater samples will be analyzed by O'Brien & Gere Laboratories, Inc. (OBG) in Syracuse, New York. Analytical protocols will be performed as listed in Table 2. Quality Assurance/Quality Control (QA/QC) samples will be collected and analyzed as presented in Table 3. Laboratory QA/QC will be in accordance with the Description of Work and Schedule for laboratory analytical services included as Attachment A.

Decontamination Procedures - Prior to arriving at the site, and between each sampling location, downhole equipment such as oil/water interface probes will be decontaminated using the following protocol:

- Wash with potable water and phosphate-free laboratory detergent
- Rinse with potable water;
- Rinse with distilled or deionized water; and
- Air dry.

All rinseate will be collected for proper disposal by Base personnel. Alternate methods of rinseate disposal will be considered by the Parsons ES field scientist as recommended by Base personnel. Precautions will be taken to minimize any impact to the surrounding area that might result from decontamination operations.

Any deviations from these procedures will be documented in the field logbook and on the groundwater or LNAPL sampling record.

REPORTING AND SCHEDULE

Site sampling by Parsons ES is planned to occur in two mobilizations. The initial mobilization is scheduled to occur in August 2001, and will include Seymour Johnson Air Force Base (AFB) in North Carolina, and Shaw AFB and Myrtle Beach AFB in South Carolina. The second sampling event is tentatively scheduled for September or October 2001. Actual sites for the second sampling event will be selected at a later date, after confirming appropriate site conditions with Base personnel. A draft addendum will be submitted to AFCEE for review by 10 December 2001. Responses will be prepared to comments on the draft addendum, and incorporated into a final addendum to be submitted to AFCEE by 07 March 2002.

TABLE 1
SUMMARY OF WELLS AND SITES SAMPLED
FUELS WEATHERING STUDY ADDENDUM

		Fuel	Date	Well		Free				Methyl-		LNAPL Thickness and Date	Depth to	Depth to Water
Base/Location	Site	Type	Sampled	Identification	Laboratory ^{a/}	Product	Water	$BTEX^{b/}$	$TMBs^{b/}$	Naphthalenes	Density	(feet)	(feet)	(feet)
Primary Sites														
Offutt AFB, NE	Tank 349	Gasoline	Nov-94	MW349-1	NRMRL	X	X	FP						
			Jun-96	MW349-6	NRMRL	X	X	FP				2.23(6/96)	39.60	39-42
			Jun-97	MW349-6	EAL, NRMRL	X	X	FP						
			Oct-98	MW349-6	EAL, NRMRL	X		FP						
Shaw AFB, SC	Building 1610	JP-4	Mar-97	MW-1610-2	NRMRL	X	X	FP/W	FP/W	FP/W	FP	2.5(8/96)	32.38	29-33
			Mar-97	MW-1610-2	EAL	X		FP					32.38	
			Mar-97	MW-1610-3	NRMRL	X	X	FP/W	FP/W	FP/W	FP			
			Mar-98	MW-1610-2	NRMRL	X	X	FP/W	FP/W	FP/W	FP		28.24	
			Mar-98	MW-1610-3	NRMRL	X	X	FP/W	FP/W	FP/W	FP			
			Mar-98	MW-1610-2	EAL	X		FP					28.24	
Myrtle Beach AFB, SC	Pipeline Leak Site	JP-4	Mar-97	MW-8I	NRMRL	X		FP	FP	FP	FP	3.79(11/95)		2-8.5
			Mar-97	MW-8I	EAL	X		FP					3.7	
			Mar-97	MW-24	NRMRL	X		FP	FP	FP	FP			
DFSP-Charleston,	Tank 1 Area	JP-4	May-97	MW-103	NRMRL	X		FP	FP	FP	FP	1.77(5/96)		18-22
			May-97	EW6	NRMRL	X		FP	FP	FP	FP		15.92	
			May-97	MW-103	EAL	X		FP						
			May-97	EW6	EAL	X		FP						
Eaker AFB, AR	Spill Site No. 2	JP-4	Aug-97	MW316	NRMRL	X		FP	FP	FP	FP	1.18(8/97)		8-14
			Aug-97	MW306	NRMRL	X		FP	FP	FP	FP			
			Aug-97	MW316	EAL	X		FP					13.86	
Beaufort MCAS, SC	Tank Farm C	JP-5	Aug-97	401-3	EAL	X		FP						
Beaufort MCAS, SC			May-97	FBT-401-3								0.13(5/96)	6.98	2-8
Cecil Field NAS, FL	Day Tank 1, Facility 293	JP-5	May-97	CEF-293-9								0.78(8/96)	8.54	5-8
Seymour Johnson AFB, NC	Bldg 4522	JP-8	May-97	MW1S	NRMRL	X	X	FP/W		FP/W	FP	2.8(4/96)	5.08	4-9
			May-97	MW1S	EAL	X		FP					5.08	
			Mar-98	MW1S	NRMRL	X		FP	FP	FP	FP		3.11	
			Mar-98	MW1S	EAL	X		FP					3.11	

TABLE 1 (Continued) SUMMARY OF WELLS AND SITES SAMPLED FUELS WEATHERING STUDY ADDENDUM

												LNAPL		
												Thickness	Depth to	Depth to
		Fuel	Date	Well		Free				Methyl-		and Date	LNAPL	Water
Base/Location	Site	Type	Sampled	Identification	Laboratory ^{a/}	Product	Water	$BTEX^{b/}$	$TMBs^{b/}$	Naphthalenes	Density	(feet)	(feet)	(feet)
Secondary Sites														
Wurtsmith AFB, MI	KC-135 Crash Site	JP-4	Aug-96		NRMRL		X	GW				0.22(3/91)		9-12
McChord AFB, WA	Washrack/Treatment Area	JP-4	Sep-97		NRMRL	X		FP				0.14(4/94)		11-15
Beaufort MCAS, SC	Day Tank 865	JP-5	May-97		NRMRL	X		FP				0.15(5/97)		2-8
Pope AFB, NC	JP-8 Release Site	JP-8	Jul-96		NRMRL	X	X	FP/GW				0.01(7/96)		6-9

^{a/} EAL = Evergreen Analytical Services; NRMRL = National Risk Management Research Laboratory.

^{b/} BTEX = benzene, toluene, ethylbenzene, and xylenes; TMBs = trimethylbenzenes.

TABLE 2 ANALYTICAL PROTOCOLS FOR MOBILE LNAPL AND GROUNDWATER SAMPLES FUELS WEATHERING STUDY ADDENDUM

	NUMBER OF		
SAMPLE MATRIX	SAMPLES PER SITE	ANALYTES ^{a/}	METHOD
Mobile LNAPL	1 to 2	BTEX, Trimethylbenzenes, and Naphthalene	GC/MS (Direct Injection) by USEPA Method SW8260B
	1 to 2	BTEX and Naphthalene (Aqueous and Organic Phases)	Partitioning in accordance with Cline <i>et al.</i> (1991), by USEPA Method SW8021B
Groundwater	1 to 2	BTEX, Trimethylbenzenes, and Naphthalene	GC/MS (Direct Injection) by USEPA Method SW8260B

^{a/} BTEX = benzene, toluene, ethylbenzene, and total xylenes.

TABLE 3 QUALITY ASSURANCE/QUALITY CONTROL SAMPLING PROGRAM FUELS WEATHERING STUDY ADDENDUM

QA/QC Sample Types	Frequency to be Collected and/or Analyzed	Analytical Methods
Duplicates/Replicates	One groundwater and one LNAPL sample per every three sites (i.e., per mobilization)	Volatile Organic Compounds (VOCs)
Trip Blanks	None	
Matrix Spike/Matrix Spike Duplicate	One per every three sites (i.e., per mobilization)	VOCs
Laboratory Control Sample	Once per method per medium	Laboratory Control Charts (Method Specific)
Laboratory Method Blanks	Once per method per medium	Laboratory Control Charts (Method Specific)

ATTACHMENT A

DESCRIPTION OF WORK AND SCHEDULE FOR LABORATORY ANALYTICAL SERVICES

EXHIBIT A DESCRIPTION OF WORK AND SCHEDULE

TABLE OF CONTENTS

		Page
1.0	SERVICES TO BE PROVIDED	A-1
2.0	SITE SPECIFICATIONS	A-1
2.1	Laboratory Certification Requirements	A-2.
2.2	Analytical Data Quality Levels	
2.3	Quality Assurance Objectives	
2.4	Data Quality Assessment Criteria	A-3
	2.4.1 Precision.	
	2.4.2 Accuracy	
	2.4.3 Completeness	
	2.4.4 Comparability	
	2.4.5 Representativeness	
2.5	Analytical Procedures	
	2.5.1 Analytical Methods	
	2.5.1.1 Gas Chromatography/Mass Spectrometry Vol.	
	Compounds (SW8260B).	
	2.5.1.2 Volatile Organic Compounds (SW8021B)	A-6
	2.5.2 Detection and Quantitation Limits	A-6
	2.5.2.1 Instrument Detection Limit	
	2.5.2.2 Method Detection Limit	
	2.5.2.3 Sample Quantitation Limit	
	2.5.2.4 Project Reporting Limit	
	2.5.2.5 Reporting Units	A-7
2.6	Laboratory Internal QC Checks	A-8
	2.6.1 Method Blanks	A-8
	2.6.2 Laboratory Control Samples	A-8
	2.6.3 Surrogate Spike Analyses	A-8
	2.6.4 Matrix Spike/Matrix Spike Duplicate	A-9
	2.6.5 Analytical Batches	
	2.6.6 Control Limits	A-9
3.0	SAMPLE CONTAINERS	A-10
4.0	SAMPLE CUSTODY REQUIREMENTS	A-10
5.0	SAMPLE HANDLING	A-11
6.0	SAMPLE IDENTIFICATION AND SAMPLE CUSTODY REC	CORDS A-12
7.0	CORRECTIVE ACTION	A-12
8.0	QUALITY ASSURANCE REPORTS	A-13

TABLE OF CONTENTS (Continued)

		Page
9.0	DATA REVIEW PROCEDURES	A-14
10.0	DATA DELIVERABLES	A-15
11.0	PERFORMANCE AND SYSTEM AUDITS	A-15
11.1	Internal Audits	
11.2	External Audits	
11.3 11.4	Performance Audits	
	System Audits	
12.0	FINAL SAMPLE DISPOSITION	A-16
13.0	SCHEDULE AND LIQUIDATED DAMAGES	A-17
13.1	Resampling Cost	A-17
13.2	Liquidated Damages	
14.0	SERVICES TO BE PERFORMED AT LABORATORIES OTHER	
	THAN SUBCONTRACTOR'S	A-17
15.0	REFERENCES	A-18
	LIST OF TABLES	
No.	Title	Page
1	Samples And Quality Control Samples Per Analytical Method	A-19
2	Reporting Limits For Target Analytes	
3	QC Acceptance Criteria	A-21
4	Requirements For Containers, Preservation Techniques, Sample	
_	Volumes, And Holding Times	
5	Required Laboratory Deliverables	A-23

EXHIBIT A DESCRIPTION OF WORK AND SCHEDULE FUELS WEATHERING STUDY

1.0 SERVICES TO BE PROVIDED

The SUBCONTRACTOR will provide laboratory analytical services for groundwater and free product samples to support a fuels weathering study conducted by Parsons Engineering Science, Inc. (Parsons ES) for the Technology Transfer Division, Air Force Center for Environmental Excellence (AFCEE/ERT). In addition, the SUBCONTRACTOR will prepare and analyze free product samples in accordance with Cline, *et al.* (1991) to provide fuel/water partition data. The reference (Cline, *et al.*, 1991) is attached to this statement of work. The Cline procedure involves combining 2 milliliters (mL) of fuel with 40 mL of distilled, deionized, organic-free water, agitating the mixture for approximately 30 minutes, then allowing the sample to rest for 1 hour in an inverted position. Following mixing and stabilization, the aqueous phase and the organic (fuel) phase are analyzed separately.

Approximately 18 groundwater samples and 18 free product samples will be analyzed for volatile organic compounds (VOCs) by method SW8260B, plus field duplicates and matrix spikes. Approximately 18 additional free product samples will be provided to the lab for analyses using the Cline *et al.* (1991) method described above. The fuel and water phase of these samples will be analyzed for VOCs by method SW8021B. Table 1 lists the number of samples per method and the associated quality control (QC) samples. The target analyte list with reporting limits for VOCs is presented in Table 2.

The field effort will involve two separate sampling events. Approximately one third of the samples (6 groundwater samples, 6 free product samples, and 6 fuel/water partition samples) will be collected by the CONTRACTOR the week of April 11, 2001. The remaining half of the samples will be collected in the June to August 2001 time frame. The SUBCONTRACTOR period of performance is through October 1, 2001. A 14-day turn-around time for all results is required. Electronic data deliverables in the standard laboratory format are required for this project.

The SUBCONTRACTOR is expected to thoroughly review the technical specifications prescribed in this SOW. The SUBCONTRACTOR must identify in whole or part if the technical specifications requirements can be satisfied and documented by the SUBCONTRACTOR laboratory prior to issuance of a subcontract.

The work described in this subcontract is for compound-specific analytical services on groundwater and free product samples for method SW8260B and SW8021B. This SOW describes the analytical and reporting requirements that must be satisfied to meet the objectives of the project. All samples will be taken from environmental media only.

2.0 SITE SPECIFICATIONS

Specific details on the analytical methods, data quality requirements, reporting requirements, and scope of samples to be collected are provided in subsequent sections.

2.1 Laboratory Certification Requirements

The SUBCONTRACTOR providing analytical services for this SOW should provide certification for the States of South Carolina and North Carolina, if the SUBCONTACTOR has such certification. This certification is not required to perform this SOW.

2.2 Analytical Data Quality Levels

Data quality objectives (DQOs) for the analyses described herein are described in the interim final guidance, *Data Quality Objectives Process for Superfund* (1993; EPA 540-R-93-071). The analytical levels for this project's DQOs shall conform to the category of data defined as definitive data.

Definitive Data - Definitive data are generated using rigorous analytical methods, such as approved EPA reference methods. Data are analyte-specific, with confirmation of analyte identity and concentration. Methods produce tangible raw data (e.g., chromatograms, spectra, and digital values) in the form of paper printouts or computer-generated electronic files. Data may be generated at the site or at an off-site location, as long as the QA/QC requirements are satisfied. For the data to be definitive, either analytical or total measurement error must be determined. Definitive data will be provided by the SUBCONTRACTOR to the CONTRACTOR.

Definitive analyses will be used to satisfy the requirements for decision-making regarding the comparison study or the need for further work. All analytical methods to be performed by the contract laboratory will be definitive analyses (see subsequent sections).

2.3 Quality Assurance Objectives

The overall quality assurance (QA) objectives must be appropriate to meet the specified DQOs. The quality assurance/quality control (QA/QC) program will provide the basic guidelines for evaluating the analytical results and field records for each site. Data quality assessments will be used to identify accurate and precise data that may be used in support of site closure. These QA objectives are qualitative summaries of qualitative and quantitative analyses requested for the site to ensure that the data are sufficient to support site characterization. QA/QC is ensured through appropriate sample collection, preservation, and transport methods combined with an evaluation of laboratory analytical performance through the analysis of QC samples.

An effective QA program addresses quality objectives for both sampling and laboratory methodologies. CONTRACTOR field QA efforts are aimed primarily at assuring that samples are representative of the conditions in the various environmental media at the time of sampling. Laboratory QA efforts are aimed primarily at assuring that analytical procedures provide sufficient accuracy and precision to quantify contaminant levels in environmental samples. The laboratory will also ensure that analyzed portions are representative of each sample, and that the results obtained from analysis of each sample are comparable to those obtained from analysis of other similar samples. Laboratory analyses provided by the SUBCONTRACTOR shall be performed in accordance with the analytical method specifications as defined in **Section 2.5**.

2.4 Data Quality Assessment Criteria

The data assessment criteria measure the quality of both the field and SUBCONTRACTOR laboratory performance for the project and are expressed in terms of analytical accuracy, precision, completeness, comparability, and representativeness. Procedures used to assess data accuracy and precision are in accordance with the respective analytical methods from the U.S. EPA Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, SW-846, 3rd Edition, Update III, (1996).

2.4.1 Precision

Precision is the measure of variability between individual sample measurements under prescribed conditions. The results of relative percent difference (RPD) from the laboratory sample duplicate analyses and laboratory control sample (LCS) results demonstrate the precision of the methods. The RPD of field duplicate and matrix spike/matrix spike duplicates (MS/MSD) results demonstrate the precision of the sample matrix. Precision will be expressed in terms of RPD between the values resulting from duplicate analyses. RPD is calculated as follows:

```
RPD = [(x1 - x2)/X][100]
where:
```

x1 = analyte concentration of first duplicate

x2 = analyte concentration of second duplicate

X = average analyte concentration of duplicates 1 and 2.

Acceptable levels of precision will vary according to the sample matrix, the specific analytical method, and the analytical concentration relative to the method detection limit. For field duplicate samples, the target RPDs are 30 percent for soil and 20 percent for water samples. Precision for the SUBCONTRACTOR laboratory will be defined by historical limits developed through the use of control charts (reference Section 2.6.6). An RPD within the control limit indicates satisfactory precision in a measurement system.

2.4.2 Accuracy

Accuracy is a measure of the closeness of a reported concentration to the true value. Accuracy is expressed as a bias (high or low) and is determined by calculating percent recovery (PR) from MS/MSD, LCS, and surrogate spikes. MS/MSD and surrogate spike recoveries indicate accuracy relevant to a unique sample matrix. LCS recoveries indicate accuracy relevant to an analytical batch lot and are strictly a measure of analytical accuracy conditions independent of samples and matrices. The level of recovery of an analyte and the resulting degree of accuracy expected for the analysis of QC spiked samples are dependent upon the sample matrix, method of analysis, and the compound or element being measured. The concentration of the analyte relative to the detection limit of the method is also a major factor in determining the accuracy of the measurement.

Accuracy is expressed as PR and is calculated as follows:

 $PR = [(A-B)/C] \times 100$

where:

A = spiked sample concentration

B = measured sample concentration (without spike)

C = concentration of spike added.

Accuracy for the SUBCONTRACTOR laboratory will be defined by historical limits developed through the use of control charts (reference Section 2.6.6). These limits should meet the minimum standards presented in Table 3.

2.4.3 Completeness

Completeness is defined as the percentage of laboratory measurements, judged to be valid measurements on a method, matrix, and compound basis. Valid data will be defined as all data considered to meet the DQOs for this project. Data completeness is expressed as percent complete (PC) and is 90 percent for soils and 95% for water. The goal for meeting technical holding times will be 100 percent. At the end of each sampling event, the completeness of the data will be assessed. If any data omissions are apparent, the parameter in question will be resampled and/or reanalyzed, if feasible, at the expense of the SUBCONTRACTOR laboratory. The SUBCONTRACTOR laboratory results will be monitored as they become available to assess SUBCONTRACTOR laboratory performance and its effect on data completeness requirements. When appropriate, additional samples will be collected to ensure that laboratory performance meets PC requirements.

PC is calculated as follows:

$$PC = \underline{NA} x 100$$

$$NI$$

Where:

NA = Actual number of valid analytical results obtained

NI = Theoretical number of results obtainable under ideal conditions.

2.4.4 Comparability

Comparability expresses the confidence with which data from a sample, sampling round, site, laboratory, or project can be compared to those from another. Comparability during sampling involves sampling program design and temporal factors. Comparability during analysis involves analytical methods, detection limits, the specific laboratory, units of measure, and sample preparation procedures.

The objective for comparability is determined on a qualitative rather than quantitative basis. For this project, comparability of all data collected will be ensured by adherence to standard sample collection procedures, standard field measurement procedures, and standard reporting

methods including consistent units. For example, concentrations will be reported in a manner consistent with general practice (e.g., soil data will be reported on a dry-weight basis).

In addition, to support the comparability of analytical results with those obtained in previous or future testing, all samples will be analyzed by EPA-approved methods, where available. The EPA-recommended maximum permissible holding times for organic and inorganic parameters will not be exceeded. All analytical standards will be traceable to a "Standard Reference Material". Instrument calibrations will be performed in accordance with EPA specifications, and will be checked at the frequency specified in the methods. The results of these analyses can then be compared with analyses by other labs and/or with analyses for other sites addressed by this site investigation.

2.4.5 Representativeness

Representativeness expresses the extent to which collected data define site contamination. Where appropriate, sample results will be statistically characterized to determine the degree to which the data accurately and precisely represent a characteristic of a population, parameter variation at a sampling point, a process, or an environmental condition.

Sample collection, handling, and analytical procedures will strive to obtain the most representative sample possible. Representative samples will be achieved by the following:

- Collection of samples from a location(s) fully representing site conditions;
- Use of appropriate sampling procedures, including equipment and equipment decontamination;
- Use of appropriate analytical methodologies for the required parameters and detection limits; and
- Analysis of samples within the required holding times.

Sample representativeness is also affected by the portion of each sample chosen for analysis. The SUBCONTRACTOR laboratory will adequately homogenize all samples prior to taking aliquots for analysis to ensure that the reported results are representative of the sample received. Because many homogenization techniques may cause loss of contaminants through volatilization, homogenization for all volatile method analyses will be performed with extreme care to minimize these risks.

2.5 Analytical Procedures

Application of a specific analytical method depends on the sample matrix and the analytes to be identified. Methods for each of the parameters likely to be included in the analytical program, as well as detection limits, are discussed in the following subsections. All analytical methods are EPA-approved when possible.

2.5.1 Analytical Methods

Analytical procedures will follow the established EPA methods wherever such methods exist for a specified analyte. The associated minimum matrix-specific project reporting limits (PRLs)

required for this project are presented in Table 2. These methods are located in U. S. EPA Test Methods for Evaluating Solid Waste, Physical and Chemical Methods, SW846, 3rd Edition, Update III, (EPA, 1996). The analytical method for determining the partitioning coefficient is presented in attachment A.

Laboratory-specific historical control limits for LCSs, MS/MSDs and surrogate spikes, and current method detection limits for each target compound, provided by the SUBCONTRACTOR, will be compared to the reporting and control limits listed in Tables 2 and 3. Table 4 lists the applicable analytical holding times as well as sample container types and preservatives for all methods.

2.5.1.1 Gas Chromatography/Mass Spectrometry Volatile Compounds (SW8260B).

A 25-ml Method SW8260B will be performed to determine VOCs in the groundwater. In this method, a 25-ml aliquot of sample extract, spiked with appropriate surrogates and internal standards (ISs), is introduced into a purge-and-trap apparatus (Method SW5030A). Helium gas is then passed through the sample, stripping out the volatile analytes that are adsorbed onto a trap containing Tenax®, silica gel, or charcoal. The analytes are thermally desorbed into a gas chromatograph/mass spectrometer (GC/MS) system for separation and analysis. The GC is equipped with a capillary column for separation of the analytes. An MS is used for both semi-quantitative and quantitative analysis. The GC/MS is also equipped with a computer system for processing mass spectral data. A National Bureau of Standards (NBS) library of mass spectra is also available, to tentatively identify non-target compounds (tentatively identified compounds [TICs]).

2.5.1.2 Volatile Organic Compounds (SW8021B).

A 5-ml aliquot of aqueous sample is spiked with surrogates and introduced into the purge-and-trap sample preparation apparatus following partitioning (Attachment A) and/or method SW5030A. The GC is equipped with both a capillary column and a PID for the aromatic hydrocarbons.

2.5.2 Detection and Quantitation Limits

This section describes the terms, definitions, and formulas that will be used for detection and quantitation limits.

2.5.2.1 Instrument Detection Limit

The instrument detection limit (IDL) reflects the instrument operating efficiency, not sample preparation, or concentration/dilution factors. The IDL is operationally defined as three times the standard deviation of seven replicate analyses at the lowest concentration that is statistically different from a blank. This represents 99-percent confidence that the signal identified is the result of the presence of the analyte, not random noise.

2.5.2.2 Method Detection Limit

An MDL is the lowest concentration at which a specific analyte in a matrix can be measured and reported with 99-percent confidence that the analyte concentration is greater than zero. MDLs are experimentally determined and verified for each analyte of the analytical methods in

the sampling program. MDLs are based on the results of spiking with a pure standard to achieve a concentration at the estimated detection limit and are statistically calculated in accordance with the 40 CFR part 136 from the Federal Register. This procedure specifies seven replicated standard injections to establish laboratory-specific MDLs for each analyte in each method.

The MDLs to be used are intended to allow that both nondetects and detects will be usable to the fullest extent possible for the project. The MDLs for each analytical method are required for all methods. The SUBCONTRACTOR laboratory will provide MDLs to the CONTRACTOR for each analyte listed for each analytical method at the time of project award. The SUBCONTRACTOR laboratory will be required to meet the MDLs as approved by the CONTRACTOR, on a routine basis during this project.

2.5.2.3 Sample Quantitation Limit

Sample quantitation limits (SQLs) are defined as the PRL multiplied by the dilution factor (DF) required to analyze the sample, and corrected for moisture or sample size. These adjustments may be due to matrix effects or the high concentration of some analytes. For example, if an analyte is present at a concentration that is greater than the linear range of the analytical method, the sample must be diluted for accurate quantitation. The DF raises the reporting limit to a higher level or SQL. Because the reported SQLs take into account sample characteristics and analytical adjustments, they are the most relevant quantitation limits for evaluating nondetected chemicals. Dilution factors will be held to the minimum required to analyze the sample. Target analytes will be diluted to the upper portion of the calibration curve. If multiple analytical runs are performed for a sample, the results of each analytical run will be reported on a Form 1.

2.5.2.4 Project Reporting Limit

For this project, the PRL is equivalent to the guidance listed in the AFCEE QAPP (March 1998). MDLs must be lower (where practical) than the reporting limits listed in Table 2.

All analytical results for total soils (if any) will be reported on a dry weight basis (i.e., corrected for moisture content). Additionally, the moisture content for each soil sample will be reported as part of the reporting requirements. The equation for moisture content given in ASTM D-2216 will be modified as follows:

W = [(W1-W2)/W1-Wc)] X 100

where W = moisture content, percent by weight

W1 = weight of container and sample as received

W2 = weight of container and oven-dried sample

Wc = weight of container

2.5.2.5 Reporting Units

The following are the prescribed analytical reporting units for all analytical methods (if applicable).

• Free product and soil samples - organics: micrograms per kilogram (µg/kg), dry-weight basis;

- Free product and soil samples inorganics/metals: milligrams per kilogram (mg/kg), dry-weight basis;
- Water (rinseate and/or groundwater) samples inorganics and metals: milligrams per liter (mg/L); and
- Water (rinseate and/or groundwater) samples organics: micrograms per liter (μg/L).

2.6 Laboratory Internal QC Checks

SUBCONTRACTOR laboratory QC data are necessary to determine precision and accuracy of the analyses and to demonstrate the absence of interferences and contamination of glassware and reagents. QC samples will be analyzed routinely by the analytical SUBCONTRACTOR laboratory as part of the laboratory QC procedures. SUBCONTRACTOR laboratory QC results will consist of analysis of blanks, replicates, standards, MS/MSDs, LCSs, and surrogate spikes as specified in the methods. Results of these analyses will be reported with the sample data and kept in the project QC data file.

2.6.1 Method Blanks

Method blanks are designed to detect contamination of the environmental samples in the SUBCONTRACTOR laboratory. Method blanks verify that method interferences caused by contaminants in solvents, reagents, glassware, or in other sample processing hardware are known and minimized. The method blank will be deionized, distilled water for water samples, or a purified solid matrix for soil/sediment samples. The concentration of target compounds in the blanks must be less than or equal to the PRL. Exception is NOT made for common laboratory contaminants. If the blank is not under the specified limits, then the source of contamination will be identified and corrective action taken, including reanalysis of the sample group. Sample quantitation and detection limits will not be raised because of blank contamination. Analytical data will not be corrected for presence of analytes in blanks.

2.6.2 Laboratory Control Samples

LCSs are blank spikes made from clean laboratory simulated matrices (laboratory water or purified solid matrix), spiked with known concentrations of all target analytes of interest at levels approximately 10 times greater than the MDL. Blank spikes are designed to check the accuracy of the preparation and analysis procedures of the laboratory. An LCS will be analyzed with every analytical batch. Failure of the LCS to meet recovery criteria requires corrective action before any further analyses can continue. If the SUBCONTRACTOR analyzes more than one LCS with an analytical batch, both sets of results must be reported. Both LCSs must be within control limits or corrective action must be taken. The laboratory will provide lab-established recovery criteria for each method to the CONTRACTOR for review and acceptance within two (2) weeks of contract acceptance.

2.6.3 Surrogate Spike Analyses

Surrogate spike analyses are used to determine the efficiency of analyte recovery in sample preparation and analysis in relation to sample matrix. Calculated percentage recovery of the spike is used to measure the accuracy of the analytical method for an individual sample. A surrogate spike is prepared by adding to an environmental sample (before extraction) a known

amount of a pure compound similar in type to the target analytes to be analyzed for organic target compounds. Surrogate compounds as specified in the methods will be added to all samples analyzed, including method blanks, MS/MSDs, LCSs, environmental samples, and duplicate samples. Surrogate spike recoveries should fall within the historical limits established by laboratory QC protocol. The laboratory will provide historical surrogate spike recovery limits to the CONTRACTOR within two (2) weeks of acceptance of contract. If a recovery is not within the accepted limits, the corrective actions described in the method will be implemented.

2.6.4 Matrix Spike/Matrix Spike Duplicate

MS samples are designed to check the accuracy of the analytical procedures on sample matrix by analyzing an environmental sample spiked in the SUBCONTRACTOR laboratory with a known standard solution containing all the target analytes. MSDs are the second of a pair of laboratory MS samples. The MSDs are designed to check the precision and accuracy of analytical procedures by sample matrix.

One MS/MSD pair will be collected for every group of 20 samples. Field blanks or duplicates will not be identified by the CONTRACTOR for MS/MSDs. Field-selected samples will be used as MS/MSDs. The laboratory must provide historical limits established for MS/MSDs for each method within two (2) weeks of contract acceptance. If surrogate and target analyte compounds fail in the MS/MSD, but show that accuracy is in control in the LCS, then a re-extraction and reanalysis will not be required for any samples in the batch and the out-of-control situation will be attributed to a matrix interference. If the SUBCONTRACTOR laboratory system is shown to be out of control, then a re-extraction and reanalysis will be required. The SUBCONTRACTOR laboratory will report the data from any reanalysis that is performed.

2.6.5 Analytical Batches

Analytical batches will be designated in the SUBCONTRACTOR laboratory at a minimum of one batch per sample delivery group (SDG). Each SDG will be comprised of a maximum of 20 samples of similar matrix and collected within a 7-day period. Included in each SDG of 20 (or fewer) samples per analytical method will be one field duplicate or replicate, MS/MSDs, LCSs, and depending on the matrix, the associated trip, and/or equipment rinseate blanks. One sample from each SDG will be designated for MS/MSD by the field team leader to assure that a field blank is not spiked.

2.6.6 Control Limits

The acceptance criteria for the control limits associated with all methods will follow guidance established in the SW846 methods and the SUBCONTRACTOR laboratory's historical data. These control limits must meet the minimum requirements for the control limits listed in Table 3 or a variance must be requested. The SUBCONTRACTOR laboratory must specify historical control limits for MS/MSDs, LCSs, and surrogate spikes for each analytical method. These limits must be provided by the laboratory to the CONTRACTOR within two (2) weeks of contract acceptance. Each SUBCONTRACTOR laboratory reviews and evaluates QC data through the use of method specific control charts. At least 20 measurements are required before control limits can be established. Warning limits, when established, are set at two standard deviations above and below the mean standard recovery and are used by the laboratory as an

indicator of potential impending analytical problems. Upper and lower control limits are defined as 3 standard deviations above or below the mean standard recovery respectively and are used to qualify data accordingly on the basis of out of control criteria.

3.0 SAMPLE CONTAINERS

The SUBCONTRACTOR shall provide sample containers (as requested), labels, any necessary preservatives, chain of custody forms, and coolers to the project site. It is important to use properly cleaned sample containers so that no chemical alteration of results from contact with the sample container. The SUBCONTRACTOR shall provide documentation attesting to the cleanliness of the containers following their cleaning procedures. A certificate of cleanliness will be provided for any commercially purchased sample containers.

The CONTRACTOR will notify the SUBCONTRACTOR laboratory two (2) working days in advance of sample collection to confirm initiation of the project and to determine sample container requirements. Sample containers will be sent to the project site at the expense of the SUBCONTRACTOR. In the event the SUBCONTRACTOR has not received proper notification time in order to provide sample containers to the site through standard United Parcel Service delivery, the CONTRACTOR will pay the cost of Federal Express shipping. The SUBCONTRACTOR is responsible to notify the CONTRACTOR in advance of express shipping to allow the CONTRACTOR to provide an account number for express shipping charges.

4.0 SAMPLE CUSTODY REQUIREMENTS

The CONTRACTOR's project task manager or QA officer will notify the SUBCONTRACTOR laboratory project coordinator of anticipated field sampling activities and the subsequent transfer of samples to the laboratory. This notification will include information concerning the number and type of samples to be shipped as well as the anticipated date of arrival. An analytical batch will consist of environmental samples plus a matrix spike and matrix spike duplicate analysis, which have been assigned the same lot control numbers. The field team leader will ensure that laboratory holding times will not be jeopardized.

To facilitate sample preparation and analysis within the specified holding times, the laboratory will track the progress of sample preparation, analysis, and report preparation. Samples received by the laboratory will be checked carefully for label identification, COC, and any discrepancies. The laboratory will also note physical damage, incomplete sample labels, incomplete paperwork, discrepancies between sample labels and paperwork, broken or leaking containers, and inappropriate caps or bottles. The temperature and pH of samples will be determined and recorded as appropriate. The laboratory sample custodian will notify the CONTRACTOR's project task manager of any problems observed with any of the samples received. The laboratory sample custodian will also provide a written report to the project task manager summarizing the condition of samples, sample numbers received, corresponding laboratory numbers, and the estimated date for completion of analysis. The subcontract laboratory must receive written permission before sending any samples (originally scheduled to be analyzed at their facility) to another laboratory. Permission need only be obtained once if the laboratory subcontracts out

some methods. Tests will not be performed on samples whose integrity have been compromised or are suspect.

5.0 SAMPLE HANDLING

Laboratory sample custody will be maintained by the following procedure:

- 1. The laboratory will designate a sample custodian responsible for maintaining custody of the samples and all associated paperwork documenting that custody.
- 2. Upon receipt of the samples, the sample custodian will sign the original COC form and compare the analyses requested thereon with the tag on each sample container.
- 3. A qualitative assessment of each sample container will be performed to note any anomalies such as broken or leaking bottles, or lack of preservation (e.g., ice melted en route). This assessment will be recorded as part of the incoming COC procedure.
- 4. If all data and samples are correct, and there has been no tampering with the custody seals, the "received by laboratory" box on the COC form will be signed and dated.
- 5. Care will be exercised to document any labeling or descriptive errors. In the event of discrepant documentation, breakage, or conditions that could compromise the validity of analyses, the laboratory project coordinator will immediately contact the task manager as part of the corrective action process.
- 6. Samples will be logged into the laboratory management computer system, which includes a tracking system for extraction and analysis dates. The laboratory will assign a laboratory work number to each sample for identification purposes. The sample custodian will log the laboratory work number and the field sample identification into a laboratory sample custody log. The laboratory sample custody log may either be hard copy or computerized, depending on the laboratory's system.
- 7. The samples will be stored in a secured area at a temperature of approximately 4±2 degrees Celsius (°C) or cooler (as applicable) until analyses commence. The laboratory log should also contain the laboratory storage cooler number (if applicable) that the sample will be stored in while on the laboratory's premises. Samples will be logged when they are removed and returned from storage for analysis. Samples must be stored in separate coolers from those used to store analytical standards, reagents and/or QC samples.
- 8. The samples will be distributed to the appropriate analysts, with names of individuals who receive samples recorded in internal laboratory records.
- 9. The original COC form will accompany the laboratory report submittal and will become a permanent part of the project records.
- 10. Data generated from the analysis of samples must also be kept under proper custody by the laboratory.

For data that are input by an analyst and processed using a computer, a copy of the input will be kept and identified with the project number and other information as needed. If the data are

directly acquired from instrumentation and processed, a permanent copy of the instrument electronic data will be archived.

Upon analysis, a laboratory lot control number will be assigned to the sample. All samples within a given laboratory analysis group (e.g., samples sharing the same laboratory QC measurement samples) will have identical laboratory lot control numbers.

Disposal of sample containers and remaining sample material shall be the responsibility of the SUBCONTRACTOR. Samples should be disposed of appropriately when all analyses and related QA/QC work are completed. See Section 12 for further details.

6.0 SAMPLE IDENTIFICATION AND SAMPLE CUSTODY RECORDS

The laboratory conducting the analysis of the samples will provide the data user with information on the laboratory sample identification system. With knowledge of this laboratory sample identification system, data generated at the laboratory can be tracked by both the laboratory and field sample identification systems.

Each sample will be logged into the laboratory system by assigning it a unique sample number. This laboratory number and the field sample identification number will be recorded on the laboratory report.

7.0 CORRECTIVE ACTION

The following procedures have been established to assure that conditions adverse to data quality are promptly investigated, evaluated, and corrected. Adverse conditions may include malfunctions, deficiencies, deviations, and errors.

When a significant condition adverse to data quality is noted at the laboratory, the cause of the condition will be determined, and corrective action will be taken to prevent repetition. Condition identification, cause, reference documents, and corrective action planned will be documented and reported to the contractor QA officer by the laboratory QC coordinator. Following implementation of corrective action, the laboratory QC coordinator will report the actions taken and their results to the contractor project manager and QA officer. A record of the action taken and results will be attached to the data report package. If samples are reanalyzed, the assessment procedures will be repeated, and the control limits will be reevaluated to ascertain if corrective actions have been successful.

Implementation of corrective action is verified by documented follow-up action. All project personnel have the responsibility, as part of the normal work duties, to identify, report, and solicit approval of corrective actions for conditions adverse to data quality.

Corrective actions will be initiated in the following instances:

- When predetermined acceptance criteria are not attained (objectives for precision, accuracy, and completeness);
- When the prescribed procedure or any data compiled are faulty;
- When equipment or instrumentation is determined to be faulty;
- When the traceability of samples, standards, or analysis results is questionable;

- When QA requirements have been violated;
- When designated approvals have been circumvented;
- As a result of systems or performance audits;
- As a result of regular management assessments;
- As a result of intralaboratory or interlaboratory comparison studies; and
- At any other instance of conditions significantly adverse to quality.

Laboratory project management and staff, such as QA auditors, document and sample control personnel, and laboratory groups, will monitor work performance in the normal course of daily responsibilities.

The laboratory QC coordinator or designated alternate will audit work at the laboratory. Items, activities, or documents ascertained to be compliant with QA requirements will be documented, and corrective actions will be mandated in the audit report. The contractor QA officer and laboratory QC coordinator will log, maintain, and control the audit findings.

The CONTRACTOR QA officer and laboratory QC coordinators are responsible for documenting all out-of-control events or non-conformance with QA protocols. A nonconformance report will summarize each nonconformance condition. The laboratory will notify the contractor project manager or QA officer of any laboratory QA/QC nonconformances upon their discovery. Copies of all field change requests and corrective action forms will be maintained in the project files. A stop-work order may be initiated by the contractor if corrective actions are insufficient.

8.0 QUALITY ASSURANCE REPORTS

At monthly intervals beginning with the initiation of sampling activities, the SUBCONTRACTOR laboratory will submit to the project QA officer an internal QA report that documents laboratory-related QA/QC issues. These reports will include discussions of any conditions adverse or potentially adverse to quality, such as:

- Responses to the findings of any internal or external systems or performance laboratory audits;
- Any laboratory or sample conditions which necessitate a departure from the methods or procedures specified in this QAPP;
- Any missed holding times or problems with laboratory QC acceptance criteria; and
- The associated corrective actions taken.

QA reports will not prevent notification of project management of such problems when timely notice can reduce the loss or potential loss of quality, time, effort, or expense. Appropriate steps will be taken to correct any QA/QC concerns as they are identified. The project manager will ensure that the client is informed of any significant QA/QC developments. These reports and a summary of the laboratory QA/QC program and results will be included in the final project report.

9.0 DATA REVIEW PROCEDURES

The laboratory review of definitive data is a four-step process involving an evaluation by the analyst, a peer review, an administrative review, and a QA review. A checklist to document each of the review processes will be required and must be included as part of the final data deliverable. All steps are described below.

The analyst will review 100 percent of all definitive data prior to reporting. The establishment of detection and control limit will be verified. Any control limit outside of the acceptable ranges specified in the analytical methods will be identified. Any trends or problems with the data will be evaluated. The absence of records supporting the establishment of control criteria or detection limit laboratory will be noted. Analytical batch QC, calibration check samples, initial and continuing calibrations, corrective action reports, the results of reanalysis, sample holding times, and sample preservations will be evaluated.

Samples associated with out-of-control QC data will be identified in the data package case narrative, and an assessment of the utility of such analytical results will be made. The check of laboratory data completeness must be documented and will ensure that:

- All samples and analyses specified in the COC have been processed;
- Complete records exist for each analysis and the associated QC samples; and
- Procedures specified in this QAPP have been implemented.

An analyst other than the original data processor will be responsible for performing a peer review of all steps of the data processing. One hundred percent of all data will be reviewed. All input parameters, calibrations, and transcriptions will be checked. All manually input, computer-processed data will be checked. Each page of checked data will be signed and dated by the verifier.

QC sample results (LCSs and initial and continuing calibration standards) are compared against stated criteria for accuracy and precision. QC data must meet acceptance levels prior to processing the analytical data. If QC standards are not met, the cause will be determined. If the cause can be corrected without affecting the integrity of the analytical data, processing of the data will proceed. If the resolution jeopardizes the integrity of the data, reanalysis will occur.

An administrative review will be performed by the laboratory project manager on each data deliverable package. The review will ensure that all requirements of the laboratory and the data deliverable have been met and are complete.

A review of at least 10 percent of all data deliverable packages by a laboratory QA officer must take place prior to the administrative review and final release of the data deliverable. The data packages will be randomly selected for review.

Decisions to repeat sample collection and analyses may be made by the project manager based on the extent of the deficiencies and their importance in the overall context of the project.

10.0 DATA DELIVERABLES

The SUBCONTRACTOR laboratory will be required to deliver all final data packages to the CONTRACTOR in both computerized and hard copy formats. EPA qualifiers will be applied to the data. All applicable qualifiers will be reported on the sample reporting forms. Compositing of the qualifiers is not requested. To facilitate data handling and management, both field and SUBCONTRACTOR laboratory data will be entered into a computerized format. All data will be maintained by the CONTRACTOR in an ACCESS database. Required laboratory deliverables are listed on Table 5. If multiple analytical runs are performed for a sample, the results of each analytical run will be reported on a Form 1.

All data entered into the electronic data files will correspond to the data contained in the original SUBCONTRACTOR laboratory reports and other documents associated with sampling and the SUBCONTRACTOR laboratory hardcopy data deliverable packages. To assure the accuracy of all entries into the database, all entries also will be checked by the CONTRACTOR against the submitted hardcopy reports. Any deviations between reports, errors, or other problems will prompt the CONTRACTOR to return the entire reporting package (both hard copy and electronic) to the SUBCONTRACTOR laboratory for corrective action.

Additionally, the SUBCONTRACTOR will be required to provide two (2) copies of each hard copy data reporting package. All analytical data packages will be verified prior to being released by the SUBCONTRACTOR laboratory. **The data deliverables are required a maximum of 14 days from sample receipt**. On the day of receipt of samples from the CONTRACTOR, the SUBCONTRACTOR will fax signed copies of all COCs and sample login receipt forms. All discrepancies and/or potential problems (i.e.; lack of sample volume) will be discussed immediately with the CONTRACTOR's QA manager.

Finally, the SUBCONTRACTOR laboratory will hold, and make available upon request, all project raw data for a minimum period of 10 years after the samples have been analyzed.

11.0 PERFORMANCE AND SYSTEM AUDITS

This section describes participation in external and internal systems and performance audits for laboratory work.

System audits review laboratory operations and the resulting documentation. An onsite audit ensures that the laboratory has all the personnel, equipment, and internal standard operating procedures needed for performance of contract requirements, in place and operating. The system audits ensure that proper analysis documentation procedures are followed, that routine laboratory OC samples are analyzed, and that any nonconformances are identified and resolved.

11.1 Internal Audits

The SUBCONTRACTOR laboratory must conduct internal system audits on a periodic basis. The results of these audits will be documented by the laboratory QC coordinator, and the laboratory will provide CONTRACTOR with the results of these internal audits.

11.2 External Audits

The CONTRACTOR project QA officer or designee may conduct an external system audit of the laboratory during the performance of this project. This audit would evaluate the capabilities and performance of project and SUBCONTRACTOR personnel, items, activities, and documentation of the measurement systems and identify and correct any deficiencies. The QA manager may request additional personnel with specific expertise from other project groups to assist in conducting performance audits. However, these personnel will not have participated in, nor have responsibility for, the direct work associated with the performance audit. The CONTRACTOR QA manager acts on audit results by documenting deficiencies and informing the project manager of the need for corrective actions. The project manager may suspend operations until problems are resolved. If conditions adverse to quality are detected, or if the project manager requests additional audits, the project QA officer may conduct additional unscheduled audits.

11.3 Performance Audits

Performance audits may be conducted to determine the accuracy and implementation of the SOW by the CONTRACTOR QA manager or designee prior to initiation of field sampling. Unplanned audits may be implemented if requested by the task manager. In addition to in-house performance audits, the laboratory may also participate in interlaboratory performance evaluation studies. The CONTRACTOR QA/QC manager will report audit findings to the project manager. The project manager will act to correct any laboratory performance problems.

11.4 System Audits

System audits, performed by the CONTRACTOR QA/QC manager or designee, will encompass evaluation of QA components to ascertain their appropriate selection and application. In addition, field and laboratory QC procedures and associated documentation may be system audited. System audits are not planned for this project but will be conducted if adverse quality conditions are observed. In addition, if the project manager requests the QA/QC manager to perform unscheduled audits, these activities will be instituted.

12.0 FINAL SAMPLE DISPOSITION

Upon completion of all required analyses and acceptance of the data reported by the CONTRACTOR, the SUBCONTRACTOR shall be responsible for proper disposal of any remaining samples, sample containers, shipping containers, and Styrofoam or plastic packing materials in accordance with sound environmental practice, based on the sample analytical results. Unused samples and containers found to be non-hazardous will be disposed of after sixty (60) days following completion of the analysis unless the CONTRACTOR requests the storage of the sample (fee applied). However, the SUBCONTRACTOR shall give prior notification to and receive the approval of the CONTRACTOR before disposing of any remaining samples. The SUBCONTRACTOR shall maintain proper records of waste disposal methods, and shall have disposal company contracts on file for inspection. The SUBCONTRACTOR will not charge for the above sample disposal.

13.0 SCHEDULE AND LIQUIDATED DAMAGES

Sampling is anticipated to begin on or about April 9, 2001 and will be completed by July 2001.

13.1 Resampling Cost

Reported analytical results that do not meet the criteria in this SOW shall be resampled and/or reanalyzed at no cost to the CONTRACTOR if these results are from negligent performance of the SUBCONTRACTOR. The SUBCONTRACTOR shall also pay the CONTRACTOR the documented costs of resampling as a result of SUBCONTRACTOR exceeding holding times or losing samples.

13.2 Liquidated Damages

SUBCONTRACTOR and CONTRACTOR agree that the actual damages and losses which CONTRACTOR would incur as a result of the SUBCONTRACTOR's failure to complete analyses within the required reporting period would be difficult to precisely determine. CONTRACTOR and SUBCONTRACTOR further agree that a sum of 5% of the total cost of the individual analysis per Day ("Day" shall mean a calendar day) is a reasonable and fair estimate of the damages and losses which the CONTRACTOR would suffer for each Day by which the SUBCONTRACTOR is late in completing an analysis within the required reporting period. It is therefore agreed that the SUBCONTRACTOR shall pay to the CONTRACTOR the sum of 5% of the total cost of the individual analysis as liquidated damages, and not as a penalty, for each Day by which the SUBCONTRACTOR is late in completing an analysis within the required reporting period. Such liquidated damages shall be assessed separately for each sample for which SUBCONTRACTOR is late in completing an analysis within the required reporting period.

The CONTRACTOR will identify any missing or incorrect deliverables (hardcopy or electronic) by filing a resubmission request to the SUBCONTRACTOR laboratory specifying corrective action. The SUBCONTRACTOR laboratory will submit a revised, corrected deliverable within 2 weeks of notification of a rejected report or the five percent (5%) per day liquidated damages will be imposed. If the resubmitted deliverable does not satisfactorily resolve the problem, then the five percent (5%) per day liquidated damages will be imposed from the date of follow-up notification to the SUBCONTRACTOR for additional required deliverables. Any additional costs incurred by the SUBCONTRACTOR for preparation and submittal of revised reports to correct errors or omissions are not reimbursable.

14.0 SERVICES TO BE PERFORMED AT LABORATORIES OTHER THAN SUBCONTRACTOR'S

The SUBCONTRACTOR will assume responsibility for providing all analytical services specified in this subcontract. Should it be agreed in writing that the SUBCONTRACTOR may use an additional laboratory facility, the SUBCONTRACTOR will supply to the CONTRACTOR the SOPs, MDL studies, QC criteria, and QA plans for the other laboratories that are used. The SUBCONTRACTOR shall be responsible for communicating all analytical

guidelines and QC requirements of the project to these laboratories. The SUBCONTRACTOR'S and the CONTRACTOR's QA officers shall monitor the data from these laboratories and correct any nonconformances.

15.0 REFERENCES

- Cline, P.V., J.J. Delfino, and P.S. Rao. 1991. Partitioning of Aromatic Constituents into Water from Residually Held NAPL in Unsaturated Soil Columns. Journal of Contaminant Hydrology, 25, 914-920.
- U.S. Environmental Protection Agency (USEPA). 1983. *Methods for the Chemical Analysis of Water and Wastes*. EPA 600/4-79-020. Cincinnati, OH.
- EPA. 1993. Data Quality Objectives Process for Superfund. USEPA 540-R-93-071.

EPA. 1995a. Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, SW846, (3rd Edition, Update III). United States Environmental Protection Agency (USEPA). 1995a. Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, SW846, (3rd Edition, Update III).

TABLE 1
SAMPLES AND QUALITY CONTROL SAMPLES PER ANALYTICAL METHOD
FUELS WEATHERING STUDY

Method	# Samples	Trip Blanks	MS/MSD Pairs	Field Duplicates	Total
Free Product:					
SW8260B	18	0	2	2	24
Cline, et al., 1991 /SW8021B	18	0	2	2	24
Groundwater:					
SW8260B	18	0	2	2	24
Cline, et al., 1991 /SW8021B	18	0	2	2	24

TABLE 2

REPORTING LIMITS FOR TARGET ANALYTES

FUELS WEATHERING STUDY

		Water		
Parameter/Method	Analyte	RL	Unit	
SW8021B	1-Methylnaphthalene	0.6	μg/L	
	2-Methylnaphthalene	0.6	μg/L	
	1,2,3-Trimethylbenzene	0.5	μg/L	
	1,2,4-Trimethylbenzene	0.5	μg/L	
	1,3,5-Trimethylbenzene	0.10	μg/L	
	Benzene	0.10	μg/L	
	Ethylbenzene	0.50	μg/L	
	m-Xylene	0.10	μg/L	
	Naphthalene	0.60	μg/L	
	o-Xylene	0.20	μg/L	
	p-Xylene	0.10	μg/L	
	Toluene	0.10	μg/L	
	Xylenes, Total	0.50	μg/L	
SW8260B	1,2,3-Trimethylbenzene	1.3	μg/L	
	1,2,4-Trimethylbenzene	1.3	μg/L	
	1,3,5-Trimethylbenzene	0.5	μg/L	
	1-Methylnaphthalene	0.4	μg/L	
	2-Methylnaphthalene	0.4	μg/L	
	Benzene	0.4	μg/L	
	Ethylbenzene	0.6	μg/L	
	m-Xylene	0.5	μg/L	
	Naphthalene	0.4	μg/L	
	o-Xylene	1.1	μg/L	
	p-Xylene	1.3	μg/L	
	Xylenes, total		μg/L	
	Toluene	1.1	μg/L	

TABLE 3
QC ACCEPTANCE CRITERIA

FUELS WEATHERING STUDY

		Accuracy	Precision
Method Analyte SW8260R 1.2.3 Trimethylbenzene		Water	Water
		(% R)	(% RPD)
SW8260B	1,2,3-Trimethylbenzene	75-125	≤ 20
	1,2,4-Trimethylbenzene	75-125	≤ 20
	1,3,5-Trimethylbenzene	72–112	≤ 20
	1-Methylnaphthalene	75-125	≤ 20
	2-Methylnaphthalene	75-125	≤ 20
	Benzene	75–125	≤ 20
	Ethylbenzene	75–125	≤ 20
	m-Xylene	75–125	≤ 20
	Xylenes, Total	75–125	≤ 20
	Naphthalene	75–125	≤ 20
	o-Xylene	75–125	≤ 20
	p-Xylene	75–125	≤ 20
	Toluene	74–125	≤ 20
	Surrogates:		
	Dibromofluoromethane	75–125	
	Toluene-D8	75–125	
	4-Bromofluorobenzene	75–125	
	1,2-DCA-D4	62–139	
	Internal Standards:		
	Fluorobenzene		
	Chlorobenzene-D5		
	1,4-Dichlorobenzend-D		
SW8021B	1-Methylnaphthalene	65-135	≤ 20
	2-Methylnaphthalene	65-135	≤ 20
	1,2,3-Trimethylbenzene	65-135	≤ 20
	1,2,4-Trimethylbenzene	65-135	≤ 20
	1,3,5-Trimethylbenzene	65-135	≤ 20
	Benzene	75–125	≤ 20
	Ethylbenzene	71–129	≤ 20
	m-Xylene	65-135	≤ 20
	Naphthalene	65-135	≤ 20
	o-Xylene	65-135	≤ 20
	p-Xylene	65-135	≤ 20
	Toluene	70–125	≤ 20
	Xylenes, Total	71–133	≤ 20
	Surrogates:		
	1,4-Dichlorobutane	35–135	
	Bromochlorobenzene	37–137	

TABLE 4

REQUIREMENTS FOR CONTAINERS, PRESERVATION TECHNIQUES, SAMPLE VOLUMES, AND HOLDING TIMES FUELS WEATHERING STUDY

Name	Analytical Methods	Container	Preservation	Minimum Sample Volume or Weight	Maximum Holding Time
Volatile Organics	SW8260B/SW8021B	G, Teflon®-lined septum, T (water); En Core Sampler for soils	4°C, 0.008% Na ₂ S ₂ O ₃ (HCl to pH < 2 for volatile aromatics by SW8260) (preservation with 0.008 percent Na ₂ S ₂ O ₃ is only required when residual chlorine is present) 4°C (soil) Na ₂ S ₂ O ₃	3 x 40 ml or 4 ounces or 3 En Core Samplers	14 days (water and Soil); 48 hours until preservation of En Core Samplers

a/ No pH adjustment for soil.

b/ Preservation with 0.008 percent Na₂S₂O₃ is only required when residual chlorine is present.

Acronyms:

G – Glass

HCl - Hydrochloric acid

Na₂S₂O₃ – Sodium thiosulfate

T - brass sleeves in the sample barrel

TABLE 5

REQUIRED LABORATORY DELIVERABLES FUELS WEATHERING STUDY

Method Requirements	Laboratory Deliverables (Definitive Data)
Requirements for all methods:	(2011111)
Case narrative	Project identification. Analytical method description and reference citation. Discussion of unusual circumstances, problems, and nonconformances.*
Monthly QA report	Any format to discuss issues which may affect data quality *
Chain of Custody (COC)	Signed and dated when samples were* received at laboratory
Dates of sample preparation and analysis (including first run and subsequent runs).	Specific deliverable depends upon type of analysis.*
Quantitation limits achieved.	Specific deliverable depends upon type of analysis.*
Dilution or concentration factors.	Specific deliverable depends upon type of analysis.*
Matrix spike/matrix spike duplicate.	Summary information only *
Method blank analysis.	Summary information only *
Laboratory control sample	Summary information only *
Summary analytical batch report	Any format* including analytical batch samples, method of analysis, matrix description, date of sample collection and receipt, laboratory identification number of each environmental sample plus identification number of each batch QC sample (including MS/MSD, calibration check, etc.).
Example sample calculation	Any format
A copy of the sample preparation data form for each method indicating sample identification number, batch identification number, and date of preparation.	Any format (preparation, extraction, or digestion data)
Percent moisture for all soil samples	Any format on data summary sheet *
Method reporting limits.	QC summary report*
QC limits.	QC summary report*
PQL verification standard (weekly).	Any format

TABLE 5 (Continued) REQUIRED LABORATORY DELIVERABLES FUELS WEATHERING STUDY

Method Requirements	Laboratory Deliverables (Definitive Data)		
Requirements for organics:	(Bernitive Butu)		
Sample data sheets.	Summary information only ^{a/*}		
Surrogate recoveries.	Summary information only ^{a/*}		
GC/MS instrument performance check	Summary information only *		
Initial calibration data	Summary information only		
Continuing calibration data.	Summary information only		
Calibration blank data	Summary information only		
GC/MS internal standard area and retention time summary data.	Summary information only		
Analysis run log.	No format		
Requirements for inorganic analytical methods			
Metals:			
Sample data sheets	Summary information only *		
Initial and continuing calibration	Summary information only		
Method blank, taken through sample preparation	Summary information only		
Calibration blank data	Summary information only		
Interference check sample	Summary information only		
Laboratory control spike/laboratory control spike	Summary information only		
duplicate			
Matrix spike/matrix spike duplicate	Summary information only		
Post-digestion spike sample recovery	Summary information only		
Method of standard additions	Summary information only		
Serial dilutions	Summary information only		
Analysis run logs	Any format		

^{*} Indicates deliverables required for QC summary package.

a/ Summarized results can be in any format that provides the necessary data to completely validate that QC parameter. Example formats are the form equivalents to those defined for the CLP or SW-846

APPENDIX B O'BRIEN AND GERE ANALYTICAL DATA

Analytical Data available upon request from:

Parsons

c/o Dan Griffiths

1700 Broadway, Suite 900

Denver, Colorado 80290

APPENDIX C CALCULATIONS

APPENDIX C-1

MOBILE LNAPL WEATHERING CALCULATIONS

					_		Hughes et al., 1984								
Lab	Fuel	Spill	Sample				Linear		Expon			Linear		Exponential	
Code	Site Name Type	Date		Locid Analyte	Mass Fraction	C _o - C	k	%Red./yr	k	%Red./yr	C _o - C		%Red./yr	k	%Red./yr
NRMRL	Bldg 1610, Shaw AFB, SC JP-4	6/1/1994	3/6/1997 SHMW		0.29412	0.2059	0.0745	14.90	0.1920	17.47	0.2171	0.0785	15.36	0.2000	18.13
NRMRL NRMRL	Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4	6/1/1994 6/1/1994	3/6/1997 SHMW 3/6/1997 SHMW		0.63922 0.17516	0.6908 0.1948	0.2499 0.0705	18.79 19.05	0.2650 0.2705	23.28 23.70	1.0815 0.5817	0.3912 0.2104	22.74 27.80	0.3582 0.5294	30.11 41.10
NRMRL	Bldg 1610, Shaw AFB, SC JP-4	6/1/1994	3/6/1997 SHMW	-	1.11503	1.2050	0.0703	18.79	0.2703	23.70	1.2453	0.4505	19.09	0.3294	23.76
NRMRL	Bldg 1610, Shaw AFB, SC JP-4	6/1/1994	3/6/1997 SHMW		2.22353	2.2965	0.4339	18.38	0.2566	22.63	3.1256	1.1307	21.14	0.2713	27.21
NRMRL	Bldg 1610, Shaw AFB, SC JP-4	6/1/1994	3/6/1997 SHMW		0.39085	-0.3908	-0.1414	#DIV/0!	#DIV/0!	#DIV/0!	0.0593	0.0214	4.76	0.0511	4.98
NRMRL	Bldg 1610, Shaw AFB, SC JP-4	6/1/1994	3/6/1997 SHMW		0.75686	0.2531	0.0916	9.07	0.1044	9.91	0.0598	0.0216	2.65	0.0275	2.72
NRMRL	Bldg 1610, Shaw AFB, SC JP-4	6/1/1994	3/6/1997 SHMW		0.45098	-0.0310	-0.0112	-2.67	-0.0257	-2.61	-0.3292	-0.1191	-97.74	-0.4735	-60.56
NRMRL	Bldg 1610, Shaw AFB, SC JP-4	6/1/1994	3/6/1997 SHMW		0.14641	0.3536	0.1279	25.58	0.4443	35.87	0.1279	0.0463	16.87	0.2271	20.32
NRMRL	Bldg 1610, Shaw AFB, SC JP-4	6/1/1994	3/6/1997 SHMW	1610-2 1-MethylNaphthalene	0.13595	0.6441	0.2330	29.87	0.6320	46.85	-0.0998	-0.0361	-99.83	-0.4791	-61.46
NRMRL	Bldg 1610, Shaw AFB, SC JP-4	6/1/1994	3/6/1997 SHMW		0.21961	0.3404	0.1231	21.99	0.3386	28.73	-0.0613	-0.0222	-13.99	-0.1183	-12.56
NRMRL	Bldg 1610, Shaw AFB, SC JP-4	6/1/1994	3/6/1997 SHMW	1610-2 Total Naphthalenes	0.50196	1.3380	0.4840	26.31	0.4699	37.49	-0.0331	-0.0120	-2.56	-0.0247	-2.50
							th et al., 198		Hughes et al., 1984						
Lab	Fuel	Spill	Sample		Ī		Linear Expone			ential		Line	ear	Expon	ential
Code	Site Name Type	Date		Locid Analyte	Mass Fraction	C _o - C	k	%Red./yr	k	%Red./yr	C _o - C		%Red./yr	k	%Red./yr
NRMRL	Bldg 1610, Shaw AFB, SC JP-4	6/1/1994	3/6/1997 SHMW		0.17625	0.3238	0.1171	23.42	0.3772	31.42	0.3350	0.1212	23.70	0.3852	31.97
NRMRL	Bldg 1610, Shaw AFB, SC JP-4	6/1/1994	3/6/1997 SHMW		0.32056	1.0094	0.3652	27.46	0.5147	40.23	1.4001	0.5065	29.44	0.6079	45.55
NRMRL	Bldg 1610, Shaw AFB, SC JP-4	6/1/1994	3/6/1997 SHMW	-	0.11941	0.2506	0.0906	24.50	0.4091	33.58	0.6374	0.2306	30.47	0.6680	48.73
NRMRL	Bldg 1610, Shaw AFB, SC JP-4	6/1/1994	3/6/1997 SHMW		0.87101	1.4490	0.5242	22.59	0.3544	29.84	1.4893	0.5388	22.83	0.3606	30.28
NRMRL	Bldg 1610, Shaw AFB, SC JP-4	6/1/1994	3/6/1997 SHMW		1.48723	3.0328	1.0971 -0.1746	24.27 #DIV/0!	0.4021 #DIV/0!	33.11 #DIV/0!	3.8619	1.3970 -0.0118	26.12 -2.62	0.4630 -0.0253	37.06
NRMRL NRMRL	Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4	6/1/1994 6/1/1994	3/6/1997 SHMW 3/6/1997 SHMW		0.48276 0.92976	-0.4828 0.0802	0.0290	#DIV/0! 2.87	#DIV/0! 0.0299	#DIV/0! 2.95	-0.0326 -0.1130	-0.0118	-2.62 -5.01	-0.0253	-2.56 -4.80
NRMRL	Bldg 1610, Shaw AFB, SC JP-4	6/1/1994	3/6/1997 SHMW		0.52490	-0.1049	-0.0379	-9.04	-0.0807	-8.40	-0.1130	-0.1458	-119.70	-0.5284	-69.62
NRMRL	Bldg 1610, Shaw AFB, SC JP-4	6/1/1994	3/6/1997 SHMW		0.18391	0.3161	0.1143	22.87	0.3618	30.36	0.0904	0.0327	11.92	0.1446	13.47
NRMRL	Bldg 1610, Shaw AFB, SC JP-4	6/1/1994	3/6/1997 SHMW		0.18902	0.5910	0.2138	27.41	0.5128	40.12	-0.1529	-0.0553	-152.92	-0.5983	-81.90
NRMRL	Bldg 1610, Shaw AFB, SC JP-4	6/1/1994	3/6/1997 SHMW	2 1	0.31801	0.2420	0.0875	15.63	0.2047	18.51	-0.1597	-0.0578	-36.47	-0.2522	-28.69
NRMRL	Bldg 1610, Shaw AFB, SC JP-4	6/1/1994	3/6/1997 SHMW	1610-3 Total Naphthalenes	0.69093	1.1491	0.4157	22.59	0.3543	29.84	-0.2221	-0.0803	-17.14	-0.1403	-15.06
							Smi	thetal 198	i			Huo	thesetal 19	R4	
Lab	Fuel	Spill	Sample		Γ		Smi Line	th et al., 198	1 Expon	ential		Hug Line	hes et al., 198	84 Expon	ential
Code	Fuel Site Name Type	Spill Date	Date	Locid Analyte	Mass Fraction	C ₀ - C	Line k	ear %Red./yr	Expon k	%Red./yr	C _o - C	Line k	ear %Red./yr	Expon k	%Red./yr
Code NRMRL	Site Name Type Bldg 1610, Shaw AFB, SC JP-4	Date 6/1/1994	Date 3/11/1998 SH98-1	610-2 Benzene	0.16026	0.3397	Line k 0.0899	%Red./yr 17.98	Expon k 0.3012	%Red./yr 26.00	0.3510	Line k 0.0929	%Red./yr 18.17	Expon k 0.3070	%Red./yr 26.44
Code NRMRL NRMRL	Site NameTypeBldg 1610, Shaw AFB, SCJP-4Bldg 1610, Shaw AFB, SCJP-4	Date 6/1/1994 6/1/1994	Date 3/11/1998 SH98-1 3/11/1998 SH98-1	610-2 Benzene 610-2 Toluene	0.16026 0.36282	0.3397 0.9672	Line k 0.0899 0.2560	%Red./yr 17.98 19.25	Expon k 0.3012 0.3438	%Red./yr 26.00 29.10	0.3510 1.3579	Line k 0.0929 0.3594	%Red./yr 18.17 20.89	Expon k 0.3070 0.4120	%Red./yr 26.44 33.77
Code NRMRL NRMRL NRMRL	Site Name Type Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4	Date 6/1/1994 6/1/1994 6/1/1994	Date 3/11/1998 SH98-1 3/11/1998 SH98-1 3/11/1998 SH98-1	610-2 Benzene 610-2 Toluene 610-2 Ethylbenzene	0.16026 0.36282 0.13333	0.3397 0.9672 0.2367	Line k 0.0899 0.2560 0.0626	%Red./yr 17.98 19.25 16.93	Expon k 0.3012 0.3438 0.2702	%Red./yr 26.00 29.10 23.67	0.3510 1.3579 0.6235	Line k 0.0929 0.3594 0.1650	%Red./yr 18.17 20.89 21.81	Expon k 0.3070 0.4120 0.4596	%Red./yr 26.44 33.77 36.84
Code NRMRL NRMRL NRMRL NRMRL	Site Name Type Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4	Date 6/1/1994 6/1/1994 6/1/1994	Date 3/11/1998 SH98-1 3/11/1998 SH98-1 3/11/1998 SH98-1 3/11/1998 SH98-1	610-2 Benzene 610-2 Toluene 610-2 Ethylbenzene 610-2 Total Xylenes (m,p, and o)	0.16026 0.36282 0.13333 0.92051	0.3397 0.9672 0.2367 1.3995	Line k 0.0899 0.2560 0.0626 0.3704	%Red./yr 17.98 19.25 16.93 15.97	Expon k 0.3012 0.3438 0.2702 0.2447	%Red./yr 26.00 29.10 23.67 21.70	0.3510 1.3579 0.6235 1.4398	Line k 0.0929 0.3594 0.1650 0.3811	%Red./yr 18.17 20.89 21.81 16.15	Expon k 0.3070 0.4120 0.4596 0.2492	%Red./yr 26.44 33.77 36.84 22.06
Code NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	Site Name Type Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4	Date 6/1/1994 6/1/1994 6/1/1994 6/1/1994	Date 3/11/1998 SH98-1 3/11/1998 SH98-1 3/11/1998 SH98-1 3/11/1998 SH98-1 3/11/1998 SH98-1	610-2 Benzene 610-2 Toluene 610-2 Ethylbenzene 610-2 Total Xylenes (m,p, and o) 610-2 Total BTEX	0.16026 0.36282 0.13333 0.92051 1.57692	0.3397 0.9672 0.2367 1.3995 2.9431	Line k 0.0899 0.2560 0.0626 0.3704 0.7790	%Red./yr 17.98 19.25 16.93 15.97 17.23	Expon k 0.3012 0.3438 0.2702 0.2447 0.2787	%Red./yr 26.00 29.10 23.67 21.70 24.33	0.3510 1.3579 0.6235 1.4398 3.7722	Line k 0.0929 0.3594 0.1650 0.3811 0.9984	%Red./yr 18.17 20.89 21.81 16.15 18.67	Expon k 0.3070 0.4120 0.4596 0.2492 0.3233	%Red./yr 26.44 33.77 36.84 22.06 27.62
Code NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	Site Name Type Bldg 1610, Shaw AFB, SC JP-4	Date 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994	Date 3/11/1998 SH98-1 3/11/1998 SH98-1 3/11/1998 SH98-1 3/11/1998 SH98-1 3/11/1998 SH98-1 3/11/1998 SH98-1	610-2 Benzene 610-2 Toluene 610-2 Ethylbenzene 610-2 Total STEX 610-2 Total BTEX 610-2 1,2,3-Trimethylbenzene	0.16026 0.36282 0.13333 0.92051 1.57692 0.40128	0.3397 0.9672 0.2367 1.3995 2.9431 -0.4013	0.0899 0.2560 0.0626 0.3704 0.7790 -0.1062	%Red./yr 17.98 19.25 16.93 15.97 17.23 #DIV/0!	Expon k 0.3012 0.3438 0.2702 0.2447 0.2787 #DIV/0!	%Red./yr 26.00 29.10 23.67 21.70 24.33 #DIV/0!	0.3510 1.3579 0.6235 1.4398 3.7722 0.0488	0.0929 0.3594 0.1650 0.3811 0.9984 0.0129	%Red./yr 18.17 20.89 21.81 16.15 18.67 2.87	Expon k 0.3070 0.4120 0.4596 0.2492 0.3233 0.0304	%Red./yr 26.44 33.77 36.84 22.06 27.62 2.99
Code NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	Site Name Type Bldg 1610, Shaw AFB, SC JP-4	Date 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994	Date 3/11/1998 SH98-1	610-2 Benzene 610-2 Toluene 610-2 Ethylbenzene 610-2 Total Xylenes (m,p, and o) 610-2 Total BTEX 610-2 1,2,3-Trimethylbenzene 610-2 1,2,4-Trimethylbenzene	0.16026 0.36282 0.13333 0.92051 1.57692 0.40128 0.93846	0.3397 0.9672 0.2367 1.3995 2.9431 -0.4013 0.0715	Line k 0.0899 0.2560 0.0626 0.3704 0.7790 -0.1062 0.0189	**Press	Expon k 0.3012 0.3438 0.2702 0.2447 0.2787 #DIV/0! 0.0194	%Red./yr 26.00 29.10 23.67 21.70 24.33 #DIV/0! 1.93	0.3510 1.3579 0.6235 1.4398 3.7722 0.0488 -0.1218	Line k 0.0929 0.3594 0.1650 0.3811 0.9984 0.0129 -0.0322	%Red./yr 18.17 20.89 21.81 16.15 18.67 2.87 -3.95	Expon k 0.3070 0.4120 0.4596 0.2492 0.3233 0.0304 -0.0368	%Red./yr 26.44 33.77 36.84 22.06 27.62 2.99 -3.75
Code NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	Site Name Type Bldg 1610, Shaw AFB, SC JP-4	Date 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994	Date 3/11/1998 SH98-1	610-2 Benzene 610-2 Toluene 610-2 Ethylbenzene 610-2 Total Xylenes (m,p, and o) 610-2 Total BTEX 610-2 1,2,3-Trimethylbenzene 610-2 1,2,4-Trimethylbenzene 610-2 1,3,5-Trimethylbenzene	0.16026 0.36282 0.13333 0.92051 1.57692 0.40128 0.93846 0.28205	0.3397 0.9672 0.2367 1.3995 2.9431 -0.4013 0.0715 0.1379	Line k 0.0899 0.2560 0.0626 0.3704 0.7790 -0.1062 0.0189 0.0365	**************************************	Expon k 0.3012 0.3438 0.2702 0.2447 0.2787 #DIV/0! 0.0194 0.1054	%Red./yr 26.00 29.10 23.67 21.70 24.33 #DIV/0! 1.93 10.00	0.3510 1.3579 0.6235 1.4398 3.7722 0.0488 -0.1218 -0.1602	Line k 0.0929 0.3594 0.1650 0.3811 0.9984 0.0129 -0.0322 -0.0424	18.17 20.89 21.81 16.15 18.67 2.87 -3.95 -34.81	0.3070 0.4120 0.4596 0.2492 0.3233 0.0304 -0.0368 -0.2222	%Red./yr 26.44 33.77 36.84 22.06 27.62 2.99 -3.75 -24.88
Code NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	Site Name Type Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4	Date 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994	Date 3/11/1998 SH98-1	610-2 Benzene 610-2 Toluene 610-2 Ethylbenzene 610-2 Total Xylenes (m.p., and o) 610-2 Total BTEX 610-2 1,2,3-Trimethylbenzene 610-2 1,3,5-Trimethylbenzene 610-2 Naphthalene	0.16026 0.36282 0.13333 0.92051 1.57692 0.40128 0.93846 0.28205 0.16923	0.3397 0.9672 0.2367 1.3995 2.9431 -0.4013 0.0715	Line k 0.0899 0.2560 0.0626 0.3704 0.7790 -0.1062 0.0189	**Press	Expon k 0.3012 0.3438 0.2702 0.2447 0.2787 #DIV/0! 0.0194	%Red./yr 26.00 29.10 23.67 21.70 24.33 #DIV/0! 1.93	0.3510 1.3579 0.6235 1.4398 3.7722 0.0488 -0.1218	Line k 0.0929 0.3594 0.1650 0.3811 0.9984 0.0129 -0.0322	%Red./yr 18.17 20.89 21.81 16.15 18.67 2.87 -3.95	Expon k 0.3070 0.4120 0.4596 0.2492 0.3233 0.0304 -0.0368	%Red./yr 26.44 33.77 36.84 22.06 27.62 2.99 -3.75
Code NRMRL	Site Name Type Bldg 1610, Shaw AFB, SC JP-4	Date 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994	Date 3/11/1998 SH98-1	610-2 Benzene 610-2 Toluene 610-2 Ethylbenzene 610-2 Total Xylenes (m.p., and o) 610-2 Total BTEX 610-2 1,2,3-Trimethylbenzene 610-2 1,2,4-Trimethylbenzene 610-2 1,3,5-Trimethylbenzene 610-2 Naphthalene 610-2 1-MethylNaphthalene	0.16026 0.36282 0.13333 0.92051 1.57692 0.40128 0.93846 0.28205	0.3397 0.9672 0.2367 1.3995 2.9431 -0.4013 0.0715 0.1379 0.3308	Line k 0.0899 0.2560 0.0626 0.3704 0.7790 -0.1062 0.0189 0.0365 0.0875	%Red./yr 17.98 19.25 16.93 15.97 17.23 #DIV/0! 1.87 8.69 17.51	Expon k 0.3012 0.3438 0.2702 0.2447 0.2787 #DIV/0! 0.0194 0.1054 0.2867	%Red./yr 26.00 29.10 23.67 21.70 24.33 #DIV/0! 1.93 10.00 24.93	0.3510 1.3579 0.6235 1.4398 3.7722 0.0488 -0.1218 -0.1602 -0.1692	Line k 0.0929 0.3594 0.1650 0.3811 0.9984 0.0129 -0.0322 -0.0424 -0.0448	%Red./yr 18.17 20.89 21.81 16.15 18.67 2.87 -3.95 -34.81 -16.33	Expon k 0.3070 0.4120 0.4596 0.2492 0.3233 0.0304 -0.0368 -0.2222 0.1278	%Red./yr 26.44 33.77 36.84 22.06 27.62 2.99 -3.75 -24.88 12.00
Code NRMRL	Site Name Type Bldg 1610, Shaw AFB, SC JP-4 JP4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 JP4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4	Date 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994	Date 3/11/1998 SH98-1	610-2 Benzene 610-2 Toluene 610-2 Ethylbenzene 610-2 Total Xylenes (m,p, and o) 610-2 Total BTEX 610-2 1,2,3-Trimethylbenzene 610-2 1,2,4-Trimethylbenzene 610-2 1,3,5-Trimethylbenzene 610-2 Naphthalene 610-2 1-MethylNaphthalene 610-2 2-MethylNaphthalene	0.16026 0.36282 0.13333 0.92051 1.57692 0.40128 0.93846 0.28205 0.16923 0.16923	0.3397 0.9672 0.2367 1.3995 2.9431 -0.4013 0.0715 0.1379 0.3308 0.6108	Line k 0.0899 0.2560 0.0626 0.3704 0.7790 -0.1062 0.0189 0.0365 0.0875 0.1617	%Red./yr 17.98 19.25 16.93 15.97 17.23 #DIV/0! 1.87 8.69 17.51 20.73	Expon k 0.3012 0.3438 0.2702 0.2447 0.2787 #DIV/0! 0.0194 0.1054 0.2867 0.4044	%Red./yr 26.00 29.10 23.67 21.70 24.33 #DIV/0! 1.93 10.00 24.93 33.27	0.3510 1.3579 0.6235 1.4398 3.7722 0.0488 -0.1218 -0.1602 -0.1692 -0.1331	Line k 0.0929 0.3594 0.1650 0.3811 0.9984 0.0129 -0.0322 -0.0424 -0.0448 -0.0352	%Red./yr 18.17 20.89 21.81 16.15 18.67 2.87 -3.95 -34.81 -16.33 -97.41	Expon k 0.3070 0.4120 0.4596 0.2492 0.3233 0.0304 -0.0368 -0.2222 0.1278 -0.4085	%Red./yr 26.44 33.77 36.84 22.06 27.62 2.99 -3.75 -24.88 12.00 -50.45
Code NRMRL	Site Name Type Bldg 1610, Shaw AFB, SC JP-4	Date 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994	Date 3/11/1998 SH98-1	610-2 Benzene 610-2 Toluene 610-2 Ethylbenzene 610-2 Total Xylenes (m,p, and o) 610-2 Total BTEX 610-2 1,2,3-Trimethylbenzene 610-2 1,2,4-Trimethylbenzene 610-2 1,3,5-Trimethylbenzene 610-2 Naphthalene 610-2 1-MethylNaphthalene 610-2 2-MethylNaphthalene	0.16026 0.36282 0.13333 0.92051 1.57692 0.40128 0.93846 0.28205 0.16923 0.16923 0.28205	0.3397 0.9672 0.2367 1.3995 2.9431 -0.4013 0.0715 0.1379 0.3308 0.6108 0.2779	Linu k 0.0899 0.2560 0.0626 0.3704 0.7790 -0.1062 0.0189 0.0365 0.0875 0.1617 0.0736 0.3228	**Red./yr** 17.98 19.25 16.93 15.97 17.23 #DIV/0! 1.87 8.69 17.51 20.73 13.14 17.54	Expon k 0.3012 0.3438 0.2702 0.2447 0.2787 #DIV/0! 0.0194 0.1054 0.2867 0.4044 0.1815 0.2877	%Red./yr 26.00 29.10 23.67 21.70 24.33 #DIV/0! 1.93 10.00 24.93 33.27 16.60	0.3510 1.3579 0.6235 1.4398 3.7722 0.0488 -0.1218 -0.1602 -0.1692 -0.1331 -0.1237	Line k 0.0929 0.3594 0.1650 0.3811 0.9984 0.0129 -0.0322 -0.0424 -0.0448 -0.0352 -0.0327 -0.0401	18.17 20.89 21.81 16.15 18.67 2.87 -3.95 -34.81 -16.33 -97.41 -20.68 -8.56	Expon k 0.3070 0.4120 0.4596 0.2492 0.3233 0.0304 -0.0368 -0.2222 0.1278 -0.4085 -0.1528 -0.0742	%Red./yr 26.44 33.77 36.84 22.06 27.62 2.99 -3.75 -24.88 12.00 -50.45 -16.51
Code NRMRL	Site Name Type Bldg 1610, Shaw AFB, SC JP-4	Date 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994	Date 3/11/1998 SH98-1	610-2 Benzene 610-2 Toluene 610-2 Ethylbenzene 610-2 Total Xylenes (m,p, and o) 610-2 Total BTEX 610-2 1,2,3-Trimethylbenzene 610-2 1,2,4-Trimethylbenzene 610-2 1,3,5-Trimethylbenzene 610-2 Naphthalene 610-2 1-MethylNaphthalene 610-2 2-MethylNaphthalene	0.16026 0.36282 0.13333 0.92051 1.57692 0.40128 0.93846 0.28205 0.16923 0.16923 0.28205	0.3397 0.9672 0.2367 1.3995 2.9431 -0.4013 0.0715 0.1379 0.3308 0.6108 0.2779	Linu k 0.0899 0.2560 0.0626 0.3704 0.7790 -0.1062 0.0189 0.0365 0.0875 0.1617 0.0736 0.3228	%Red./yr 17.98 19.25 16.93 15.97 17.23 #DIV/0! 1.87 8.69 17.51 20.73 13.14 17.54	Expon k 0.3012 0.3438 0.2702 0.2447 0.2787 #DIV/0! 0.0194 0.1054 0.2867 0.4044 0.1815 0.2877	%Red./yr 26.00 29.10 23.67 21.70 24.33 #DIV/0! 1.93 10.00 24.93 33.27 16.60 25.00	0.3510 1.3579 0.6235 1.4398 3.7722 0.0488 -0.1218 -0.1602 -0.1692 -0.1331 -0.1237	Line k 0.0929 0.3594 0.1650 0.3811 0.9984 0.0129 -0.0322 -0.0424 -0.0448 -0.0352 -0.0327 -0.0401	18.17 20.89 21.81 16.15 18.67 2.87 -3.95 -34.81 -16.33 -97.41 -20.68 -8.56	Expon k 0.3070 0.4120 0.4596 0.2492 0.3233 0.0304 -0.0368 -0.2222 0.1278 -0.4085 -0.1528 -0.0742	%Red./yr 26.44 33.77 36.84 22.06 27.62 2.99 -3.75 -24.88 12.00 -50.45 -16.51 -7.70
Code NRMRL	Site Name Type Bldg 1610, Shaw AFB, SC JP-4	Date 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994	Date 3/11/1998 SH98-1	610-2 Benzene 610-2 Toluene 610-2 Ethylbenzene 610-2 Total Xylenes (m,p, and o) 610-2 Total BTEX 610-2 1,2,3-Trimethylbenzene 610-2 1,2,4-Trimethylbenzene 610-2 1,3,5-Trimethylbenzene 610-2 Naphthalene 610-2 1-MethylNaphthalene 610-2 2-MethylNaphthalene	0.16026 0.36282 0.13333 0.92051 1.57692 0.40128 0.93846 0.28205 0.16923 0.16923 0.28205	0.3397 0.9672 0.2367 1.3995 2.9431 -0.4013 0.0715 0.1379 0.3308 0.6108 0.2779	Linu k 0.0899 0.2560 0.0626 0.3704 0.7790 -0.1062 0.0189 0.0365 0.0875 0.1617 0.0736 0.3228	%Red./yr 17.98 19.25 16.93 15.97 17.23 #DIV/0! 1.87 8.69 17.51 20.73 13.14 17.54	Expon k 0.3012 0.3438 0.2702 0.2447 0.2787 #DIV/0! 0.0194 0.1054 0.2867 0.4044 0.1815 0.2877	%Red./yr 26.00 29.10 23.67 21.70 24.33 #DIV/0! 1.93 10.00 24.93 33.27 16.60 25.00	0.3510 1.3579 0.6235 1.4398 3.7722 0.0488 -0.1218 -0.1602 -0.1692 -0.1331 -0.1237	Linu k 0.0929 0.3594 0.1650 0.3811 0.9984 0.0129 -0.0322 -0.0424 -0.0448 -0.0352 -0.0327 -0.0401 Hug	18.17 20.89 21.81 16.15 18.67 2.87 -3.95 -34.81 -16.33 -97.41 -20.68 -8.56	Expon k 0.3070 0.4120 0.4596 0.2492 0.3233 0.0304 -0.0368 -0.2222 0.1278 -0.4085 -0.1528 -0.0742	%Red./yr 26.44 33.77 36.84 22.06 27.62 2.99 -3.75 -24.88 12.00 -50.45 -16.51 -7.70
Code NRMRL	Site Name Type Bldg 1610, Shaw AFB, SC JP-4	Date 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994	Date 3/11/1998 SH98-1	610-2 Benzene 610-2 Toluene 610-2 Ethylbenzene 610-2 Total Xylenes (m,p, and o) 610-2 Total BTEX 610-2 1,2,3-Trimethylbenzene 610-2 1,2,4-Trimethylbenzene 610-2 Naphthalene 610-2 Naphthalene 610-2 I-MethylNaphthalene 610-2 Total Naphthalene 610-2 Total Naphthalene 610-2 Total Naphthalene 610-2 Total Naphthalene	0.16026 0.36282 0.13333 0.92051 1.57692 0.40128 0.93846 0.28205 0.16923 0.16923 0.28205 0.62051	0.3397 0.9672 0.2367 1.3995 2.9431 -0.4013 0.0715 0.1379 0.3308 0.6108 0.2779 1.2195	Linu k 0.0899 0.2560 0.0626 0.3704 0.7790 -0.1062 0.0189 0.0365 0.0875 0.1617 0.0736 0.3228 Smi	ear %Red./yr 17.98 19.25 16.93 15.97 17.23 #DIV/0! 1.87 8.69 17.51 20.73 13.14 17.54 th et al., 198	Expon k 0.3012 0.3438 0.2702 0.2447 0.2787 #DIV/0! 0.0194 0.1054 0.2867 0.4044 0.1815 0.2877	%Red./yr 26.00 29.10 23.67 21.70 24.33 #DIV/0! 1.93 10.00 24.93 33.27 16.60 25.00	0.3510 1.3579 0.6235 1.4398 3.7722 0.0488 -0.1218 -0.1602 -0.1602 -0.1331 -0.1237 -0.1517	Linu k 0.0929 0.3594 0.1650 0.3811 0.9984 0.0129 -0.0322 -0.0424 -0.0448 -0.0352 -0.0327 -0.0401 Hug	18.17 20.89 21.81 16.15 18.67 2.87 -3.95 -34.81 -16.33 -97.41 -20.68 -8.56 thes et al., 199	Expon k 0.3070 0.4120 0.4596 0.2492 0.3233 0.0304 -0.0368 -0.2222 0.1278 -0.4085 -0.1528 -0.0742	%Red./yr 26.44 33.77 36.84 22.06 27.62 2.99 -3.75 -24.88 12.00 -50.45 -16.51 -7.70
Code NRMRL	Site Name Type Bldg 1610, Shaw AFB, SC JP-4 JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Breath	Date 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994	Date 3/11/1998 SH98-1	610-2 Benzene 610-2 Toluene 610-2 Ethylbenzene 610-2 Total Sylenes (m.p., and o) 610-2 Total BTEX 610-2 1,2,3-Trimethylbenzene 610-2 1,2,4-Trimethylbenzene 610-2 1,3,5-Trimethylbenzene 610-2 Naphthalene 610-2 I-MethylNaphthalene 610-2 2-MethylNaphthalene 610-2 Total Naphthalene 610-2 Total Naphthalene 610-2 Benzene	0.16026 0.36282 0.13333 0.92051 1.57692 0.40128 0.93846 0.28205 0.16923 0.16923 0.28205 0.62051	0.3397 0.9672 0.2367 1.3995 2.9431 -0.4013 0.0715 0.1379 0.3308 0.6108 0.2779 1.2195	Linu k 0.0899 0.2560 0.0626 0.3704 0.7790 -0.1062 0.0189 0.0365 0.0875 0.1617 0.0736 0.3228 Smii	ear %Red./yr 17.98 19.25 16.93 15.97 17.23 #DIV/0! 1.87 8.69 17.51 20.73 13.14 17.54 th et al., 198 ear	Expon k 0.3012 0.3438 0.2702 0.2447 0.0194 0.1054 0.2867 0.4044 0.1815 0.2877	%Red/yr 26.00 29.10 23.67 21.70 24.33 #DIV/0! 1.93 10.00 24.93 33.27 16.60 25.00 ential %Red/yr	0.3510 1.3579 0.6235 1.4398 3.7722 0.0488 -0.1218 -0.1602 -0.1692 -0.1331 -0.1237 -0.1517	Line 0.0929 0.3594 0.1650 0.3811 0.9984 0.0129 -0.0322 -0.0424 -0.0448 -0.0352 -0.0352 -0.0401 Hug	98 18.17 20.89 21.81 16.15 18.67 2.87 -3.95 -34.81 -16.33 -97.41 -20.68 -8.56 these et al., 190 ear	Expon k 0.3070 0.4120 0.4596 0.2492 0.3233 0.0304 -0.0368 -0.2222 0.1278 -0.4058 -0.0742 84 Expon k	%Red./yr 26.44 33.77 36.84 22.06 27.62 2.99 -3.75 -24.88 12.00 -50.45 -16.51 -7.70 ential %Red./yr
Code NRMRL	Site Name Type Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Site Name Type Bldg 1610, Shaw AFB, SC JP-4	Date 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994	Date 3/11/1998 SH98-1	610-2 Benzene 610-2 Toluene 610-2 Ethylbenzene 610-2 Total Xylenes (m.p., and o) 610-2 Total BTEX 610-2 1,2,3-Trimethylbenzene 610-2 1,2,4-Trimethylbenzene 610-2 1,3,5-Trimethylbenzene 610-2 Naphthalene 610-2 1-MethylNaphthalene 610-2 2-MethylNaphthalene 610-2 Total Naphthalene 610-2 Total Naphthalene 610-3 Benzene 610-3 Toluene	0.16026 0.36282 0.13333 0.92051 1.57692 0.40128 0.93846 0.28205 0.16923 0.16923 0.28205 0.62051 Mass Fraction 0.21236	0.3397 0.9672 0.2367 1.3995 2.9431 -0.4013 0.0715 0.1379 0.3308 0.6108 0.2779 1.2195	Line k 0.0899 0.2560 0.0626 0.3704 0.7790 -0.1062 0.0189 0.0365 0.0875 0.1617 0.0736 0.3228 Smi Line k	ear %Red./yr 17.98 19.25 16.93 15.97 17.23 #DIV/0! 1.87 8.69 17.51 20.73 13.14 17.54 th et al., 198 ear %Red./yr	Expon k 0.3012 0.3438 0.2702 0.2447 0.2787 #DIV/0! 0.0194 0.1054 0.2867 0.4044 0.1815 0.2877 Expon k 0.2267	%Red/yr 26,00 29,10 23,67 21,70 24,33 #DIV/0! 1,93 10,00 24,93 33,27 16,60 25,00 ential %6Red/yr 20,28	0.3510 1.3579 0.6235 1.4398 3.7722 0.0488 -0.1218 -0.1692 -0.1692 -0.1331 -0.1237 -0.1517	Line k 0.0929 0.3594 0.1650 0.3811 0.9984 0.0129 -0.0322 -0.0424 -0.0352 -0.0327 -0.0401 Hug Line k	9.8 18.17 20.89 21.81 16.15 18.67 2.87 -3.95 -34.81 -16.33 -97.41 -20.68 -8.56 thes et al., 199 ear %Red./yr	Expon k 0.3070 0.4120 0.4596 0.2492 0.3233 0.0304 -0.0368 -0.2222 0.1278 -0.4085 -0.1528 -0.0742 84 Expon k 0.2325	%Red./yr 26.44 33.77 36.84 22.06 27.62 2.99 -3.75 -24.88 12.00 -50.45 -16.51 -7.70 ential %Red./yr 20.75
Code NRMRL	Site Name Type Bldg 1610, Shaw AFB, SC JP-4 JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4	Date 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994	Date 3/11/1998 SH98-1	Benzene Genzene Genz	0.16026 0.36282 0.13333 0.92051 1.57692 0.40128 0.93846 0.28205 0.16923 0.16923 0.28205 0.62051 Mass Fraction 0.21236 0.42342 0.13771 0.92793	0.3397 0.9672 0.2367 1.3995 2.9431 -0.4013 0.0715 0.1379 0.3308 0.6108 0.2779 1.2195 C ₀ - C 0.2876 0.9066 0.2323 1.3921	Line k 0.0899 0.2560 0.0626 0.3704 0.7790 -0.1062 0.0189 0.0365 0.0875 0.1617 0.0736 0.3228 Smi Line k 0.0761 0.2400 0.0615 0.3685	ear %Red./yr 17.98 19.25 16.93 15.97 17.23 #DIV/0! 1.87 8.69 17.51 20.73 13.14 17.54 th et al., 198 ear %Red./yr 15.23 18.04 16.62	Expon k 0.3012 0.3438 0.2702 0.2447 0.2787 #DIV/0! 0.0194 0.1054 0.2867 0.4044 0.1815 0.2877 Expon k 0.2267 0.3029 0.2616 0.3029 0.2616 0.2425	%Red/yr 26.00 29.10 23.67 21.70 24.33 #DIV/0! 1.93 10.00 24.93 33.27 16.60 25.00 ential %Red/yr 20.28 26.14 23.02 21.54	0.3510 1.3579 0.6235 1.4398 3.7722 0.0488 -0.1218 -0.1602 -0.1692 -0.1331 -0.1237 -0.1517 C _o -C 0.2989 1.2973 0.6191 1.4324	Line k 0.0929 0.3594 0.1650 0.3811 0.9984 0.0129 -0.0322 -0.0424 -0.0448 -0.0352 -0.0327 -0.0401 Hug Line k 0.0791 0.3434 0.1639 0.3791	18.17 20.89 21.81 16.15 18.67 2.87 -3.95 -34.81 -16.33 -97.41 -20.68 -8.56 these et al., 199 ear %Red./yr 15.47 19.96 21.65 16.06	Expon k 0.3070 0.4120 0.4596 0.2492 0.3233 0.0304 -0.0368 -0.2222 0.1278 -0.4085 -0.1528 -0.0742 84 Expon k 0.2325 0.3711 0.4510 0.2471	%Red./yr 26.44 33.77 36.84 22.06 27.62 2.99 -3.75 -24.88 12.00 -50.45 -16.51 -7.70 ential %Red./yr 20.75 31.00 36.30 21.89
Code NRMRL	Site Name Type Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4	Date 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994	Date 3/11/1998 SH98-1	Benzene Genzene Genz	0.16026 0.36282 0.13333 0.92051 1.57692 0.40128 0.93846 0.28205 0.16923 0.16923 0.28205 0.62051 Mass Fraction 0.21236 0.42342 0.13771 0.92793 1.70142	0.3397 0.9672 0.2367 1.3995 2.9431 -0.4013 0.0715 0.1379 0.3308 0.6108 0.2779 1.2195 C _o - C 0.2876 0.9066 0.2323 1.3921 2.8186	Line k 0.0899 0.2560 0.0626 0.3704 0.7790 -0.1062 0.0189 0.0365 0.1617 0.0736 0.3228 Smi Line k 0.0761 0.2400 0.0615 0.3685 0.7460	ear %Red./yr 17.98 19.25 16.93 15.97 17.23 #DIV/0! 1.87 8.69 17.51 20.73 13.14 17.54 th et al., 198 ear %Red./yr 15.23 18.04 16.62 15.88 16.51	Expon k 0.3012 0.3438 0.2702 0.2447 0.2787 #DIV/0! 0.0194 0.1815 0.2867 Expon k 0.2267 0.3029 0.2616 0.2425 0.2586	%Red./yr 26.00 29.10 23.67 21.70 24.33 #DIV/0! 1.93 10.00 24.93 33.27 16.60 25.00 ential %Red./yr 20.28 26.14 23.02 21.54	0.3510 1.3579 0.6235 1.4398 3.7722 0.0488 -0.1218 -0.1692 -0.1692 -0.1331 -0.1237 -0.1517 C _o -C 0.2989 1.2973 0.6191 1.4324 3.6477	Linu k 0.0929 0.3594 0.1650 0.3811 0.9984 0.0129 -0.0322 -0.0424 -0.0352 -0.0327 -0.0401 Hug Linu k 0.0791 0.3434 0.1639 0.3791 0.9655	18.17 20.89 21.81 16.15 18.67 2.87 -3.95 -34.81 -16.33 -97.41 -20.68 -8.56 thes et al., 199 ear %Red./yr 15.47 19.96 21.65 16.06 18.05	Expon k 0.3070 0.4120 0.4596 0.2492 0.3233 0.0304 -0.0368 -0.2222 0.1278 -0.4085 -0.1528 -0.0742 84 Expon k 0.2325 0.3711 0.4510 0.2471 0.3032	%Red./yr 26.44 33.77 36.84 22.06 27.62 2.99 -3.75 -24.88 12.00 -50.45 -16.51 -7.70 ential %Red./yr 20.75 31.00 36.30 21.89 26.15
Code NRMRL	Site Name Type Bldg 1610, Shaw AFB, SC JP-4 JBdg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 JBdg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4	Date 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994	Date 3/11/1998 SH98-1	Benzene Genzene Genz	0.16026 0.36282 0.13333 0.92051 1.57692 0.40128 0.93846 0.28205 0.16923 0.28205 0.62051 Mass Fraction 0.21236 0.42342 0.13771 0.92793 1.70142 0.36808	0.3397 0.9672 0.2367 1.3995 2.9431 -0.4013 0.0715 0.1379 0.3308 0.6108 0.2779 1.2195 C _o -C 0.2876 0.9066 0.2323 1.3921 2.8186 -0.3681	Line k 0.0899 0.2560 0.0626 0.3704 0.7790 -0.1062 0.0189 0.0365 0.0875 0.1617 0.0736 0.3228 Smi Line k 0.0761 0.2400 0.0615 0.3685 0.7460 -0.0974	ear %Red./yr 17.98 19.25 16.93 15.97 17.23 #DIV/0! 1.87 8.69 17.51 3.14 17.54 th et al., 198 ear %Red./yr 15.23 18.04 16.62 15.88 16.51 #DIV/0!	Expon k 0.3012 0.3438 0.2702 0.2447 0.2787 #DIV/0! 0.0194 0.1054 0.2867 0.4044 0.1815 0.2877 Expon k 0.2267 0.3029 0.2616 0.2425 0.2888 #DIV/0!	%Red/yr 26.00 29.10 23.67 21.70 24.33 #DIV/0! 1.93 10.00 24.93 33.27 16.60 25.00 ential %Red/yr 20.28 26.18 23.02 21.54 22.79 #DIV/0!	0.3510 1.3579 0.6235 1.4398 3.7722 0.0488 -0.1218 -0.1602 -0.1692 -0.1331 -0.1237 -0.1517 C _o -C 0.2989 1.2973 0.6191 1.4324 3.6477 0.0820	Linc k 0.0929 0.3594 0.1650 0.3811 0.9984 0.0129 -0.0322 -0.0424 -0.0448 -0.0352 -0.0327 -0.0401 Hug Linc k 0.0791 0.3434 0.1639 0.3791 0.9655 0.0217	**Red./yr 18.17 20.89 21.81 16.15 18.67 2.87 -3.95 -34.81 -16.33 -97.41 -20.68 -8.56 **Ches et al., 199 ear **Ches et al., 199 ear 15.47 19.96 21.65 16.06 18.05 4.82	Expon k 0.3070 0.4120 0.4596 0.2492 0.3233 0.0304 -0.0368 -0.2222 0.1278 -0.4085 -0.1528 -0.0742 84 Expon k 0.2325 0.3711 0.4510 0.2471 0.3032 0.0533	%Red./yr 26.44 33.77 36.84 22.06 27.62 2.99 -3.75 -24.88 12.00 -50.45 -16.51 -7.70 ential %Red./yr 20.75 31.00 36.30 21.89 26.15 5.19
Code NRMRL	Site Name Type Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4 Bldg 1610, Shaw AFB, SC JP-4	Date 6/1/1994	Date 3/11/1998 SH98-1	Benzene Genzene Genz	0.16026 0.36282 0.13333 0.92051 1.57692 0.40128 0.93846 0.28205 0.16923 0.28205 0.62051 Mass Fraction 0.21236 0.42342 0.13771 0.92793 1.70142 0.36808 0.86100	0.3397 0.9672 0.2367 1.3995 2.9431 -0.4013 0.0715 0.1379 0.3308 0.6108 0.2779 1.2195 C _o - C 0.2876 0.9066 0.2323 1.3921 2.8186 -0.3681 0.1490	Line k 0.0899 0.2560 0.0626 0.3704 0.7790 0.0189 0.0365 0.0875 0.1617 0.0736 0.3228 Smi Line k 0.0761 0.2400 0.0615 0.3685 0.7460 -0.0974 0.0394	ear %Red./yr 17.98 19.25 16.93 15.97 17.23 #DIV/0! 1.87 8.69 17.51 20.73 13.14 17.54 th et al., 198 ear %Red./yr 15.23 18.04 16.62 15.88 16.51 #DIV/0! 3.90	Expon k 0.3012 0.3438 0.2702 0.2447 0.0194 0.1054 0.2867 0.4044 0.1815 0.2877 Expon k 0.2267 0.3029 0.2616 0.2425 0.2868 #DIV/0!	%Red/yr 26.00 29.10 23.67 21.70 24.33 #DIV/0! 1.93 10.00 24.93 33.27 16.60 25.00 ential %Red/yr 20.28 26.14 23.02 21.54 22.79 #DIV/0!	0.3510 1.3579 0.6235 1.4398 3.7722 0.0488 -0.1218 -0.1602 -0.1331 -0.1237 -0.1517 C _v -C 0.2989 1.2973 0.6191 1.4324 3.6477 0.0820 0.0820	Line k 0.0929 0.3594 0.1650 0.3811 0.9984 0.0129 -0.0322 -0.0424 -0.0448 -0.0352 -0.0401 Hug Line k 0.0791 0.3434 0.1639 0.3791 0.9655 0.0217 -0.0117	**Page	Expon k 0.3070 0.4120 0.4596 0.2492 0.3233 0.0304 -0.0368 -0.2222 0.1278 -0.4085 -0.1528 -0.0742 84 Expon k 0.2325 0.3711 0.4510 0.2471 0.3032 0.0533 -0.01430	%Red./yr 26.44 33.77 36.84 22.06 27.62 2.99 -3.75 -24.88 12.00 -50.45 -16.51 -7.70 ential %Red./yr 20.75 31.00 36.30 21.89 26.15 5.19 -1.41
Code NRMRL	Site Name Type	Date 6/1/1994	Date 3/11/1998 SH98-1	Benzene Genzene Genz	0.16026 0.36282 0.13333 0.92051 1.57692 0.40128 0.93846 0.28205 0.16923 0.16923 0.28205 0.62051 Mass Fraction 0.21236 0.42342 0.13771 0.92793 1.70142 0.36808 0.86100 0.25869	0.3397 0.9672 0.2367 1.3995 2.9431 -0.4013 0.0715 0.1379 0.3308 0.6108 0.2779 1.2195 C _o - C 0.2876 0.9066 0.2323 1.3921 2.8186 -0.3681 0.1490 0.1613	Line k 0.0899 0.2560 0.0626 0.3704 0.7790 -0.1062 0.0189 0.0365 0.0875 0.1617 0.0736 0.3228 Smi Line k 0.0761 0.2400 0.0615 0.3685 0.7460 -0.0974 0.0394 0.03427	ear %Red./yr 17.98 19.25 16.93 15.97 17.23 #DIV/0! 1.87 8.69 17.51 20.73 13.14 17.54 th et al., 198 ear %Red./yr 15.23 18.04 16.62 15.88 16.51 #DIV/0! 3.900 10.17	Expon k 0.3012 0.3438 0.2702 0.2447 0.2787 #DIV/0! 0.0194 0.1054 0.2867 0.4044 0.1815 0.2877 Expon k 0.2267 0.3029 0.2616 0.2425 0.2586 #DIV/0! 0.0422 0.1283	%Red/yr 26.00 29.10 23.67 21.70 24.33 #DIV/0! 1.93 10.00 24.93 33.27 16.60 25.00 ential %Red/yr 20.28 26.14 23.02 21.54 22.79 #DIV/0! 4.14 12.04	0.3510 1.3579 0.6235 1.4398 3.7722 0.0488 -0.1218 -0.1602 -0.1692 -0.1331 -0.1237 -0.1517 C _o -C 0.2989 1.2973 0.6191 1.4324 3.6477 0.0820 -0.0443	Linc k 0.0929 0.3394 0.1650 0.3811 0.9984 0.0129 -0.0322 -0.0424 -0.0352 -0.0327 -0.0401 Hug Linc k 0.0791 0.3434 0.1639 0.3791 0.9655 0.0217 -0.0117	**Red./yr** 18.17 20.89 21.81 16.15 18.67 2.87 -3.95 -34.81 -16.33 -97.41 -20.68 -8.56 **thes et al., 199 ear **SeRed./yr** 15.47 19.96 21.65 16.06 18.05 4.82 -1.44 -29.74	Expon k 0.3070 0.4120 0.4596 0.2492 0.3033 0.0304 -0.0368 -0.2222 0.1278 -0.4085 -0.1528 -0.0742 84 Expon k 0.2325 0.3711 0.4510 0.2471 0.3032 0.0533 -0.0140 -0.1993	%Red./yr 26.44 33.77 36.84 22.06 27.62 2.99 -3.75 -24.88 12.00 -50.45 -16.51 -7.70 ential %Red./yr 20.75 31.00 36.30 21.89 26.15 5.19 -1.41 -22.06
Code NRMRL	Site Name Type	Date 6/1/1994	Date 3/11/1998 SH98-1	Benzene Genzene Genz	0.16026 0.36282 0.13333 0.92051 1.57692 0.40128 0.93846 0.28205 0.16923 0.16923 0.28205 0.62051 Mass Fraction 0.21236 0.42342 0.13771 0.92793 1.70142 0.36808 0.86100 0.25869 0.15830	0.3397 0.9672 0.2367 1.3995 2.9431 -0.4013 0.0715 0.1379 0.3308 0.6108 0.2779 1.2195 C _o - C 0.2876 0.9066 0.2323 1.3921 2.8186 -0.3681 0.1490 0.1613 0.3417	Linu k 0.0899 0.2560 0.0626 0.3704 0.7790 -0.1062 0.0189 0.0365 0.1617 0.0736 0.3228 Smi Linu k 0.0761 0.2400 0.0615 0.3685 0.7480 -0.0974 0.0394 0.0427 0.0904	ear %Red./yr 17.98 19.25 16.93 15.97 17.23 #DIV/0! 1.87 8.69 17.51 20.73 13.14 17.54 th et al., 198 ear %Red./yr 15.23 18.04 16.62 15.81 #DIV/0! 3.90 10.17 18.09	Expon k 0.3012 0.3438 0.2702 0.2447 0.2787 #DIV/0! 0.0194 0.1815 0.2877 Expon k 0.2267 0.3029 0.2616 0.2425 0.2586 #DIV/0! 0.0422 0.1283 0.3044	%Red./yr 26.00 29.10 23.67 21.70 24.33 #DIV/0! 1.93 10.00 24.93 33.27 16.60 25.00 ential %Red./yr 20.28 26.14 23.02 21.54 22.79 #DIV/0! 4.14 12.04 26.24	0.3510 1.3579 0.6235 1.4398 3.7722 0.0488 -0.1218 -0.1602 -0.1692 -0.1331 -0.1237 -0.1517 C _o -C 0.2989 1.2973 0.6191 1.4324 3.6477 0.0820 -0.0443 -0.1363	Linu k 0.0929 0.3594 0.1650 0.3811 0.9984 0.0129 -0.0322 -0.0424 -0.0352 -0.0327 -0.0401 Hug Linu k 0.0791 0.3434 0.1639 0.3791 0.9655 0.0217 -0.0117 -0.0362 -0.0449	**Red./yr** 18.17 20.89 21.81 16.15 18.67 2.87 -3.95 -34.81 -16.33 -97.41 -20.68 -8.56 **Ches et al., 198 ear **Red./yr** 15.47 19.96 21.65 16.06 18.05 4.82 -1.44 -29.74 -15.27	Expon k 0.3070 0.4120 0.4596 0.2492 0.3233 0.0304 -0.0368 -0.2222 0.1278 -0.4085 -0.1528 -0.0742 84 Expon k 0.2325 0.3711 0.4510 0.2471 0.3032 0.0533 -0.0140 -0.1993 0.1455	%Red./yr 26.44 33.77 36.84 22.06 27.62 2.99 -3.75 -24.88 12.00 -50.45 -16.51 -7.70 ential %Red./yr 20.75 31.00 36.30 21.89 26.15 5.19 -1.41 -22.06 13.54
Code NRMRL	Site Name Type	Date 6/1/1994	Date 3/11/1998 SH98-1	Benzene Genzene Genz	0.16026 0.36282 0.13333 0.92051 1.57692 0.40128 0.93846 0.28205 0.16923 0.16923 0.28205 0.62051 Mass Fraction 0.21236 0.42342 0.13771 0.92793 1.70142 0.36808 0.86100 0.25869	0.3397 0.9672 0.2367 1.3995 2.9431 -0.4013 0.0715 0.1379 0.3308 0.6108 0.2779 1.2195 C _o - C 0.2876 0.9066 0.2323 1.3921 2.8186 -0.3681 0.1490 0.1613	Line k 0.0899 0.2560 0.0626 0.3704 0.7790 -0.1062 0.0189 0.0365 0.0875 0.1617 0.0736 0.3228 Smi Line k 0.0761 0.2400 0.0615 0.3685 0.7460 -0.0974 0.0394 0.03427	ear %Red./yr 17.98 19.25 16.93 15.97 17.23 #DIV/0! 1.87 8.69 17.51 20.73 13.14 17.54 th et al., 198 ear %Red./yr 15.23 18.04 16.62 15.88 16.51 #DIV/0! 3.900 10.17	Expon k 0.3012 0.3438 0.2702 0.2447 0.2787 #DIV/0! 0.0194 0.1054 0.2867 0.4044 0.1815 0.2877 Expon k 0.2267 0.3029 0.2616 0.2425 0.2586 #DIV/0! 0.0422 0.1283	%Red/yr 26.00 29.10 23.67 21.70 24.33 #DIV/0! 1.93 10.00 24.93 33.27 16.60 25.00 ential %Red/yr 20.28 26.14 23.02 21.54 22.79 #DIV/0! 4.14 12.04	0.3510 1.3579 0.6235 1.4398 3.7722 0.0488 -0.1218 -0.1602 -0.1692 -0.1331 -0.1237 -0.1517 C _o -C 0.2989 1.2973 0.6191 1.4324 3.6477 0.0820 -0.0443	Linc k 0.0929 0.3394 0.1650 0.3811 0.9984 0.0129 -0.0322 -0.0424 -0.0352 -0.0327 -0.0401 Hug Linc k 0.0791 0.3434 0.1639 0.3791 0.9655 0.0217 -0.0117	**Red./yr** 18.17 20.89 21.81 16.15 18.67 2.87 -3.95 -34.81 -16.33 -97.41 -20.68 -8.56 **thes et al., 199 ear **SeRed./yr** 15.47 19.96 21.65 16.06 18.05 4.82 -1.44 -29.74	Expon k 0.3070 0.4120 0.4596 0.2492 0.3033 0.0304 -0.0368 -0.2222 0.1278 -0.4085 -0.1528 -0.0742 84 Expon k 0.2325 0.3711 0.4510 0.2471 0.3032 0.0533 -0.0140 -0.1993	%Red./yr 26.44 33.77 36.84 22.06 27.62 2.99 -3.75 -24.88 12.00 -50.45 -16.51 -7.70 ential %Red./yr 20.75 31.00 36.30 21.89 26.15 5.19 -1.41 -22.06

NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	6/1/1994	3/11/1998 SH98-1610-3	Total Naphthalenes	0.56757	1.2724	0.3368	18.30	0.3113	26.75	-0.0987	-0.0261	-5.57	-0.0506	-5.19
								Smi	th et al., 198	1			Hug	hes et al., 198	34	
Lab		Fuel	Spill	Sample				Line	ear	Expon	ential		Line	ear	Expon	ential
Code	Site Name	Type	Date	Date Locid	Analyte	Mass Fraction	C ₀ - C	k	%Red./yr	k .	%Red./yr	C ₀ - C	k	%Red./yr	k .	%Red./yr
OBG	Bldg 1610, Shaw AFB, SC	JP-4	6/1/1994	7/18/2002 Shaw-1610-MW-1	Benzene	0.07949	0.4205	0.0517	10.34	0.2261	20.23	0.4317	0.0531	10.38	0.2288	20.45
OBG	Bldg 1610, Shaw AFB, SC	JP-4	6/1/1994	7/18/2002 Shaw-1610-MW-1	Toluene	0.35897	0.9710	0.1194	8.98	0.1610	14.87	1.3617	0.1674	9.73	0.1927	17.52
OBG	Bldg 1610, Shaw AFB, SC	JP-4	6/1/1994	7/18/2002 Shaw-1610-MW-1	Ethylbenzene	0.15385	0.2162	0.0266	7.18	0.1079	10.23	0.6030	0.0741	9.79	0.1959	17.79
OBG	Bldg 1610, Shaw AFB, SC	JP-4	6/1/1994	7/18/2002 Shaw-1610-MW-1	Total Xylenes (m,p, and o)	1.53846	0.7815	0.0961	4.14	0.0505	4.92	0.8219	0.1010	4.28	0.0526	5.13
OBG	Bldg 1610, Shaw AFB, SC	JP-4	6/1/1994	7/18/2002 Shaw-1610-MW-1	Total BTEX	2.13077	2.3892	0.2937	6.50	0.0925	8.83	3.2184	0.3957	7.40	0.1132	10.70
OBG	Bldg 1610, Shaw AFB, SC	JP-4	6/1/1994	7/18/2002 Shaw-1610-MW-1	1,2,3-Trimethylbenzene	0.58974	-0.5897	-0.0725	#DIV/0!	#DIV/0!	#DIV/0!	-0.1396	-0.0172	-3.81	-0.0332	-3.38
OBG	Bldg 1610, Shaw AFB, SC		6/1/1994	7/18/2002 Shaw-1610-MW-1	1,2,4-Trimethylbenzene	1.41026	-0.4003	-0.0492	-4.87	-0.0410	-4.19	-0.5935	-0.0730	-8.93	-0.0672	-6.95
OBG	Bldg 1610, Shaw AFB, SC	JP-4	6/1/1994	7/18/2002 Shaw-1610-MW-1	1,3,5-Trimethylbenzene	0.46154	-0.0415	-0.0051	-1.22	-0.0116	-1.17	-0.3397	-0.0418	-34.28	-0.1638	-17.79
OBG	Bldg 1610, Shaw AFB, SC		6/1/1994	7/18/2002 Shaw-1610-MW-1	Naphthalene	0.09487	0.4051	0.0498	9.96	0.2043	18.48	0.1794	0.0221	8.04	0.1305	12.24
								Smi	th et al., 198	i			Hua	hes et al., 198	24	
Lab		Fuel	Spill	Sample		Г		Line	,	Expon	ential		Line		Expon	ential
Code	Site Name	Type	Date	Date Locid	Analyte	Mass Fraction	C ₀ - C	k	%Red./vr	k	%Red./vr	C ₀ - C		%Red./vr		%Red./yr
OBG	Bldg 1610, Shaw AFB, SC		6/1/1994	7/18/2002 Shaw-1610-MW-2	Benzene	0.14103	0.3590	0.0441	8.83	0.1556	14.41	0.3702	0.0455	8.90	0.1583	14.64
OBG	Bldg 1610, Shaw AFB, SC		6/1/1994	7/18/2002 Shaw-1610-MW-2	Toluene	0.37179	0.9582	0.1178	8.86	0.1567	14.50	1.3489	0.1658	9.64	0.1884	17.17
OBG	Bldg 1610, Shaw AFB, SC		6/1/1994	7/18/2002 Shaw-1610-MW-2	Ethylbenzene	0.15385	0.2162	0.0266	7.18	0.1079	10.23	0.6030	0.0741	9.79	0.1959	17.79
OBG	Bldg 1610, Shaw AFB, SC		6/1/1994	7/18/2002 Shaw-1610-MW-2	Total Xylenes (m,p, and o)	1.41026	0.9097	0.1118	4.82	0.0612	5.94	0.9501	0.1168	4.95	0.0633	6.14
OBG	Bldg 1610, Shaw AFB, SC		6/1/1994	7/18/2002 Shaw-1610-MW-2	Total BTEX	2.07692	2.4431	0.3003	6.64	0.0956	9.12	3.2722	0.4023	7.52	0.1163	10.98
OBG	Bldg 1610, Shaw AFB, SC		6/1/1994	7/18/2002 Shaw-1610-MW-2	1,2,3-Trimethylbenzene	0.61538	-0.6154	-0.0757	#DIV/0!	#DIV/0!	#DIV/0!	-0.1653	-0.0203	-4.51	-0.0384	-3.92
OBG	Bldg 1610, Shaw AFB, SC	JP-4	6/1/1994	7/18/2002 Shaw-1610-MW-2	1,2,4-Trimethylbenzene	1.53846	-0.5285	-0.0650	-6.43	-0.0517	-5.31	-0.7218	-0.0887	-10.86	-0.0779	-8.10
OBG	Bldg 1610, Shaw AFB, SC	JP-4	6/1/1994	7/18/2002 Shaw-1610-MW-2	1,3,5-Trimethylbenzene	0.47436	-0.0544	-0.0067	-1.59	-0.0150	-1.51	-0.3525	-0.0433	-35.58	-0.1671	-18.19
OBG	Bldg 1610, Shaw AFB, SC	JP-4	6/1/1994	7/18/2002 Shaw-1610-MW-2	Naphthalene	0.11282	0.3872	0.0476	9.52	0.1830	16.73	-0.1128	-0.0139	-5.06	0.1092	10.35
OBG	Bldg 1610, Shaw AFB, SC	JP-4	6/1/1994	7/18/2002 Shaw-1610-MW-2	Naphthalene	0.11282	0.3872				16.73	-0.1128				10.35
	Bldg 1610, Shaw AFB, SC				Naphthalene	0.11282	0.3872	Smi	th et al., 198	1		-0.1128	Hug	hes et al., 198	34	
Lab		Fuel	Spill	Sample	•	0.11282 Mass Fraction	0.3872 C ₀ - C		th et al., 198		ential		Hug Line	hes et al., 198	84 Expon	ential
Lab Code	Site Name	Fuel Type	Spill Date	Sample Date Locid	Analyte	Mass Fraction	C ₀ - C	Smi Line k	th et al., 198 ear %Red./yr	1 Expon k	ential %Red./yr	C ₀ - C	Hug Line k	hes et al., 198 ear %Red./yr	84 Expon k	ential %Red./yr
Lab Code OBG	Site Name Bldg 1610, Shaw AFB, SC	Fuel Type JP-4	Spill Date 6/1/1994	Sample Date Locid 7/18/2002 Shaw-1610-MW-3	Analyte Benzene	Mass Fraction 0.15385	C _o - C 0.3462	Smir Line k	th et al., 198 ear %Red./yr 8.51	Expon k 0.1449	ential %Red./yr 13.49	C _o - C 0.3574	Hug Line k 0.0439	hes et al., 198 ear %Red./yr 8.59	Expon k 0.1476	ential %Red./yr 13.72
Lab Code	Site Name	Fuel Type JP-4 JP-4	Spill Date	Sample Date Locid	Analyte	Mass Fraction	C ₀ - C	Smi Line k	th et al., 198 ear %Red./yr	1 Expon k	ential %Red./yr	C ₀ - C	Hug Line k	hes et al., 198 ear %Red./yr	84 Expon k	ential %Red./yr
Lab Code OBG OBG	Site Name Bldg 1610, Shaw AFB, SC Bldg 1610, Shaw AFB, SC	Fuel Type JP-4 JP-4 JP-4	Spill Date 6/1/1994 6/1/1994	Sample Date Locid 7/18/2002 Shaw-1610-MW-3 7/18/2002 Shaw-1610-MW-3	Analyte Benzene Toluene	Mass Fraction 0.15385 0.33333	C _o - C 0.3462 0.9967	Smir Line k 0.0426 0.1225	th et al., 198 ear %Red./yr 8.51 9.21	Expon k 0.1449 0.1701	ential %Red./yr 13.49 15.64	C _o - C 0.3574 1.3874	Hug Line k 0.0439 0.1706	hes et al., 198 ear %Red./yr 8.59 9.91	Expon k 0.1476 0.2018	ential %Red./yr 13.72 18.27
Lab Code OBG OBG OBG	Site Name Bldg 1610, Shaw AFB, SC Bldg 1610, Shaw AFB, SC Bldg 1610, Shaw AFB, SC	Fuel Type JP-4 JP-4 JP-4 JP-4	Spill Date 6/1/1994 6/1/1994	Sample Date Locid 7/18/2002 Shaw-1610-MW-3 7/18/2002 Shaw-1610-MW-3 7/18/2002 Shaw-1610-MW-3	Analyte Benzene Toluene Ethylbenzene	Mass Fraction 0.15385 0.33333 0.15385	C _o - C 0.3462 0.9967 0.2162	Smir Line k 0.0426 0.1225 0.0266	th et al., 198 ear %Red./yr 8.51 9.21 7.18	Expon k 0.1449 0.1701 0.1079	ential %Red./yr 13.49 15.64 10.23	C _o - C 0.3574 1.3874 0.6030	Hug Line k 0.0439 0.1706 0.0741	hes et al., 198 ear %Red./yr 8.59 9.91 9.79	Expon k 0.1476 0.2018 0.1959	ential %Red./yr 13.72 18.27 17.79
Lab Code OBG OBG OBG OBG	Site Name Bldg 1610, Shaw AFB, SC	Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4	Spill Date 6/1/1994 6/1/1994 6/1/1994	Sample Locid 7/18/2002 Shaw-1610-MW-3 7/18/2002 Shaw-1610-MW-3 7/18/2002 Shaw-1610-MW-3 7/18/2002 Shaw-1610-MW-3	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o)	Mass Fraction 0.15385 0.33333 0.15385 1.28205	C _o - C 0.3462 0.9967 0.2162 1.0379	Smi Line k 0.0426 0.1225 0.0266 0.1276	**************************************	Expon k 0.1449 0.1701 0.1079 0.0729	ential %Red./yr 13.49 15.64 10.23 7.03	C _o - C 0.3574 1.3874 0.6030 1.0783	Hug Line k 0.0439 0.1706 0.0741 0.1326	hes et al., 198 ear %Red./yr 8.59 9.91 9.79 5.62	Expon k 0.1476 0.2018 0.1959 0.0750	ential %Red./yr 13.72 18.27 17.79 7.23
Lab Code OBG OBG OBG OBG	Site Name Bldg 1610, Shaw AFB, SC	Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Spill Date 6/1/1994 6/1/1994 6/1/1994 6/1/1994	Sample Date Locid 7/18/2002 Shaw-1610-MW-3 7/18/2002 Shaw-1610-MW-3 7/18/2002 Shaw-1610-MW-3 7/18/2002 Shaw-1610-MW-3 7/18/2002 Shaw-1610-MW-3	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX	Mass Fraction 0.15385 0.33333 0.15385 1.28205 1.92308	C _o - C 0.3462 0.9967 0.2162 1.0379 2.5969	Smir Line k 0.0426 0.1225 0.0266 0.1276 0.3193	**************************************	Expon k 0.1449 0.1701 0.1079 0.0729 0.1051	ential %Red./yr 13.49 15.64 10.23 7.03 9.97	C _o - C 0.3574 1.3874 0.6030 1.0783 3.4261	Line k 0.0439 0.1706 0.0741 0.1326 0.4212	hes et al., 198 ear %Red./yr 8.59 9.91 9.79 5.62 7.87	Expon k 0.1476 0.2018 0.1959 0.0750 0.1258	ential %Red./yr 13.72 18.27 17.79 7.23 11.82
Lab Code OBG OBG OBG OBG OBG	Site Name Bldg 1610, Shaw AFB, SC	Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Spill Date 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994	Sample Date Locid 7/18/2002 Shaw-1610-MW-3 7/18/2002 Shaw-1610-MW-3 7/18/2002 Shaw-1610-MW-3 7/18/2002 Shaw-1610-MW-3 7/18/2002 Shaw-1610-MW-3 7/18/2002 Shaw-1610-MW-3	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene	Mass Fraction 0.15385 0.33333 0.15385 1.28205 1.92308 0.53846	C _o - C 0.3462 0.9967 0.2162 1.0379 2.5969 -0.5385	Smi Line k 0.0426 0.1225 0.0266 0.1276 0.3193 -0.0662	**************************************	Expon k 0.1449 0.1701 0.1079 0.0729 0.1051 #DIV/0!	ential %Red./yr 13.49 15.64 10.23 7.03 9.97 #DIV/0!	C _o - C 0.3574 1.3874 0.6030 1.0783 3.4261 -0.0883	Hug Line k 0.0439 0.1706 0.0741 0.1326 0.4212 -0.0109	hes et al., 198 ear %Red./yr 8.59 9.91 9.79 5.62 7.87 -2.41	Expon k 0.1476 0.2018 0.1959 0.0750 0.1258 -0.0220	ential %Red./yr 13.72 18.27 17.79 7.23 11.82 -2.23
Lab Code OBG OBG OBG OBG OBG OBG	Site Name Bldg 1610, Shaw AFB, SC	Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Spill Date 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994	Sample Date Locid 7/18/2002 Shaw-1610-MW-3	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene	Mass Fraction 0.15385 0.33333 0.15385 1.28205 1.92308 0.53846 1.28205	C _o - C 0.3462 0.9967 0.2162 1.0379 2.5969 -0.5385 -0.2721	Smir Line k 0.0426 0.1225 0.0266 0.1276 0.3193 -0.0662 -0.0334	**************************************	Expon k 0.1449 0.1701 0.1079 0.0729 0.1051 #DIV/0! -0.0293	ential %Red./yr 13.49 15.64 10.23 7.03 9.97 #DIV/0! -2.98	C _o - C 0.3574 1.3874 0.6030 1.0783 3.4261 -0.0883 -0.4653	Hug Line k 0.0439 0.1706 0.0741 0.1326 0.4212 -0.0109 -0.0572	%Red./yr 8.59 9.91 9.79 5.62 7.87 -2.41 -7.00	Expon k 0.1476 0.2018 0.1959 0.0750 0.1258 -0.0220 -0.0554	ential %Red./yr 13.72 18.27 17.79 7.23 11.82 -2.23 -5.70
Lab Code OBG OBG OBG OBG OBG OBG OBG	Site Name Bldg 1610, Shaw AFB, SC	Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Spill Date 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994	Sample Date Locid 7/18/2002 Shaw-1610-MW-3	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	Mass Fraction 0.15385 0.33333 0.15385 1.28205 1.92308 0.53846 1.28205 0.43590	C _o - C 0.3462 0.9967 0.2162 1.0379 2.5969 -0.5385 -0.2721 -0.0159	Smi Line k 0.0426 0.1225 0.0266 0.1276 0.3193 -0.0662 -0.0334 -0.0020 0.0473	**************************************	Expon k 0.1449 0.1701 0.1079 0.0729 0.1051 #DIV/0! -0.0293 -0.0046 0.1803	ential %Red./yr 13.49 15.64 10.23 7.03 9.97 #DIV/0! -2.98 -0.46	C _o - C 0.3574 1.3874 0.6030 1.0783 3.4261 -0.0883 -0.4653 -0.3141	Hug Line k 0.0439 0.1706 0.0741 0.1326 0.4212 -0.0109 -0.0572 -0.0386 -0.0142	%Red./yr 8.59 9.91 9.79 5.62 7.87 -2.41 -7.00 -31.70	Expon k 0.1476 0.2018 0.1959 0.0750 0.1258 -0.0220 -0.0554 -0.1567 0.1065	ential %Red./yr 13.72 18.27 17.79 7.23 11.82 -2.23 -5.70 -16.97
Lab Code OBG OBG OBG OBG OBG OBG OBG	Site Name Bldg 1610, Shaw AFB, SC	Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Spill Date 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994	Sample Date Locid 7/18/2002 Shaw-1610-MW-3	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	Mass Fraction 0.15385 0.33333 0.15385 1.28205 1.92308 0.53846 1.28205 0.43590	C _o - C 0.3462 0.9967 0.2162 1.0379 2.5969 -0.5385 -0.2721 -0.0159	Smi Line k 0.0426 0.1225 0.0266 0.1276 0.3193 -0.0662 -0.0334 -0.0020 0.0473	**************************************	Expon k 0.1449 0.1701 0.1079 0.0729 0.1051 #DIV/0! -0.0293 -0.0046 0.1803	ential %Red./yr 13.49 15.64 10.23 7.03 9.97 #DIV/0! -2.98 -0.46 16.50	C _o - C 0.3574 1.3874 0.6030 1.0783 3.4261 -0.0883 -0.4653 -0.3141	Hug Line k 0.0439 0.1706 0.0741 0.1326 0.4212 -0.0109 -0.0572 -0.0386 -0.0142	%Red./yr 8.59 9.91 9.79 5.62 7.87 -2.41 -7.00 -31.70 -5.17 hes et al., 198	Expon k 0.1476 0.2018 0.1959 0.0750 0.1258 -0.0220 -0.0554 -0.1567 0.1065	ential %Red./yr 13.72 18.27 17.79 7.23 11.82 -2.23 -5.70 -16.97 10.10
Lab Code OBG OBG OBG OBG OBG OBG OBG OBG	Site Name Bldg 1610, Shaw AFB, SC	Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Spill Date 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994	Sample Locid 7/18/2002 Shaw-1610-MW-3	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	Mass Fraction 0.15385 0.33333 0.15385 1.28205 1.92308 0.53846 1.28205 0.43590	C _o - C 0.3462 0.9967 0.2162 1.0379 2.5969 -0.5385 -0.2721 -0.0159	Smi Line k 0.0426 0.1225 0.0266 0.1276 0.3193 -0.0662 -0.0334 -0.0020 0.0473	**************************************	Expon k 0.1449 0.1701 0.1079 0.0729 0.1051 #DIV/0! -0.0293 -0.0046 0.1803	ential %Red./yr 13.49 15.64 10.23 7.03 9.97 #DIV/0! -2.98 -0.46 16.50	C _o - C 0.3574 1.3874 0.6030 1.0783 3.4261 -0.0883 -0.4653 -0.3141	Hug Line k 0.0439 0.1706 0.0741 0.1326 0.4212 -0.0109 -0.0572 -0.0386 -0.0142 Hug Line	%Red./yr 8.59 9.91 9.79 5.62 7.87 -2.41 -7.00 -31.70 -5.17 hes et al., 198	Expon k 0.1476 0.2018 0.1959 0.0750 0.1258 -0.0220 -0.0554 -0.1567 0.1065	ential %Red./yr 13.72 18.27 17.79 7.23 11.82 -2.23 -5.70 -16.97 10.10
Lab Code OBG	Site Name Bldg 1610, Shaw AFB, SC	Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Spill Date 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 Spill	Sample Date Locid 7/18/2002 Shaw-1610-MW-3	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Analyte	Mass Fraction 0.15385 0.33333 0.15385 1.28205 1.92308 0.53846 1.28205 0.43590 0.11538	C _o - C 0.3462 0.9967 0.2162 1.0379 2.5969 -0.5385 -0.2721 -0.0159 0.3846	Smi Line k 0.0426 0.1225 0.0266 0.1276 0.3193 -0.0662 -0.0334 -0.0020 0.0473 Smi	**************************************	Expon k 0.1449 0.1701 0.1079 0.0729 0.1051 #DIV/0! -0.0293 -0.0046 0.1803	ential %Red./yr 13.49 15.64 10.23 7.03 9.97 #DIV/0! -2.98 -0.46 16.50	C _o - C 0.3574 1.3874 0.6030 1.0783 3.4261 -0.0883 -0.4653 -0.3141 -0.1154	Hug Line k 0.0439 0.1706 0.0741 0.1326 0.4212 -0.0109 -0.0572 -0.0386 -0.0142 Hug Line	hes et al., 198 ear %Red/yr 8.59 9.91 9.79 5.62 7.87 -2.41 -7.00 -31.70 -5.17 hes et al., 198	Expon k 0.1476 0.2018 0.1959 0.0750 0.1258 -0.0220 -0.0554 -0.1567 0.1065	ential %Red./yr 13.72 18.27 17.79 7.23 11.82 -2.23 -5.70 -16.97 10.10 ential
Lab Code OBG	Site Name Bldg 1610, Shaw AFB, SC	Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Spill Date 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994	Sample Locid	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Analyte	Mass Fraction 0.15385 0.33333 0.15385 1.28205 1.92308 0.53846 1.28205 0.43590 0.11538	C _o - C 0.3462 0.9967 0.2162 1.0379 2.5969 -0.5385 -0.2721 -0.0159 0.3846	Smi Line k 0.0426 0.1225 0.0266 0.1276 0.313 -0.0662 -0.0334 -0.0020 0.0473 Smi Line k	th et al., 198 ear %Red/yr 8.51 9.21 7.18 5.50 7.06 #DIV/0! -3.31 -0.47 9.46 th et al., 198 ear %Red/yr	Expon k 0.1449 0.1701 0.1079 0.0729 0.1051 #DIV/0! -0.0293 -0.0046 0.1803	ential %Red/yr 13.49 15.64 10.23 7.03 9.97 #DIV/0! -2.98 -0.46 16.50 ential %Red/yr	C _o -C 0.3574 1.3874 0.6030 1.0783 3.4261 -0.0883 -0.4653 -0.3141 -0.1154	Hug Line k 0.0439 0.1706 0.0741 0.1326 0.4212 -0.0109 -0.0572 -0.0386 -0.0142 Hug Line k	%Red./yr 8.59 9.91 9.79 5.62 7.87 -2.41 -7.00 -31.70 -5.17 hes et al., 198 ear %Red./yr	Expon k 0.1476 0.2018 0.1959 0.0750 0.1258 -0.0220 -0.0554 -0.1567 0.1065	ential %Red./yr 13.72 18.27 17.79 7.23 11.82 -2.23 -5.70 -16.97 10.10 ential %Red./yr
Lab Code OBG	Site Name Bldg 1610, Shaw AFB, SC	Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Spill Date 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 5/1/1994 5/1/1994 6/1/1994	Sample Locid	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene Naphthalene Analyte Benzene	Mass Fraction 0.15385 0.33333 0.15385 1.28205 1.92308 0.53846 1.28205 0.43590 0.11538 Mass Fraction 0.12821	C _o - C 0.3462 0.9967 0.2162 1.0379 2.5969 -0.5385 -0.2721 -0.0159 0.3846 C _o - C 0.3718	Smi Line k 0.0426 0.1225 0.0266 0.1276 0.3193 -0.0662 -0.0334 -0.0020 0.0473 Smi Line k	th et al., 198 ear %Red/yr 8.51 9.21 7.18 5.50 7.06 #DIV/0! -3.31 -0.47 9.46 th et al., 198 ear %Red/yr 9.14	Expon k 0.1449 0.1701 0.1079 0.0729 0.1051 #DIV/0! -0.0293 -0.046 0.1803	ential %Red/yr 13.49 15.64 10.23 7.03 9.97 #DIV/0! -2.98 -0.46 16.50 ential %Red/yr 15.41	C _o -C 0.3574 1.3874 0.6030 1.0783 3.4261 -0.0883 -0.4653 -0.3141 -0.1154	Hug Line k 0.0439 0.1706 0.0741 0.1326 0.4212 -0.0109 -0.0572 -0.0386 -0.0142 Hug Line k 0.0471	%Red./yr 8.59 9.91 9.79 5.62 7.87 -2.41 -7.00 -31.70 -5.17 hes et al., 198 ear %Red./yr 9.21	Expon k 0.1476 0.2018 0.1959 0.0750 0.1258 -0.0220 -0.0554 -0.1567 0.1065 Expon k	ential %Red./yr 13.72 18.27 17.79 7.23 11.82 -2.23 -5.70 -16.97 10.10 ential %Red./yr 15.64
Lab Code OBG	Site Name Bldg 1610, Shaw AFB, SC	Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Spill Date 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 Spill Date 6/1/1994 6/1/1994	Sample Locid	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene Naphthalene Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o)	Mass Fraction 0.15385 0.33333 0.15385 1.28205 1.92308 0.53846 1.28205 0.43590 0.11538 Mass Fraction 0.12821 0.35897 0.15385 1.41026	C _o - C 0.3462 0.9967 0.2162 1.0379 2.5969 -0.5385 -0.2721 -0.0159 0.3846 C _o - C 0.3718 0.9710	Smi Line k 0.0426 0.1225 0.0266 0.1276 0.3193 -0.0662 -0.0334 -0.0020 0.0473 Smi Line k 0.0266 0.1118	th et al., 198 ear %Red/yr 8.51 9.21 7.18 5.50 7.06 #DIV/0! -3.31 -0.47 9.46 th et al., 198 ear %Red/yr 9.14 8.98 7.18 4.82	Expon k 0.1449 0.1701 0.1079 0.0729 0.1051 #DIV/0! -0.0293 -0.0046 0.1803	ential %Red/yr 13.49 15.64 10.23 7.03 9.97 #DIV/0! -2.98 -0.46 16.50 ential %Red/yr 15.41 14.87 10.23 5.94	C _o -C 0.3574 1.3874 0.6030 1.0783 3.4261 -0.0883 -0.4653 -0.4514 -0.1154 C _o -C 0.3830 1.3617 0.6030 0.9501	Hug Line k 0.0439 0.1706 0.0741 0.1326 0.4212 -0.0109 -0.0572 -0.0386 -0.0142 Hug Line k 0.0471 0.1674 0.0741 0.1168	%Red./yr 8.59 9.91 9.79 5.62 7.87 -2.41 -7.00 -31.70 -5.17 hes et al., 198 ear %Red./yr 9.21 9.73 9.79 4.95	Expon k 0.1476 0.2018 0.1959 0.0750 0.1258 -0.0220 -0.0554 -0.1567 0.1065 Expon k 0.1700 0.1927 0.1959 0.0633	ential %Red./yr 13.72 18.27 17.79 7.23 11.82 -2.23 -5.70 -16.97 10.10 ential %Red./yr 15.64 17.52 17.79 6.14
Lab Code OBG	Site Name Bldg 1610, Shaw AFB, SC	Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Spill Date 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994 6/1/1994	Sample Date Locid 7/18/2002 Shaw-1610-MW-3 Sample Date Locid 7/18/2002 Shaw-1610-MW-22 7/18/2002 Shaw-1610-MW-22 7/18/2002 Shaw-1610-MW-22	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene Naphthalene Analyte Benzene Toluene Ethylbenzene	Mass Fraction 0.15385 0.3333 0.15385 1.28205 1.92308 0.53846 1.28205 0.43590 0.11538 Mass Fraction 0.12821 0.35897 0.15385 1.41026 2.05128	C _o - C 0.3462 0.9967 0.2162 1.0379 2.5969 -0.5385 -0.2721 -0.0159 0.3846 C _o - C 0.3718 0.9710 0.2162	Smii Line k 0.0426 0.1225 0.0266 0.1276 0.3193 -0.0662 -0.0334 -0.0020 0.0473 Smii Line k 0.0457 0.1194 0.0266	th et al., 198 ear %Red/yr 8.51 9.21 7.18 5.50 7.06 #DIV/0! -3.31 -0.47 9.46 th et al., 198 ear %Red/yr 9.14 8.98 7.18 4.82 6.71	Expon k 0.1449 0.1701 0.1079 0.0729 0.1051 #DIVOI -0.0293 -0.0046 0.1803 Expon k 0.1673 0.1610 0.1079 0.0612 0.0971	ential %Red/yr 13.49 15.64 10.23 7.03 9.97 #DIV/0! -2.98 -0.46 16.50 ential %Red/yr 15.41 14.87 10.23	C ₀ -C 0.3574 1.3874 0.6030 1.0783 3.4261 -0.0883 -0.4653 -0.3141 -0.1154 C ₀ -C 0.3830 1.3617 0.6030 0.9501 3.2978	Hug Line k 0.0439 0.1706 0.0741 0.1326 0.4212 -0.0192 -0.0572 -0.0386 -0.0142 Hug Line k 0.0471 0.1674 0.0741 0.01674	hes et al., 198 ear %Red/yr 8.59 9.91 9.79 5.62 7.87 -2.41 -7.00 -31.70 -5.17 hes et al., 198 ear %Red/yr 9.21 9.73 9.79	Expon k 0.1476 0.2018 0.1959 0.0750 0.1258 -0.0254 -0.1567 0.1065 84 Expon k 0.1700 0.1927 0.1959 0.0633	ential %Red./yr 13.72 18.27 17.79 7.23 11.82 -2.23 -5.70 -16.97 10.10 ential %Red./yr 15.64 17.52 17.79 6.14 11.12
Lab Code OBG	Site Name Bldg 1610, Shaw AFB, SC	Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Spill Date 6/1/1994	Sample Locid	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene	Mass Fraction 0.15385 0.33333 0.15385 1.28205 1.92308 0.33846 1.28205 0.43590 0.11538 Mass Fraction 0.12821 0.35897 0.15385 1.41026 2.05128 0.61538	C _o - C 0.3462 0.9967 0.2162 1.0379 2.5969 -0.5385 -0.2721 -0.0159 0.3846 C _o - C 0.3718 0.9710 0.2162 0.9097 2.4687 -0.6154	Smi Line k 0.0426 0.1225 0.0266 0.1276 0.3193 -0.0662 -0.0034 -0.0020 0.0473 Smi Line k 0.0457 0.1194 0.0266 0.1118 0.0266 0.1118 0.3035 -0.0757	th et al., 198 ear %Red/yr 8.51 9.21 7.18 5.50 7.06 #DIV/0! 3.31 -0.47 9.46 th et al., 198 ear %Red/yr 9.14 8.98 8.98 6.71 #DIV/0!	Expon k 0.1449 0.1701 0.1079 0.0729 0.1051 #DIV/0! -0.0293 -0.0046 0.1803 Expon k 0.1673 0.1610 0.1079 0.0612 0.0971 #DIV/0!	ential %Red/yr 13.49 15.64 10.23 7.03 9.97 #DIV/0! -2.98 -0.46 16.50 ential %Red/yr 15.41 14.87 10.23 5.94 9.26 #DIV/0!	C _o -C 0.3574 1.3874 0.6030 1.0783 3.4261 -0.083 -0.4653 -0.3141 -0.1154 C _o -C 0.3830 1.3617 0.6030 0.9501 3.2978 -0.1653	Hug Linc k 0.0439 0.1706 0.0741 0.1326 0.4212 -0.0109 -0.0572 -0.0386 -0.0142 Hug Linc k 0.0471 0.1674 0.0741 0.1168 0.4054 -0.40203	hes et al., 198 ear %Red./yr 8.59 9.91 9.79 5.62 7.87 -2.41 -7.00 -31.70 -5.17 hes et al., 198 ear %Red./yr 9.21 9.73 9.79 4.95 7.58 -4.51	Expon k 0.1476 0.2018 0.1959 0.0750 0.1258 -0.0254 -0.0554 -0.1567 0.1065 84 Expon k 0.1700 0.1927 0.1959 0.0633 0.1178 -0.0384	ential %Red./yr 13.72 18.27 17.79 7.23 11.82 -2.23 -5.70 -16.97 10.10 ential %Red./yr 15.64 17.52 17.79 6.14 11.12 -3.92
Lab Code OBG	Site Name Bldg 1610, Shaw AFB, SC	Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Spill Date 6/1/1994	Sample Date Locid 7/18/2002 Shaw-1610-MW-3 8ample Date Locid 7/18/2002 Shaw-1610-MW-22	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene Naphthalene Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene	Mass Fraction 0.15385 0.33333 0.15385 1.28205 1.92308 0.53846 1.28205 0.43590 0.11538 Mass Fraction 0.12821 0.35897 0.15385 1.41026 2.05128 0.61538 1.53846	C _o - C 0.3462 0.9967 0.2162 1.0379 2.5969 -0.5385 -0.2721 -0.0159 0.3846 C _o - C 0.3718 0.9710 0.2162 0.9097 2.4687 -0.6154 -0.5285	Smi Line k 0.0426 0.1225 0.0266 0.1276 0.3193 -0.0662 -0.0334 -0.0020 0.0473 Smi Line k 0.0457 0.1194 0.0266 0.1118 0.3035 -0.0757 -0.0650	th et al., 198 ear %Red/yr 8.51 9.21 7.18 5.50 7.06 #DIV/0! -3.31 -0.47 9.46 th et al., 198 ear %Red/yr 9.14 8.98 7.18 4.82 6.71 #DIV/0! -6.43	Expon k 0.1449 0.1701 0.1079 0.0729 0.1051 #DIV/0! -0.0293 -0.0046 0.1803 Expon k 0.1673 0.1610 0.1079 0.0612 0.0971 #DIV/0!	ential %Red/yr 13.49 15.64 10.23 7.03 9.97 #DIV/0! -2.98 -0.46 16.50 ential %Red/yr 15.41 14.87 10.23 5.94 9.26 #DIV/0!	C _o -C 0.3574 1.3874 0.6030 1.0783 3.4261 -0.0883 -0.4613 -0.3141 -0.1154 C _o -C 0.3880 1.3617 0.6030 0.9501 3.2978 -0.1653 -0.7218	Hug Line k 0.0439 0.1706 0.0741 0.1326 0.4212 -0.0109 -0.0572 -0.0386 -0.0142 Hug Line k 0.0471 0.1674 0.1168 0.4054 -0.0203 -0.0887	hes et al., 198 ear %Red./yr 8.59 9.91 9.79 5.62 7.87 -2.41 -7.00 -31.70 -5.17 hes et al., 198 ear %Red./yr 9.21 9.73 9.79 4.95 7.58 -4.51 -10.86	Expon k 0.1476 0.2018 0.1959 0.0750 0.1258 -0.0220 -0.0554 -0.1567 0.1065 Expon k 0.1700 0.1927 0.1927 0.1929 0.0633 0.1178 -0.0384 -0.0384 -0.0384	ential %Red./yr 13.72 18.27 17.79 7.23 11.82 -2.23 -5.70 -16.97 10.10 ential %Red./yr 15.64 17.52 17.79 6.14 11.12 -3.92 -8.10
Lab Code OBG	Site Name Bldg 1610, Shaw AFB, SC	Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Spill Date 6/1/1994	Sample Locid	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	Mass Fraction 0.15385 0.33333 0.15385 1.28205 1.92308 0.33846 1.28205 0.43590 0.11538 Mass Fraction 0.12821 0.35897 0.15385 1.41026 2.05128 0.61538	C _o - C 0.3462 0.9967 0.2162 1.0379 2.5969 -0.5385 -0.2721 -0.0159 0.3846 C _o - C 0.3718 0.9710 0.2162 0.9097 2.4687 -0.6154	Smi Line k 0.0426 0.1225 0.0266 0.1276 0.3193 -0.0662 -0.0034 -0.0020 0.0473 Smi Line k 0.0457 0.1194 0.0266 0.1118 0.0266 0.1118 0.3035 -0.0757	th et al., 198 ear %Red/yr 8.51 9.21 7.18 5.50 7.06 #DIV/0! 3.31 -0.47 9.46 th et al., 198 ear %Red/yr 9.14 8.98 8.98 6.71 #DIV/0!	Expon k 0.1449 0.1701 0.1079 0.0729 0.1051 #DIV/0! -0.0293 -0.0046 0.1803 Expon k 0.1673 0.1610 0.1079 0.0612 0.0971 #DIV/0!	ential %Red/yr 13.49 15.64 10.23 7.03 9.97 #DIV/0! -2.98 -0.46 16.50 ential %Red/yr 15.41 14.87 10.23 5.94 9.26 #DIV/0!	C _o -C 0.3574 1.3874 0.6030 1.0783 3.4261 -0.083 -0.4653 -0.3141 -0.1154 C _o -C 0.3830 1.3617 0.6030 0.9501 3.2978 -0.1653	Hug Linc k 0.0439 0.1706 0.0741 0.1326 0.4212 -0.0109 -0.0572 -0.0386 -0.0142 Hug Linc k 0.0471 0.1674 0.0741 0.1168 0.4054 -0.40203	hes et al., 198 ear %Red./yr 8.59 9.91 9.79 5.62 7.87 -2.41 -7.00 -31.70 -5.17 hes et al., 198 ear %Red./yr 9.21 9.73 9.79 4.95 7.58 -4.51	Expon k 0.1476 0.2018 0.1959 0.0750 0.1258 -0.0254 -0.0554 -0.1567 0.1065 84 Expon k 0.1700 0.1927 0.1959 0.0633 0.1178 -0.0384	ential %Red./yr 13.72 18.27 17.79 7.23 11.82 -2.23 -5.70 -16.97 10.10 ential %Red./yr 15.64 17.52 17.79 6.14 11.12 -3.92

							Sm	nith et al., 19	81			Hug	nes et al.,	1984			
Lab		Fuel	Spill	Sample					Linear		Exponentia	al		Linear	E	xponentia	al
Code	Site Name	Type	Date	Date	Locid	Analyte	Mass Fraction	C _o - C	k	%Red./yr	k	%Red./yr	C _o - C	k	%Red./yr	-k	%Red./yr
NRMRL	McChord	JP-4	6/1/75	9/18/97	WA-CR02	Benzene	0.0000	0.5000	0.0224	4.48	0.5398	41.71	0.5112	0.0229	4.48	0.5408	41.77
NRMRL	McChord	JP-4	6/1/75	9/18/97	WA-CR02	Toluene	0.0000	1.3300	0.0596	4.48	0.5836	44.21	1.7207	0.0771	4.48	0.5952	44.85
NRMRL	McChord	JP-4	6/1/75	9/18/97	WA-CR02	Ethylbenzene	0.0000	0.3700	0.0166	4.48	0.5263	40.92	0.7569	0.0339	4.48	0.5583	42.78
NRMRL	McChord	JP-4	6/1/75	9/18/97	WA-CR02	m-Xylene	0.0000	0.9600	0.0430	4.48	0.5690	43.39	0.0000	0.0000	#DIV/0!	#DIV/0!	#DIV/0!
NRMRL	McChord	JP-4	6/1/75	9/18/97	WA-CR02	o-Xylene	0.0000	1.0100	0.0453	4.48	0.5713	43.52	0.6272	0.0281	4.48	0.5499	42.30
NRMRL	McChord	JP-4	6/1/75	9/18/97	WA-CR02	p-Xylene	0.0000	0.3500	0.0157	4.48	0.5238	40.77	1.7332	0.0777	4.48	0.5955	44.87
NRMRL	McChord	JP-4	6/1/75	9/18/97	WA-CR02	m,p-xylenes	0.0000	1.3100	0.0587	4.48	0.5519	42.41	1.7332	0.0777	4.48	0.5644	43.13
NRMRL	McChord	JP-4	6/1/75	9/18/97	WA-CR02	Total Xylenes (m,p, and o)	0.0000	2.3200	0.1040	4.48	0.5593	42.84	2.3603	0.1058	4.48	0.5601	42.88
NRMRL	McChord	JP-4	6/1/75	9/18/97	WA-CR02	Total BTEX	0.0000	4.5200	0.2026	4.48	0.5581	42.77	5.3491	0.2397	4.48	0.5657	43.20
NRMRL	McChord	JP-4	6/1/75	9/18/97	WA-CR02	1,2,3-Trimethylbenzene	0.0065	-0.0065	-0.0003	#DIV/0!	#DIV/0!	#DIV/0!	0.4436	0.0199	4.42	0.1897	17.28
NRMRL	McChord	JP-4	6/1/75	9/18/97	WA-CR02	1,2,4-Trimethylbenzene	0.0052	1.0048	0.0450	4.46	0.2360	21.02	0.8115	0.0364	4.45	0.2265	20.27
NRMRL	McChord	JP-4	6/1/75	9/18/97	WA-CR02	1,3,5-Trimethylbenzene	0.0005	0.4195	0.0188	4.48	0.3006	25.96	0.1213	0.0054	4.46	0.2451	21.74
NRMRL	McChord	JP-4	6/1/75	9/18/97	WA-CR02	Naphthalene	0.0000	0.5000	0.0224	4.48	0.5398	41.71	0.2743	0.0123	4.48	0.5129	40.12
NRMRL	McChord	JP-4	6/1/75	9/18/97	WA-CR02	1-MethylNaphthalene	0.0155	0.7645	0.0343	4.39	0.1756	16.10	0.0207	0.0009	2.56	0.0379	3.72
NRMRL	McChord	JP-4	6/1/75	9/18/97	WA-CR02	2-MethylNaphthalene	0.0143	0.5457	0.0245	4.37	0.1643	15.15	0.1440	0.0065	4.08	0.1077	10.21
NRMRL	McChord	JP-4	6/1/75	9/18/97	WA-CR02	Total Naphthalenes	0.0298	1.8102	0.0811	4.41	0.1847	16.86	0.4390	0.0197	4.20	0.1234	11.61

								Smit	h et al 198	1			Hua	hes et al., 19	84	
Lab		Fuel	Spill	Sample		Г		Line	,	Expon	ential		Lin			ential
Code	Site Name	Type	Date	Date Locid	Analyte	Mass Fraction	C _o - C		%Red./yr	k	%Red./yr	C _o - C	k	%Red./yr	k	%Red./yr
OBG	AGE area, Seymour Johnson AFB, SC	JP-4	1/1/1985	7/24/2001 SJ-AGE-MW4	Benzene	0.00210	0.4979	0.0300	6.01	0.3303	28.13	0.5091	0.0307	6.01	0.3316	28.22
OBG	AGE area, Seymour Johnson AFB, SC	JP-4	1/1/1985	7/24/2001 SJ-AGE-MW4	Toluene	0.03600	1.2940	0.0781	5.87	0.2178	19.57	1.6847	0.1017	5.91	0.2334	20.81
OBG	AGE area, Seymour Johnson AFB, SC	JP-4	1/1/1985	7/24/2001 SJ-AGE-MW4	Ethylbenzene	0.23000	0.1400	0.0084	2.28	0.0287	2.83	0.5269	0.0318	4.20	0.0719	6.94
OBG	AGE area, Seymour Johnson AFB, SC	JP-4	1/1/1985	7/24/2001 SJ-AGE-MW4	Total Xylenes (m,p, and o)	1.80000	0.5200	0.0314	1.35	0.0153	1.52	0.5603	0.0338	1.43	0.0164	1.62
OBG	AGE area, Seymour Johnson AFB, SC	JP-4	1/1/1985	7/24/2001 SJ-AGE-MW4	Total BTEX	2.06810	2.4519	0.1480	3.27	0.0472	4.61	3.2810	0.1980	3.70	0.0574	5.57
OBG	AGE area, Seymour Johnson AFB, SC	JP-4	1/1/1985	7/24/2001 SJ-AGE-MW4	1,2,3-Trimethylbenzene	0.29000	-0.2900	-0.0175	#DIV/0!	#DIV/0!	#DIV/0!	0.1601	0.0097	2.15	0.0265	2.62
OBG	AGE area, Seymour Johnson AFB, SC	JP-4	1/1/1985	7/24/2001 SJ-AGE-MW4	1,2,4-Trimethylbenzene	1.40000	-0.3900	-0.0235	-2.33	-0.0197	-1.99	-0.5833	-0.0352	-4.31	-0.0325	-3.31
OBG	AGE area, Seymour Johnson AFB, SC	JP-4	1/1/1985	7/24/2001 SJ-AGE-MW4	1,3,5-Trimethylbenzene	0.43000	-0.0100	-0.0006	-0.14	-0.0014	-0.14	-0.3082	-0.0186	-15.27	-0.0761	-7.91
OBG	AGE area, Seymour Johnson AFB, SC	JP-4	1/1/1985	7/24/2001 SJ-AGE-MW4	Naphthalene	0.07800	0.4220	0.0255	5.09	0.1121	10.61	0.1963	0.0118	4.32	0.0759	7.31
						_		Smit	th et al., 198	1			Hug	hes et al., 19	84	
Lab		Fuel	Spill	Sample		Γ		Smit		1 Expon	ential		Hug Lin			ential
	Sita Nama		•	•	Analyte	Mass Fraction	C - C	Line	ear			C - C		ear	Expor	
Code	Site Name	Туре	Date	Date Locid	Analyte	Mass Fraction	C _o - C	Line k	ear %Red./yr	Expone k	%Red./yr	C _o - C	Lin k	ear %Red./yr	Expor k	%Red./yr
Code OBG	AGE area, Seymour Johnson AFB, SC	Type JP-4	Date 1/1/1985	Date Locid 7/24/2001 SJ-AGE-MW13	Benzene	0.04400	0.4560	k 0.0275	%Red./yr 5.50	k 0.1467	%Red./yr 13.64	0.4672	k 0.0282	%Red./yr 5.52	k 0.1480	%Red./yr 13.76
Code OBG OBG	AGE area, Seymour Johnson AFB, SC AGE area, Seymour Johnson AFB, SC	Type JP-4 JP-4	Date 1/1/1985 1/1/1985	Date Locid 7/24/2001 SJ-AGE-MW13 7/24/2001 SJ-AGE-MW13	Benzene Toluene	0.04400 0.48000	0.4560 0.8500	k 0.0275 0.0513	%Red./yr 5.50 3.86	k 0.1467 0.0615	%Red./yr 13.64 5.97	0.4672 1.2407	k 0.0282 0.0749	%Red./yr 5.52 4.35	k 0.1480 0.0770	%Red./yr 13.76 7.42
Code OBG OBG OBG	AGE area, Seymour Johnson AFB, SC AGE area, Seymour Johnson AFB, SC AGE area, Seymour Johnson AFB, SC	Type JP-4 JP-4 JP-4	Date 1/1/1985 1/1/1985 1/1/1985	Date Locid 7/24/2001 SJ-AGE-MW13 7/24/2001 SJ-AGE-MW13 7/24/2001 SJ-AGE-MW13	Benzene Toluene Ethylbenzene	0.04400 0.48000 0.09200	0.4560 0.8500 0.2780	k 0.0275 0.0513 0.0168	%Red./yr 5.50 3.86 4.53	k 0.1467 0.0615 0.0840	%Red./yr 13.64 5.97 8.06	0.4672 1.2407 0.6649	k 0.0282 0.0749 0.0401	%Red./yr 5.52 4.35 5.30	k 0.1480 0.0770 0.1272	%Red./yr 13.76 7.42 11.94
Code OBG OBG OBG	AGE area, Seymour Johnson AFB, SC AGE area, Seymour Johnson AFB, SC AGE area, Seymour Johnson AFB, SC AGE area, Seymour Johnson AFB, SC	Type JP-4 JP-4 JP-4 JP-4	Date 1/1/1985 1/1/1985 1/1/1985 1/1/1985	Date Locid 7/24/2001 SJ-AGE-MW13 7/24/2001 SJ-AGE-MW13 7/24/2001 SJ-AGE-MW13 7/24/2001 SJ-AGE-MW13	Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o)	0.04400 0.48000 0.09200 1.20000	0.4560 0.8500 0.2780 1.1200	k 0.0275 0.0513 0.0168 0.0676	%Red./yr 5.50 3.86 4.53 2.91	k 0.1467 0.0615 0.0840 0.0398	%Red./yr 13.64 5.97 8.06 3.90	0.4672 1.2407 0.6649 1.1603	k 0.0282 0.0749 0.0401 0.0700	%Red./yr 5.52 4.35 5.30 2.97	k 0.1480 0.0770 0.1272 0.0408	%Red./yr 13.76 7.42 11.94 4.00
Code OBG OBG OBG OBG OBG	AGE area, Seymour Johnson AFB, SC AGE area, Seymour Johnson AFB, SC	Type JP-4 JP-4 JP-4 JP-4 JP-4	Date 1/1/1985 1/1/1985 1/1/1985 1/1/1985 1/1/1985	Date Locid 7/24/2001 SJ-AGE-MW13 7/24/2001 SJ-AGE-MW13 7/24/2001 SJ-AGE-MW13 7/24/2001 SJ-AGE-MW13 7/24/2001 SJ-AGE-MW13	Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX	0.04400 0.48000 0.09200 1.20000 1.81600	0.4560 0.8500 0.2780 1.1200 2.7040	k 0.0275 0.0513 0.0168 0.0676 0.1632	%Red./yr 5.50 3.86 4.53 2.91 3.61	k 0.1467 0.0615 0.0840 0.0398 0.0550	%Red./yr 13.64 5.97 8.06 3.90 5.35	0.4672 1.2407 0.6649 1.1603 3.5331	k 0.0282 0.0749 0.0401 0.0700 0.2132	%Red./yr 5.52 4.35 5.30 2.97 3.99	k 0.1480 0.0770 0.1272 0.0408 0.0652	%Red./yr 13.76 7.42 11.94 4.00 6.31
Code OBG OBG OBG OBG OBG OBG	AGE area, Seymour Johnson AFB, SC AGE area, Seymour Johnson AFB, SC	Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Date 1/1/1985 1/1/1985 1/1/1985 1/1/1985 1/1/1985	Date Locid 7/24/2001 SJ-AGE-MW13 7/24/2001 SJ-AGE-MW13 7/24/2001 SJ-AGE-MW13 7/24/2001 SJ-AGE-MW13 7/24/2001 SJ-AGE-MW13 7/24/2001 SJ-AGE-MW13	Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene	0.04400 0.48000 0.09200 1.20000 1.81600 0.19000	0.4560 0.8500 0.2780 1.1200 2.7040 -0.1900	k 0.0275 0.0513 0.0168 0.0676 0.1632 -0.0115	%Red./yr 5.50 3.86 4.53 2.91 3.61 #DIV/0!	k 0.1467 0.0615 0.0840 0.0398 0.0550 #DIV/0!	%Red./yr 13.64 5.97 8.06 3.90 5.35 #DIV/0!	0.4672 1.2407 0.6649 1.1603 3.5331 0.2601	k 0.0282 0.0749 0.0401 0.0700 0.2132 0.0157	%Red./yr 5.52 4.35 5.30 2.97 3.99 3.49	k 0.1480 0.0770 0.1272 0.0408 0.0652 0.0521	%Red./yr 13.76 7.42 11.94 4.00 6.31 5.07
Code OBG OBG OBG OBG OBG OBG OBG	AGE area, Seymour Johnson AFB, SC AGE area, Seymour Johnson AFB, SC	Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Date 1/1/1985 1/1/1985 1/1/1985 1/1/1985 1/1/1985 1/1/1985	Date Locid 7/24/2001 SJ-AGE-MW13	Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Timethylbenzene 1,2,4-Trimethylbenzene	0.04400 0.48000 0.09200 1.20000 1.81600 0.19000 0.63000	0.4560 0.8500 0.2780 1.1200 2.7040 -0.1900 0.3800	k 0.0275 0.0513 0.0168 0.0676 0.1632 -0.0115 0.0229	%Red./yr 5.50 3.86 4.53 2.91 3.61 #DIV/0! 2.27	k 0.1467 0.0615 0.0840 0.0398 0.0550 #DIV/0! 0.0285	%Red./yr 13.64 5.97 8.06 3.90 5.35 #DIV/0! 2.81	0.4672 1.2407 0.6649 1.1603 3.5331 0.2601 0.1867	k 0.0282 0.0749 0.0401 0.0700 0.2132 0.0157 0.0113	%Red./yr 5.52 4.35 5.30 2.97 3.99 3.49 1.38	k 0.1480 0.0770 0.1272 0.0408 0.0652 0.0521 0.0157	%Red./yr 13.76 7.42 11.94 4.00 6.31 5.07 1.55
Code OBG OBG OBG OBG OBG OBG	AGE area, Seymour Johnson AFB, SC AGE area, Seymour Johnson AFB, SC	Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Date 1/1/1985 1/1/1985 1/1/1985 1/1/1985 1/1/1985	Date Locid 7/24/2001 SJ-AGE-MW13 7/24/2001 SJ-AGE-MW13 7/24/2001 SJ-AGE-MW13 7/24/2001 SJ-AGE-MW13 7/24/2001 SJ-AGE-MW13 7/24/2001 SJ-AGE-MW13	Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene	0.04400 0.48000 0.09200 1.20000 1.81600 0.19000	0.4560 0.8500 0.2780 1.1200 2.7040 -0.1900	k 0.0275 0.0513 0.0168 0.0676 0.1632 -0.0115	%Red./yr 5.50 3.86 4.53 2.91 3.61 #DIV/0!	k 0.1467 0.0615 0.0840 0.0398 0.0550 #DIV/0!	%Red./yr 13.64 5.97 8.06 3.90 5.35 #DIV/0!	0.4672 1.2407 0.6649 1.1603 3.5331 0.2601	k 0.0282 0.0749 0.0401 0.0700 0.2132 0.0157	%Red./yr 5.52 4.35 5.30 2.97 3.99 3.49	k 0.1480 0.0770 0.1272 0.0408 0.0652 0.0521	%Red./yr 13.76 7.42 11.94 4.00 6.31 5.07

								Smith	n et al., 198	1			Hugh	es et al., 19	184	
Lab		Fuel	Spill	Sample				Line		Expon	ential		Line		Expon	ential
Code	Site Name	Type	Date	Date Locid	Analyte	Mass Fraction	Co-C	k	%Red./yr	k	%Red./vr	Co-C	k	%Red./vr	k	%Red./yr
NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	8/27/1997 EAKMW306-FP	Benzene	0.00035	0.4996	0.0209	4.18	0.3032	26.16	0.5109	0.0214	4.18	0.3041	26.22
NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	8/27/1997 EAKMW306-FP	Toluene	0.00000	1.3300	0.0556	4.18	0.5398	41.72	1.7207	0.0719	4.18	0.5506	42.34
NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	8/27/1997 EAKMW306-FP	Ethylbenzene	0.32520	0.0448	0.0000	0.51	0.0054	0.54	0.4317	0.0110	2.38	0.0353	3.47
NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	8/27/1997 EAKMW306-FP	Total Xylenes (m,p, and o)	0.67532	1.6447	0.0618	2.96	0.0516	5.03	1.6850	0.0704	2.98	0.0523	5.10
NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	8/27/1997 EAKMW306-FP	Total BTEX	1.00088	3.5191	0.1471	3.25	0.0630	6.11	4.3482	0.1818	3.40	0.0701	6.77
NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	8/27/1997 EAKMW306-FP	1,2,3-Trimethylbenzene	0.25570	-0.2557	-0.0107	#DIV/0!	#DIV/0!	#DIV/0!	0.1944	0.0081	1.81	0.0236	2.34
NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	8/27/1997 EAKMW306-FP	1,2,4-Trimethylbenzene	0.99266	0.0173	0.0007	0.07	0.0007	0.07	-0.1759	-0.0074	-0.90	-0.0082	-0.82
NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	8/27/1997 EAKMW306-FP	1,3,5-Trimethylbenzene	0.55206	-0.1321	-0.0055	-1.31	-0.0114	-1.15	-0.4302	-0.0180	-14.76	-0.0632	-6.52
NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	8/27/1997 EAKMW306-FP	Naphthalene	0.13769	0.3623	0.0151	3.03	0.0539	5.25	0.1366	0.0057	2.08	0.0288	2.84
NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	8/27/1997 EAKMW306-FP	1-MethylNaphthalene	0.28193	0.4981	0.0208	2.67	0.0425	4.17	-0.2458	-0.0103	-28.41	-0.0859	-8.96
NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	8/27/1997 EAKMW306-FP	2-MethylNaphthalene	0.51796	0.0420	0.0018	0.31	0.0033	0.33	-0.3596	-0.0150	-9.49	-0.0495	-5.08
NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	8/27/1997 EAKMW306-FP	Total Naphthalenes	0.93758	0.9024	0.0377	2.05	0.0282	2.78	-0.4688	-0.0196	-4.18	-0.0290	-2.94
	·									_						
Lab		Fuel	Spill	Sample		Г		Smith	n et al., 198 ar	1 Expon	ontial		Hugh Line	es et al., 19	Expon	ontial
Lub		1 401	Opin	Gampie				Line		Expon	Cittiai			·ui	Expon	Cittai
Code	Site Name	Type	Date	Date Locid	Analyte	Mass Fraction	C _o - C		%Red./yr		%Red./yr	C _o - C		%Red./yr	k	%Red./yr
NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	8/27/1997 EAKMW316-FP	Benzene	0.11682	0.3832	0.0160	3.20	0.0608	5.90	0.3944	0.0165	3.23	0.0617	5.98
NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	8/27/1997 EAKMW316-FP	Toluene	0.00000	1.3300	0.0556	4.18	0.5403	41.74	1.7207	0.0719	4.18	0.5510	42.36
NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	8/27/1997 EAKMW316-FP	Ethylbenzene	0.38422	-0.0142	-0.0006	-0.16	-0.0016	-0.16	0.3726	0.0156	2.06	0.0283	2.79
NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	8/27/1997 EAKMW316-FP	Total Xylenes (m,p, and o)	1.99896	0.3210	0.0134	0.58	0.0062	0.62	0.3614	0.0151	0.64	0.0069	0.69
NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	8/27/1997 EAKMW316-FP	Total BTEX	2.50000	2.0200	0.0844	1.87	0.0248	2.45	2.8491	0.1191	2.23	0.0318	3.13
NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	8/27/1997 EAKMW316-FP	1,2,3-Trimethylbenzene	0.44652	-0.4465	-0.0187	#DIV/0!	#DIV/0!	#DIV/0!	0.0036	0.0002	0.03	0.0003	0.03
NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	8/27/1997 EAKMW316-FP	1,2,4-Trimethylbenzene	1.24740	-0.2374	-0.0099	-0.98	-0.0088	-0.89	-0.4307	-0.0180	-2.20	-0.0177	-1.79
NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	8/27/1997 EAKMW316-FP	1,3,5-Trimethylbenzene	0.64642	-0.2264	-0.0095	-2.25	-0.0180	-1.82	-0.5246	-0.0219	-18.00	-0.0698	-7.23
NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	8/27/1997 EAKMW316-FP	Naphthalene	0.12980	0.3702	0.0155	3.10	0.0564	5.48	0.1445	0.0060	2.20	0.0313	3.08
NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	8/27/1997 EAKMW316-FP	1-MethylNaphthalene	0.20898	0.5710	0.0239	3.06	0.0551	5.36	-0.1728	-0.0072	-19.98	-0.0733	-7.61
NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	8/27/1997 EAKMW316-FP	2-MethylNaphthalene	0.37643	0.1836	0.0077	1.37	0.0166	1.65	-0.2181	-0.0091	-5.76	-0.0362	-3.69
NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	8/27/1997 EAKMW316-FP	Total Naphthalenes	0.71521	1.1248	0.0470	2.56	0.0395	3.87	-0.2464	-0.0103	-2.20	-0.0177	-1.78
								Smith	et al., 198	1			Hugh	es et al., 19	84	
Lab		Fuel	Spill	Sample				Line	ar	Expon	ential		Line	ar	Expon	ential
Code	Site Name	Type	Date	Date Locid	Analyte	Mass Fraction	Co-C	k	%Red./yr	k	%Red./yr	Co-C	k	%Red./yr	k	%Red./yr
OBG	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	10/10/2001 EAKMW306-FP	Benzene	0.00120	0.4988	0.0178	3.56	0.2151	19.35	0.5100	0.0182	3.56	0.2159	19.42
OBG	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	10/10/2001 EAKMW306-FP	Toluene	0.00170	1.3283	0.0474	3.56	0.2376	21.15	1.7190	0.0613	3.56	0.2468	21.87
OBG	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	10/10/2001 EAKMW306-FP	Ethylbenzene	0.25000	0.1200	0.0043	1.16	0.0140	1.39	0.5069	0.0181	2.39	0.0395	3.87
OBG	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	10/10/2001 EAKMW306-FP	Total Xylenes (m,p, and o)	0.53000	1.7900	0.0638	2.75	0.0526	5.13	1.8303	0.0653	2.77	0.0533	5.19
OBG	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	10/10/2001 EAKMW306-FP	Total BTEX	0.53000	3.9900	0.1423	3.15	0.0764	7.36	4.8191	0.1718	3.21	0.0824	7.91
OBG	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	10/10/2001 EAKMW306-FP	1,2,3-Trimethylbenzene	0.26000	-0.2600	-0.0093	#DIV/0!	#DIV/0!	#DIV/0!	0.1901	0.0068	1.51	0.0196	1.94
OBG	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	10/10/2001 EAKMW306-FP	1,2,4-Trimethylbenzene	1.10000	-0.0900	-0.0032	-0.32	-0.0030	-0.30	-0.2833	-0.0101	-1.24	-0.0106	-1.07
OBG	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	10/10/2001 EAKMW306-FP	1,3,5-Trimethylbenzene	0.56000	-0.1400	-0.0050	-1.19	-0.0103	-1.03	-0.4382	-0.0156	-12.83	-0.0544	-5.59
OBG	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/1973	10/10/2001 EAKMW306-FP	Naphthalene	0.17000	0.3300	0.0118	2.35	0.0385	3.77	0.1043	0.0037	1.36	0.0171	1.69
								Smith	n et al., 198	1			Hugh	es et al., 19	184	
Lab		Fuel	Spill	Sample				Line		Expon	ential		Line		Expon	ential
0-4	Otto Name	T	D-4-	Bata Lasti	Australia	Mana Frant's			VD-44-		0/ D 1 /			0/ D - d /		0/ D - 1 /-
Code	Site Name	Type	Date	Date Locid	Analyte	Mass Fraction	C ₀ - C		%Red./yr		%Red./yr	C ₀ - C		%Red./yr		%Red./yr
OBG	Spill Site No. 2, Eaker AFB, AR	JP-4		10/10/2001 EAKMW316-FP	Benzene	0.22000	0.2800	0.0100	2.00	0.0293	2.89	0.2912	0.0104	2.03	0.0301	2.96
OBG	Spill Site No. 2, Eaker AFB, AR	JP-4		10/10/2001 EAKMW316-FP	Toluene	0.00080	1.3292	0.0474	3.56	0.2644	23.24	1.7199	0.0613	3.56	0.2736	23.94
OBG	Spill Site No. 2, Eaker AFB, AR	JP-4		10/10/2001 EAKMW316-FP	Ethylbenzene	0.44000	-0.0700	-0.0025	-0.67	-0.0062	-0.62	0.3169	0.0113	1.49	0.0193	1.92
OBG	Spill Site No. 2, Eaker AFB, AR	JP-4		10/10/2001 EAKMW316-FP	Total Xylenes (m,p, and o)	2.20000	0.1200	0.0043	0.18	0.0019	0.19	0.1603	0.0057	0.24	0.0025	0.25
OBG	Spill Site No. 2, Eaker AFB, AR	JP-4		10/10/2001 EAKMW316-FP	Total BTEX	2.86080	1.6592	0.0592	1.31	0.0163	1.62	2.4883	0.0887	1.66	0.0223	2.21
OBG	Spill Site No. 2, Eaker AFB, AR	JP-4		10/10/2001 EAKMW316-FP	1,2,3-Trimethylbenzene	0.40000	-0.4000	-0.0143	#DIV/0!	#DIV/0!	#DIV/0!	0.0501	0.0018	0.40	0.0042	0.42
OBG	Spill Site No. 2, Eaker AFB, AR	JP-4		10/10/2001 EAKMW316-FP	1,2,4-Trimethylbenzene	1.30000	-0.2900	-0.0103	-1.02	-0.0090	-0.90	-0.4833	-0.0172	-2.11 -14.58	-0.0166	-1.67
OBG	Spill Site No. 2, Eaker AFB, AR	JP-4		10/10/2001 EAKMW316-FP	1,3,5-Trimethylbenzene	0.62000	-0.2000	-0.0071	-1.70	-0.0139	-1.40	-0.4982	-0.0178		-0.0580	-5.97
OBG	Spill Site No. 2, Eaker AFB, AR	JP-4	10/1/19/3	10/10/2001 EAKMW316-FP	Naphthalene	0.15000	0.3500	0.0125	2.50	0.0429	4.20	0.1243	0.0044	1.62	0.0215	2.13

						_			h et al., 198					es et al., 19		
Lab		Fuel	Spill	Sample				Line	ar	Expon	ential		Line	ar	Expone	ential
Code	Site Name	Type	Date	Date Locid	Analyte	Mass Fraction	Co-C	k	%Red./yr	k	%Red./yr	Co-C	k	%Red./yr	k	%Red./yr
NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	1/1/1981	3/4/1997 MBMW8I	Benzene	0.02813	0.4719 ,		5.83	0.1778	16.29	0.4831	0.0299	5.84	0.1792	16.41
NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	1/1/1981	3/4/1997 MBMW8I	Toluene	0.00101	1.3290	0.0821	6.18	0.4442	35.87	1.7197	0.1063	6.18	0.4601	36.88
NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	1/1/1981	3/4/1997 MBMW8I	Ethylbenzene	0.18133	0.1887	0.0117	3.15	0.0441	4.31	0.5755	0.0356	4.70	0.0883	8.45
NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	1/1/1981	3/4/1997 MBMW8I	Total Xylenes (m,p, and o)	0.56828	1.7517	0.1083	4.67	0.0869	8.33	1.7921	0.1108	4.69	0.0880	8.42
NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	1/1/1981	3/4/1997 MBMW8I	Total BTEX	0.77875	3.7412	0.2312	5.12	0.1087	10.30	4.5704	0.2825	5.28	0.1191	11.23
NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	1/1/1981	3/4/1997 MBMW8I	1,2,3-Trimethylbenzene	0.34400	-0.3440	-0.0213	#DIV/0!	#DIV/0!	#DIV/0!	0.1061	0.0066	1.46	0.0166	1.65
NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	1/1/1981	3/4/1997 MBMW8I	1,2,4-Trimethylbenzene	0.82133	0.1887	0.0117	1.15	0.0128	1.27	-0.0046	-0.0003	-0.03	-0.0003	-0.03
NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	1/1/1981	3/4/1997 MBMW8I	1,3,5-Trimethylbenzene	0.47333	-0.0533	-0.0033	-0.78	-0.0074	-0.74	-0.3515	-0.0217	-17.83	-0.0839	-8.75
NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	1/1/1981	3/4/1997 MBMW8I	Naphthalene	0.15467	0.3453	0.0213	4.27	0.0725	6.99	0.1196	0.0074	2.70	0.0354	3.48
NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	1/1/1981	3/4/1997 MBMW8I	1-MethylNaphthalene	0.17333	0.6067	0.0375	4.81	0.0930	8.88	-0.1372	-0.0085	-23.44	-0.0969	-10.17
NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	1/1/1981	3/4/1997 MBMW8I	2-MethylNaphthalene	0.25467	0.3053	0.0189	3.37	0.0487	4.75	-0.0963	-0.0060	-3.76	-0.0294	-2.98
NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	1/1/1981	3/4/1997 MBMW8I	Total Naphthalenes	0.58267	1.2573	0.0777	4.22	0.0711	6.86	-0.1138	-0.0070	-1.50	-0.0134	-1.35
								Smit	h et al., 198	1			Huah	es et al., 19	84	
Lab		Fuel	Spill	Sample		Γ		Line		Expon	ential		Line		Expone	ential
Code	Site Name	Type	Date	Date Locid	Analyte	Mass Fraction	C _o - C	k	%Red./yr	k	%Red./yr	Co-C	k	%Red./yr	k	%Red./yr
NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	1/1/1981	3/4/1997 MBMW24	Benzene	0.00736	0.4926	0.0304	6.09	0.2607	22.95	0.5039	0.0311	6.09	0.2621	23.06
NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	1/1/1981	3/4/1997 MBMW24	Toluene	0.00073	1.3293	0.0822	6.18	0.4641	37.13	1.7200	0.1063	6.18	0.4800	38.12
NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	1/1/1981	3/4/1997 MBMW24	Ethylbenzene	0.07853	0.2915	0.0180	4.87	0.0958	9.13	0.6783	0.0419	5.54	0.1400	13.07
NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	1/1/1981	3/4/1997 MBMW24	Total Xylenes (m,p, and o)	0.27974	2.0403	0.1261	5.43	0.1307	12.26	2.0806	0.1286	5.45	0.1318	12.35
NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	1/1/1981	3/4/1997 MBMW24	Total BTEX	0.36636	4.1536	0.2567	5.68	0.1553	14.38	4.9828	0.3079	5.76	0.1657	15.27
NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	1/1/1981	3/4/1997 MBMW24	1,2,3-Trimethylbenzene	0.29800	-0.2980	-0.0184	#DIV/0!	#DIV/0!	#DIV/0!	0.1521	0.0094	2.09	0.0255	2.52
NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	1/1/1981	3/4/1997 MBMW24	1,2,4-Trimethylbenzene	0.65000	0.3600	0.0222	2.20	0.0272	2.69	0.1667	0.0103	1.26	0.0141	1.40
NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	1/1/1981	3/4/1997 MBMW24	1,3,5-Trimethylbenzene	0.28400	0.1360	0.0084	2.00	0.0242	2.39	-0.1622	-0.0100	-8.23	-0.0523	-5.37
NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	1/1/1981	3/4/1997 MBMW24	Naphthalene	0.08920	0.4108	0.0254	5.08	0.1065	10.11	0.1851	0.0114	4.17	0.0694	6.71
NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	1/1/1981	3/4/1997 MBMW24	1-MethylNaphthalene	0.13200	0.6480	0.0400	5.13	0.1098	10.40	-0.0958	-0.0059	-16.38	-0.0800	-8.33
		JP-4	1/1/1981	3/4/1997 MBMW24	2-MethylNaphthalene	0.18100	0.3790	0.0234	4.18	0.0698	6.74	-0.0226	-0.0014	-0.88	-0.0083	-0.83
NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4		3/4/199/ WIDWWZ4	Z-IVICUTYIINADITUTAICHE	0.10100	0.3790									
NRMRL NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4 JP-4	1/1/1981	3/4/1997 MBMW24	Total Naphthalenes	0.40220	1.4378	0.0889	4.83	0.0940	8.97	0.0666	0.0041	0.88	0.0095	0.94
								0.0889	4.83	0.0940			0.0041	0.88	0.0095	0.94
								0.0889	4.83 h et al., 198	0.0940	8.97		0.0041	0.88 es et al., 19	0.0095	
NRMRL Lab	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	1/1/1981 Spill	3/4/1997 MBMW24 Sample	Total Naphthalenes	0.40220	1.4378	0.0889 Smit Line	4.83 h et al., 198 ear	0.0940 1 Expon	8.97	0.0666	0.0041 Hugh Line	0.88 nes et al., 19 nar	0.0095 84 Expone	ential
NRMRL Lab Code	Pipeline Leak Site, Myrtle Beach AFB, SC Site Name	JP-4 Fuel Type	1/1/1981 Spill Date	3/4/1997 MBMW24 Sample Date Locid	Total Naphthalenes Analyte	0.40220	1.4378 C _o - C	0.0889 Smit	4.83 h et al., 198 ear %Red./yr	0.0940 1 Expon	8.97 ential %Red./yr	0.0666 C _o - C	0.0041 Hugh Line	0.88 nes et al., 19 nar %Red./yr	0.0095 84 Expone	ential %Red./yr
Lab Code OBG	Pipeline Leak Site, Myrtle Beach AFB, SC Site Name Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4 Fuel Type JP-4	1/1/1981 Spill Date 1/1/1981	3/4/1997 MBMW24 Sample Date Locid 7/25/2001 MBMW24	Total Naphthalenes Analyte Benzene	0.40220 Mass Fraction 0.01200	1.4378 C_o - C 0.4880	0.0889 Smit Line k 0.0237	4.83 th et al., 198 ear %Red./yr 4.74	0.0940 1 Expone k 0.1813	8.97 ential %Red./yr 16.58	0.0666 C _o - C 0.4992	0.0041 Hugh Line k 0.0243	0.88 es et al., 19 ar %Red./yr 4.75	0.0095 84 Expone k 0.1823	ntial %Red./yr 16.67
Lab Code OBG OBG	Pipeline Leak Site, Myrtle Beach AFB, SC Site Name Pipeline Leak Site, Myrtle Beach AFB, SC Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4 Fuel Type JP-4 JP-4	1/1/1981 Spill Date 1/1/1981 1/1/1981	3/4/1997 MBMW24 Sample Date Locid 7/25/2001 MBMW24 7/25/2001 MBMW24	Total Naphthalenes Analyte Benzene Toluene	0.40220 Mass Fraction 0.01200 0.00150	1.4378 C _o - C 0.4880 1.3285	0.0889 Smit Line k 0.0237 0.0646	4.83 th et al., 198 ear **Red./yr 4.74 4.85	0.0940 Expone k 0.1813 0.3299	8.97 ential %Red./yr 16.58 28.10	0.0666 C _o - C 0.4992 1.7192	0.0041 Hugh Line k 0.0243 0.0836	0.88 es et al., 19 ar **Red./yr 4.75 4.86	0.0095 84 Expone k 0.1823 0.3424	%Red./yr 16.67 28.99
Lab Code OBG OBG OBG OBG	Pipeline Leak Site, Myrtle Beach AFB, SC Site Name Pipeline Leak Site, Myrtle Beach AFB, SC Pipeline Leak Site, Myrtle Beach AFB, SC Pipeline Leak Site, Myrtle Beach AFB, SC	Fuel Type JP-4 JP-4 JP-4	1/1/1981 Spill Date 1/1/1981 1/1/1981 1/1/1981	3/4/1997 MBMW24 Sample Date Locid 7/25/2001 MBMW24 7/25/2001 MBMW24 7/25/2001 MBMW24	Total Naphthalenes Analyte Benzene Toluene Ethylbenzene	0.40220 Mass Fraction 0.01200 0.00150 0.07600	1.4378 C _o - C 0.4880 1.3285 0.2940	0.0889 Smit Line k 0.0237 0.0646 0.0143	4.83 th et al., 198 ear %Red./yr 4.74 4.85 3.86	0.0940 Expone k 0.1813 0.3299 0.0769	8.97 ential %Red./yr 16.58 28.10 7.40	0.0666 C _o - C 0.4992 1.7192 0.6809	0.0041 Hugh Line k 0.0243 0.0836 0.0331	0.88 es et al., 19 ar **Red./yr 4.75 4.86 4.37	0.0095 84 Expone k 0.1823 0.3424 0.1117	%Red./yr 16.67 28.99 10.57
Lab Code OBG OBG OBG OBG OBG OBG	Pipeline Leak Site, Myrtle Beach AFB, SC Site Name Pipeline Leak Site, Myrtle Beach AFB, SC	Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4	1/1/1981 Spill Date 1/1/1981 1/1/1981 1/1/1981 1/1/1981	3/4/1997 MBMW24 Sample Date Locid 7/25/2001 MBMW24 7/25/2001 MBMW24 7/25/2001 MBMW24 7/25/2001 MBMW24	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o)	0.40220 Mass Fraction 0.01200 0.00150 0.07600 0.03310	1.4378 C _o - C 0.4880 1.3285 0.2940 2.2869	0.0889 Smit Line k 0.0237 0.0646 0.0143 0.1111	4.83 h et al., 198 ear %Red./yr 4.74 4.85 3.86 4.79	0.0940 Expon k 0.1813 0.3299 0.0769 0.2065	8.97 **Red./yr* 16.58 28.10 7.40 18.66	0.0666 C _o - C 0.4992 1.7192 0.6809 2.3272	0.0041 Hugh Line k 0.0243 0.0836 0.0331 0.1131	0.88 nes et al., 19 ar %Red./yr 4.75 4.86 4.37 4.79	0.0095 84 Expone k 0.1823 0.3424 0.1117 0.2074	%Red./yr 16.67 28.99 10.57 18.73
Lab Code OBG OBG OBG OBG OBG OBG OBG OBG	Pipeline Leak Site, Myrtle Beach AFB, SC Site Name Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4 Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	1/1/1981 Spill Date 1/1/1981 1/1/1981 1/1/1981 1/1/1981	3/4/1997 MBMW24 Sample Date Locid 7/25/2001 MBMW24 7/25/2001 MBMW24 7/25/2001 MBMW24 7/25/2001 MBMW24 7/25/2001 MBMW24 7/25/2001 MBMW24	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX	0.40220 Mass Fraction 0.01200 0.00150 0.07600 0.03310 0.12260	1.4378 C _o - C 0.4880 1.3285 0.2940 2.2869 4.3974	0.0889 Smit Line k 0.0237 0.0646 0.0143 0.1111 0.2137	4.83 h et al., 198 ear %Red./yr 4.74 4.85 3.86 4.79 4.73	0.0940 Expon k 0.1813 0.3299 0.0769 0.2065 0.1753	8.97 ential %Red./yr 16.58 28.10 7.40 18.66 16.08	0.0666 C _o - C 0.4992 1.7192 0.6809 2.3272 5.2265	0.0041 Hugh Line k 0.0243 0.0836 0.0331 0.1131 0.2540	0.88 es et al., 19 ar %Red./yr 4.75 4.86 4.37 4.79 4.75	0.0095 84 Expone k 0.1823 0.3424 0.1117 0.2074 0.1835	%Red./yr 16.67 28.99 10.57 18.73 16.77
Lab Code OBG OBG OBG OBG OBG OBG OBG OBG OBG	Pipeline Leak Site, Myrtle Beach AFB, SC Site Name Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4 Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	1/1/1981 Spill Date 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981	3/4/1997 MBMW24 Sample Date Locid 7/25/2001 MBMW24	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1,2,3-Trimethylbenzene	0.40220 Mass Fraction 0.01200 0.00150 0.07600 0.03310 0.12260 0.29000	C _o - C 0.4880 1.3285 0.2940 2.2869 4.3974 -0.2900	0.0889 Smit Line k 0.0237 0.0646 0.0143 0.1111 0.2137 -0.0141	4.83 h et al., 198 ear %Red./yr 4.74 4.85 3.86 4.79 4.73 #DIV/0!	0.0940 Expon k 0.1813 0.3299 0.0769 0.2065 0.1753 #DIV/0!	8.97 **Red./yr 16.58 28.10 7.40 18.66 16.08 #DIV/0!	0.0666 C _o - C 0.4992 1.7192 0.6809 2.3272 5.2265 0.1601	0.0041 Hugh Line k 0.0243 0.0836 0.0331 0.1131 0.2540 0.0078	0.88 nes et al., 19 ar %Red./yr 4.75 4.86 4.37 4.79 4.75 1.73	0.0095 84 Expone k 0.1823 0.3424 0.1117 0.2074 0.1835 0.0214	%Red./yr 16.67 28.99 10.57 18.73 16.77 2.11
Lab Code OBG	Site Name Pipeline Leak Site, Myrtle Beach AFB, SC Site Name Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4 Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Nate 1/1/1981 Date 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981	3/4/1997 MBMW24 Sample Date Locid 7/25/2001 MBMW24	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene	0.40220 Mass Fraction 0.01200 0.00150 0.07600 0.03310 0.12260 0.29000 1.20000	1.4378 C _o - C 0.4880 1.3285 0.2940 2.2869 4.3974 -0.2900 -0.1900	0.0889 Smit Line k 0.0237 0.0646 0.0143 0.1111 0.2137 -0.0141 -0.0092	4.83 h et al., 198 ear %Red./yr 4.74 4.85 3.86 4.79 4.73 #DIV/0! -0.91	0.0940 Expon: k 0.1813 0.3299 0.0769 0.2065 0.1753 #DIV/0! -0.0084	8.97 **Red./yr 16.58 28.10 7.40 18.66 16.08 #*DIV/0! -0.84	0.0666 C _o - C 0.4992 1.7192 0.6809 2.3272 5.2265 0.1601 -0.3833	0.0041 Hugh Line k 0.0243 0.0836 0.0331 0.1131 0.2540 0.0078 -0.0186	0.88 nes et al., 19 ar 4.75 4.86 4.37 4.79 4.75 1.73 -2.28	0.0095 84 Expone k 0.1823 0.3424 0.1117 0.2074 0.1835 0.0214 -0.0187	%Red./yr 16.67 28.99 10.57 18.73 16.77 2.11 -1.89
Lab Code OBG OBG OBG OBG OBG OBG OBG OBG OBG	Pipeline Leak Site, Myrtle Beach AFB, SC Site Name Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4 Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	1/1/1981 Spill Date 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981	3/4/1997 MBMW24 Sample Date Locid 7/25/2001 MBMW24	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1,2,3-Trimethylbenzene	0.40220 Mass Fraction 0.01200 0.00150 0.07600 0.03310 0.12260 0.29000	C _o - C 0.4880 1.3285 0.2940 2.2869 4.3974 -0.2900	0.0889 Smit Line k 0.0237 0.0646 0.0143 0.1111 0.2137 -0.0141	4.83 h et al., 198 ear %Red./yr 4.74 4.85 3.86 4.79 4.73 #DIV/0!	0.0940 Expon k 0.1813 0.3299 0.0769 0.2065 0.1753 #DIV/0!	8.97 **Red./yr 16.58 28.10 7.40 18.66 16.08 #DIV/0!	0.0666 C _o - C 0.4992 1.7192 0.6809 2.3272 5.2265 0.1601	0.0041 Hugh Line k 0.0243 0.0836 0.0331 0.1131 0.2540 0.0078	0.88 nes et al., 19 ar %Red./yr 4.75 4.86 4.37 4.79 4.75 1.73	0.0095 84 Expone k 0.1823 0.3424 0.1117 0.2074 0.1835 0.0214	%Red./yr 16.67 28.99 10.57 18.73 16.77 2.11
Lab Code OBG OBG OBG OBG OBG OBG OBG OBG OBG OB	Site Name Pipeline Leak Site, Myrtle Beach AFB, SC	Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Note 1/1/1981 Spill Date 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981	3/4/1997 MBMW24 Sample Date Locid 7/25/2001 MBMW24	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	0.40220 Mass Fraction 0.01200 0.00150 0.07600 0.03310 0.12260 0.29000 1.20000 0.10000	C _o -C 0.4880 1.3285 0.2940 2.2869 4.3974 -0.2900 -0.1900 0.3200	0.0889 Smit Line k 0.0237 0.0646 0.0143 0.1111 0.2137 -0.0141 -0.0092 0.0156 0.0175	4.83 h et al., 198 har %Red./yr 4.74 4.85 3.86 4.79 4.73 #DIV/0! -0.91 3.70 3.50	0.0940 Expon k 0.1813 0.3299 0.0769 0.2065 0.1753 #DIV/0! -0.0084 0.0697 0.0619	8.97 **Red./yr 16.58 28.10 7.40 18.66 16.08 #*DIV/0! -0.84 6.74	0.0666 C _o - C 0.4992 1.7192 0.6809 2.3272 5.2265 0.1601 -0.3833 0.0218	N.0041 Hugh Line k 0.0243 0.0836 0.0331 0.1131 0.2540 0.0078 -0.0186 0.0011 0.0065	0.88 les et al., 19 ar %Red./yr 4.75 4.86 4.37 4.79 4.75 1.73 -2.28 0.87 2.38	84 Expone k 0.1823 0.3424 0.117 0.2074 0.1835 0.0214 -0.0187 0.0096 0.0327	%Red./yr 16.67 28.99 10.57 18.73 16.77 2.11 -1.89 0.95
Lab Code OBG OBG OBG OBG OBG OBG OBG OBG OBG OB	Site Name Pipeline Leak Site, Myrtle Beach AFB, SC	Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Note 1/1/1981 Spill Date 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981	3/4/1997 MBMW24 Sample Date Locid 7/25/2001 MBMW24	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	0.40220 Mass Fraction 0.01200 0.00150 0.07600 0.03310 0.12260 0.29000 1.20000 0.10000	C _o -C 0.4880 1.3285 0.2940 2.2869 4.3974 -0.2900 -0.1900 0.3200	0.0889 Smit Line k 0.0237 0.0646 0.0143 0.1111 0.2137 -0.0141 -0.0092 0.0156 0.0175	4.83 h et al., 198 har %Red./yr 4.74 4.85 3.86 4.79 4.79 1.70 3.70 3.50 h et al., 198	0.0940 Expon k 0.1813 0.3299 0.0769 0.2065 0.1753 #DIV/0! -0.0084 0.0697 0.0619	8.97 **Red./yr 16.58 28.10 7.40 18.66 16.08 #DIV/0! -0.84 6.74 6.00	0.0666 C _o - C 0.4992 1.7192 0.6809 2.3272 5.2265 0.1601 -0.3833 0.0218	N.0041 Hugh Line k 0.0243 0.0836 0.0331 0.1131 0.2540 0.0078 -0.0186 0.0011 0.0065	0.88 les et al., 19 ar %Red.lyr 4.75 4.86 4.37 4.79 4.75 1.73 -2.28 0.87 2.38 les et al., 19	84 Expone k 0.1823 0.3424 0.117 0.2074 0.1835 0.0214 -0.0187 0.0096 0.0327	%Red./yr 16.67 28.99 10.57 18.73 16.77 2.11 -1.89 0.95 3.22
Lab Code OBG	Site Name Pipeline Leak Site, Myrtle Beach AFB, SC	Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	7/1/1981 Spill Date 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 Spill	3/4/1997 MBMW24 Sample Date Locid 7/25/2001 MBMW24 7/25/2001 MBMW24 7/25/2001 MBWV24 7/25/2001 MBWW24	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene	0.40220 Mass Fraction 0.01200 0.00150 0.07600 0.03310 0.12260 0.29000 1.20000 0.10000 0.14000	C _o - C 0.4880 1.3285 0.2940 2.2869 4.3974 -0.2900 -0.1900 0.3200 0.3600	No.0889 Smitt Line k 0.0237 0.0646 0.0143 0.1111 0.2137 -0.0141 -0.0092 0.0156 0.0175 Smitt	4.83 h et al., 198 ear %Red./yr 4.74 4.85 3.86 4.79 4.73 #DIV/0! -0.91 3.70 3.50 h et al., 198 ear	0.0940 Expon k 0.1813 0.3299 0.0769 0.2065 0.1753 #DIV/0I -0.0084 0.0697 0.0619 1 Expon	8.97 ential %Red./yr 16.58 28.10 7.40 18.66 16.08 #DIV/0! -0.84 6.74 6.00	0.0666 C _o -C 0.4992 1.7192 0.6809 2.3272 5.2265 0.1601 -0.3833 0.0218 0.1343	N.0041 Hugh Line k 0.0243 0.0836 0.0331 0.1131 0.2540 0.0078 -0.0186 0.0011 0.0065 Hugh Line	0.88 des et al., 19 ar 4.75 4.86 4.37 4.79 4.75 1.73 -2.28 0.87 2.38 des et al., 19 ar	0.0095 84 Expone k 0.1823 0.3424 0.1117 0.2074 0.1835 0.0214 -0.0187 0.0096 0.0327	ntial %Red./yr 16.67 28.99 10.57 18.73 16.77 2.11 -1.89 0.95 3.22
Lab Code OBG OBG OBG OBG OBG OBG OBG OBG OBG COBG OBG OBG OBG COBG C	Site Name Pipeline Leak Site, Myrtle Beach AFB, SC Site Name Pipeline Leak Site, Myrtle Beach AFB, SC	Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	7/1/1981 Spill Date 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 Spill Date	3/4/1997 MBMW24 Sample Date Locid 7/25/2001 MBMW24	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Analyte	0.40220 Mass Fraction 0.01200 0.00150 0.07600 0.03310 0.12260 0.29000 1.20000 0.10000 0.14000 Mass Fraction	C _o -C 0.4880 1.3285 0.2940 2.2869 4.3974 -0.2900 0.3200 0.3600 C _o -C	0.0889 Smit Line k 0.0237 0.0646 0.0143 0.1111 0.2137 -0.0141 -0.0092 0.0156 0.0175 Smit Line k	4.83 h et al., 198 har %Red.lyr 4.74 4.85 3.86 4.79 4.73 #DIV/0! -0.91 3.70 3.50 h et al., 198 har	0.0940 Expon k 0.1813 0.3299 0.0769 0.2065 0.1753 #DIV/0! -0.0084 0.0697 0.0619 Expon k	8.97 **Red./yr 16.58 28.10 7.40 18.66 16.08 #DIV/0! -0.84 6.74 6.00 **ential **Red./yr	C _o - C 0.4992 1.7192 0.6809 2.3272 5.2265 0.1601 -0.3833 0.0218 0.1343	0.0041 Hugh Line k 0.0243 0.0836 0.0331 0.1131 0.2540 0.0078 0.0011 0.0065 Hugh Line k	0.88 les et al., 19 ar 4.75 4.86 4.37 4.79 4.75 1.73 -2.28 0.87 2.38 les et al., 19 ar %Red.lyr	84 Expone k 0.1823 0.3424 0.1117 0.2074 0.1835 0.0214 -0.0187 0.0096 0.0327 84 Expone k	ntial %Red./yr 16.67 28.99 10.57 18.73 16.77 2.11 -1.89 0.95 3.22 intial %Red./yr
Lab Code OBG	Site Name Pipeline Leak Site, Myrtle Beach AFB, SC Site Name Pipeline Leak Site, Myrtle Beach AFB, SC Site Name Pipeline Leak Site, Myrtle Beach AFB, SC	Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Note 1/1/1981 Spill Date 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 Spill Date 1/1/1981	3/4/1997 MBMW24 Sample Date Locid 7/25/2001 MBMW24	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Analyte Benzene	0.40220 Mass Fraction 0.01200 0.00150 0.07600 0.03310 0.12260 0.29000 1.20000 0.10000 0.14000 Mass Fraction 0.02600	C _o -C 0.4880 1.3285 0.2940 2.2869 4.3974 -0.2900 0.3200 0.3600 C _o -C 0.4740	0.0889 Smit Line k 0.0237 0.0646 0.0143 0.1111 0.2137 -0.0141 -0.0092 0.0156 0.0175 Smit Line k 0.0230	4.83 h et al., 198 har %Red./yr 4.74 4.85 3.86 4.79 4.73 #DIV/0! -0.91 3.70 3.50 h et al., 198 har %Red./yr 4.61	0.0940 Expon k 0.1813 0.3299 0.0769 0.2065 0.1753 #DIV/0! -0.0084 0.0697 0.0619 Expon k 0.1437	8.97 **Red./yr 16.58 28.10 7.40 18.66 16.08 #DIV/0! -0.84 6.74 6.00 **ential **Red./yr 13.38	0.0666 C _o - C 0.4992 1.7192 0.6809 2.3272 5.2265 0.1601 -0.3833 0.0218 0.1343	0.0041 Hugh Line k 0.0243 0.0836 0.0331 0.1540 0.0078 -0.0186 0.0011 0.0065 Hugh Line k 0.0236	0.88 des et al., 19 ar 4.75 4.86 4.37 4.79 4.75 1.73 -2.28 0.87 2.38 des et al., 19 ar %Red.lyr 4.61	0.0095 84 Expone k 0.1823 0.3424 0.1117 0.2074 0.1835 0.0214 -0.0187 0.0096 0.0327 84 Expone k 0.1448	ntial %Red./yr 16.67 28.99 10.57 18.73 16.77 2.11 -1.89 0.95 3.22 intial %Red./yr 13.48
Lab Code OBG	Site Name Pipeline Leak Site, Myrtle Beach AFB, SC	Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	7/1/1981 Spill Date 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 Spill Date 1/1/1981 1/1/1981	3/4/1997 MBMW24 Sample Date Locid 7/25/2001 MBMW24	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Analyte Benzene Toluene	0.40220 Mass Fraction 0.01200 0.00150 0.07600 0.03310 0.12260 0.29000 1.20000 0.10000 0.14000 Mass Fraction 0.02600 0.00210	C _o - C 0.4880 1.3285 0.2940 2.2869 4.3974 -0.2900 -0.1900 0.3200 0.3600 C _o - C 0.4740 1.3279	0.0889 Smit Line k 0.0237 0.0646 0.0143 0.1111 0.2137 -0.0141 -0.0092 0.0156 0.0175 Smit Line k 0.0230 0.0645	4.83 h et al., 198 ear %Red./yr 4.74 4.85 3.86 4.79 4.73 #DIV/0! -0.91 3.70 3.50 h et al., 198 ear %Red./yr 4.85	0.0940 Expon k 0.1813 0.3299 0.0769 0.2065 0.1753 #DIV/0! -0.0084 0.0697 0.0619 1 Expon k 0.1437 0.3135	8.97 ential %Red./yr 16.58 28.10 7.40 18.66 16.08 #DIV/0! -0.84 6.74 6.00 ential %Red./yr 13.38 26.91	0.0666 Co-C 0.4992 1.7192 0.6809 2.3272 5.2265 0.1601 -0.3833 0.0218 0.1343 Co-C 0.4852 1.7186	0.0041 Hugh Line k 0.0243 0.0836 0.0331 0.1131 0.2540 0.0078 -0.0186 0.0011 0.0065 Hugh Line k 0.0236 0.0336	0.88 des et al., 19 ar 4.75 4.86 4.37 4.79 4.75 1.73 -2.28 0.87 2.38 des et al., 19 ar 4.61 4.85	0.0095 84 Expone k 0.1823 0.3424 0.1117 0.2074 0.1835 0.0214 -0.0187 0.0096 0.0327 84 Expone k 0.1448 0.3260	ntial %Red./yr 16.67 28.99 10.57 18.73 16.77 2.11 -1.89 0.95 3.22 ontial %Red./yr 13.48 27.82
Lab Code OBG	Site Name Pipeline Leak Site, Myrtle Beach AFB, SC	Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Spill Date 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 Spill Date 1/1/1981 1/1/1981	3/4/1997 MBMW24 Sample Date Locid 7/25/2001 MBMW24 7/25/2001 MBMW81 7/25/2001 MBMW81 7/25/2001 MBMW81 7/25/2001 MBMW81 7/25/2001 MBMW81	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Analyte Benzene Toluene Ethylbenzene	0.40220 Mass Fraction 0.01200 0.00150 0.07600 0.03310 0.12260 0.29000 1.20000 0.10000 0.14000 Mass Fraction 0.02600 0.00210 0.17000	C _o -C 0.4880 1.3285 0.2940 2.2869 4.3974 -0.2900 0.3200 0.3600 C _o -C 0.4740 1.3279 0.2000	0.0889 Smit Line k 0.0237 0.0646 0.0143 0.1111 0.2137 -0.0141 -0.0095 Smit Line k 0.0230 0.0645 0.0047	4.83 h et al., 198 par %Red./yr 4.74 4.85 3.86 4.73 #DIV/0! -0.91 3.70 3.50 h et al., 198 par %Red./yr 4.61 4.85 2.63	0.0940 Expon k 0.1813 0.3299 0.0769 0.2065 0.1753 #DIV/0! -0.0084 0.0697 0.0619 Expon k 0.1437 0.3135 0.0378	8.97 **Red./yr 16.58 28.10 7.40 18.66 16.08 **DIV/0! -0.84 6.74 6.00 **ential **Red./yr 13.38 26.91 3.71	C _o -C 0.4992 1.7192 0.6809 2.3272 5.2265 0.1601 0.3833 0.0218 0.1343 C _o -C 0.4852 1.7186 0.5869	0.0041 Hugh Line k 0.0243 0.0836 0.0331 0.1131 0.2540 0.0078 0.0011 0.0065 Hugh Line k 0.0236 0.0835 0.0285	0.88 ses et al., 19 ar 4.75 4.86 4.37 4.79 4.75 1.73 2.28 0.87 2.38 ses et al., 19 ar %Red./yr 4.61 4.85 3.77	0.0095 84 Expone k 0.1823 0.3424 0.1117 0.2074 0.1835 0.0214 0.0327 84 Expone k 0.1448 0.3260 0.0726	ntial %Red./yr 16.67 28.99 10.57 18.73 16.77 2.11 -1.89 0.95 3.22 ntial %Red./yr 13.48 27.82 7.00
Lab Code OBG	Site Name Pipeline Leak Site, Myrtle Beach AFB, SC	Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Spill Date 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 Date 1/1/1981 1/1/1981 1/1/1981 1/1/1981	3/4/1997 MBMW24 Sample Date Locid 7/25/2001 MBMW24 7/25/2001 MBMW81	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o)	0.40220 Mass Fraction 0.01200 0.00150 0.07600 0.03310 0.12260 0.29000 1.20000 0.10000 0.14000 Mass Fraction 0.02600 0.00210 0.17000 0.16000	C _o -C 0.4880 1.3285 0.2940 2.2869 4.3974 -0.2900 0.3200 0.3600 C _o -C 0.4740 1.3279 0.2000 2.1600	0.0889 Smit Line k 0.0237 0.0646 0.0143 0.1111 0.2137 -0.0141 -0.0092 0.0156 0.0175 Smit Line k 0.0230 0.0645 0.0097 0.1050	4.83 h et al., 198 har %Red./yr 4.74 4.85 3.86 4.79 4.73 #DIV/0! -0.91 3.70 3.50 h et al., 198 har %Red./yr 4.61 4.85 2.63 4.53	0.0940 Expon k 0.1813 0.3299 0.0769 0.2065 0.1753 #DIV/0! -0.0084 0.0697 0.0619 Expon k 0.1437 0.3135 0.0378 0.03135	8.97 **Red./yr 16.58 28.10 7.40 18.66 16.08 #DIV/0! -0.84 6.74 6.00 **Postal	C _o -C 0.4992 1.7192 0.6809 2.3272 5.2265 0.1601 -0.3833 0.0218 0.1343 C _o -C 0.4852 1.7186 0.5869	0.0041 Hugh Line k 0.0243 0.0836 0.0331 0.1540 0.0078 -0.0186 0.0011 0.0065 Hugh Line k 0.0236 0.0835 0.0285 0.0285 0.1069	0.88 les et al., 19 ar 4.75 4.86 4.37 4.79 4.75 1.73 -2.28 0.87 2.38 les et al., 19 ar 4.61 4.85 3.77 4.53	0.0095 84 Expone k 0.1823 0.3424 0.1117 0.2074 0.1835 0.0214 -0.0187 0.0096 0.0327 84 Expone k 0.1448 0.3260 0.0726 0.1308	ntial %Red./yr 16.67 28.99 10.57 18.73 16.77 2.11 -1.89 0.95 3.22 intial %Red./yr 13.48 27.82 7.00 12.26
Lab Code OBG	Site Name Pipeline Leak Site, Myrtle Beach AFB, SC	Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	7/1/1981 Date 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 Spill Date 1/1/1981 1/1/1981 1/1/1981 1/1/1981	3/4/1997 MBMW24 Sample Date Locid 7/25/2001 MBMW24 7/25/2001 MBMW81	Analyte Benzene Tolluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Analyte Benzene Tolluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX	0.40220 Mass Fraction 0.01200 0.00150 0.07600 0.03310 0.12260 0.29000 1.20000 0.10000 0.14000 Mass Fraction 0.02600 0.00210 0.177000 0.16000 0.35810	C _o - C 0.4880 1.3285 0.2940 2.2869 4.3974 -0.2900 0.3200 0.3600 C _o - C 0.4740 1.3279 0.2000 2.1600 4.1619	0.0889 Smit Line k 0.0237 0.0646 0.0143 0.1111 0.2137 -0.0141 -0.0092 0.0156 0.0175 Smit Line k 0.0230 0.0645 0.0097 0.1050 0.2023	4.83 h et al., 198 har %Red./yr 4.74 4.85 3.86 4.79 4.73 #DIV/0! -0.91 3.70 3.50 h et al., 198 har %Red./yr 4.61 4.85 2.63 4.43 4.43	0.0940 Expon k 0.1813 0.3299 0.0769 0.2065 0.1753 #DIV/0! -0.0084 0.0697 0.0619 Expon k 0.1437 0.3135 0.0378 0.1300 0.1232	8.97 ential %Red./yr 16.58 28.10 7.40 18.66 18.08 #DIV/0! -0.84 6.74 6.00 ential %Red./yr 13.38 26.91 3.71 12.19 11.59	C _o -C 0.4992 1.7192 0.6809 2.3272 5.2265 0.1601 -0.3833 0.0218 0.1343 C _o -C 0.4852 1.7186 0.5869 2.2003 4.9910	No.0041 Hugh Line k 0.0243 0.0836 0.0331 0.1131 0.2540 0.0078 -0.0186 0.0011 0.0065 Hugh Line k 0.0236 0.0835 0.0285 0.1086 0.02426	0.88 des et al., 19 ar 4.75 4.86 4.37 4.79 4.75 1.73 -2.28 0.87 2.38 0.87 2.38 4.61 4.85 3.77 4.65 4.85 3.77 4.53	0.0095 84 Expone k 0.1823 0.3424 0.1117 0.2074 0.1835 0.0214 -0.0187 0.0096 0.0327 84 Expone k 0.1448 0.3260 0.0726 0.1308 0.1314	ntial %Red./yr 16.67 28.99 10.57 18.73 16.77 2.11 -1.89 0.95 3.22 ntial %Red./yr 13.48 27.82 7.00 12.26 12.31
Lab Code OBG	Site Name Pipeline Leak Site, Myrtle Beach AFB, SC	Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	7/1/1981 Spill Date 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 Spill Date 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981	3/4/1997 MBMW24 Sample Date Locid 7/25/2001 MBMW24 7/25/2001 MBMW81	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1,2,3-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1,2,3-Trimethylbenzene	0.40220 Mass Fraction 0.01200 0.00150 0.07600 0.03310 0.12260 0.29000 1.20000 0.10000 0.14000 Mass Fraction 0.02600 0.00210 0.17000 0.18000 0.35810 0.24000	C _o - C 0.4880 1.3285 0.2940 2.2869 4.3974 -0.2900 0.3200 0.3600 C _o - C 0.4740 1.3279 0.2000 2.1600 4.1619 -0.2400	0.0889 Smit Line k 0.0237 0.0646 0.0143 0.1111 0.2137 -0.0141 -0.0092 0.0156 0.0175 Smit Line k 0.0230 0.0645 0.0097 0.1050 0.2023 0.2023 0.2023	4.83 h et al., 198 par %Red./yr 4.74 4.85 3.86 4.73 #DIV/0! -0.91 3.70 3.50 h et al., 198 par 4.61 4.85 2.63 4.48 #DIV/0!	0.0940 Expon k 0.1813 0.3299 0.0769 0.2065 0.1753 #DIV/0! -0.0084 0.0697 0.0619 Expon k 0.1437 0.3135 0.0378 0.1300 0.1232 #DIV/0!	8.97 **Red./yr 16.58 28.10 7.40 18.66 16.08 #DIV/0! -0.84 6.74 6.00 **ential **Red./yr 13.38 26.91 3.71 12.19 11.59 #DIV/0!	C _o -C 0.4992 1.7192 0.6809 2.3272 5.2265 0.1601 -0.3833 0.0218 0.1343 C _o -C 0.4852 1.7186 0.5869 2.2003 4.9910 0.2101	0.0041 Hugh Line k 0.0243 0.0836 0.0331 0.1131 0.2540 0.0078 0.0011 0.0065 Hugh Line k 0.0236 0.0835 0.0835 0.0285 0.1069 0.2426 0.0102	0.88 les et al., 19 ar 4.75 4.86 4.37 4.79 4.75 1.73 2.28 0.87 2.38 les et al., 19 ar 4.61 4.85 3.77 4.53 4.53 4.53 4.53 4.53	0.0095 84 Expone k 0.1823 0.3424 0.1117 0.2074 0.1835 0.0214 0.0327 84 Expone k 0.1448 0.3260 0.0726 0.1308 0.1314 0.0306	ntial %Red./yr 16.67 28.99 10.57 18.73 16.77 2.11 -1.89 0.95 3.22 ntial %Red./yr 13.48 27.82 7.00 12.26 12.31 3.01
Lab Code OBG	Site Name Pipeline Leak Site, Myrtle Beach AFB, SC	Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Spill Date 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981	3/4/1997 MBMW24 Sample Date Locid 7/25/2001 MBMW24 7/25/2001 MBMW81	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1,2,3-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1,2,3-Trimethylbenzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene	Mass Fraction 0.01200 0.00150 0.07600 0.03310 0.12260 0.29000 1.20000 0.10000 0.14000 Mass Fraction 0.02600 0.00210 0.177000 0.16000 0.35810 0.24000 0.94000	C _o - C 0.4880 1.3285 0.2940 2.2869 4.3974 -0.2900 0.3200 0.3600 C _o - C 0.4740 1.3279 0.2000 2.1600 4.1619 -0.2400 0.0700	0.0889 Smit Line k 0.0237 0.0646 0.0143 0.1111 0.2137 -0.0141 -0.0092 0.0156 0.0175 Smit Line k 0.0230 0.0645 0.0097 0.1050 0.2023 -0.0117 0.0034	4.83 h et al., 198 har %Red./yr 4.74 4.85 3.86 4.79 4.73 #DIV/0! -0.91 3.70 3.50 h et al., 198 har %Red./yr 4.61 4.85 2.63 4.53 4.53 4.54 #DIV/0! 0.34	0.0940 Expon k 0.1813 0.3299 0.0769 0.2065 0.1753 #DIV/0! -0.0084 0.0697 0.0619 Expon k 0.1437 0.3135 0.0378 0.1300 0.1232 #DIV/0! 0.0035	8.97 **Red./yr 16.58 28.10 7.40 18.66 16.08 #DIV/0! -0.84 6.74 6.00 **Policial ** 3.38 26.91 3.71 12.19 11.59 #DIV/0! 0.35	C _o -C 0.4992 1.7192 0.6809 2.3272 5.2265 0.1601 -0.3833 0.0218 0.1343 C _o -C 0.4852 1.7186 0.5869 2.2003 4.9910 0.2101 0.2101 -0.1233	No.0041 Hugh Line k 0.0243 0.0836 0.0331 0.2540 0.0078 0.0011 0.0065 Hugh Line k 0.0236 0.0385 0.0285 0.1069 0.2426 0.01069 0.2426 0.01060	0.88 les et al., 19 ar 4.75 4.86 4.37 4.79 4.75 1.73 -2.28 0.87 2.38 les et al., 19 ar 4.61 4.85 3.77 4.53 2.27 -0.73	0.0095 84 Expone k 0.1823 0.3424 0.1117 0.2074 0.1835 0.0214 -0.0187 0.0096 0.0327 84 Expone k 0.1448 0.3260 0.0726 0.1308 0.1314 0.0306 0.0306	ntial %Red./yr 16.67 28.99 10.57 18.73 16.77 2.11 -1.89 0.95 3.22 intial %Red./yr 13.48 27.82 7.00 12.26 12.31 3.01 -0.69
Lab Code OBG	Site Name Pipeline Leak Site, Myrtle Beach AFB, SC	Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	7/1/1981 Spill Date 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 Spill Date 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981 1/1/1981	3/4/1997 MBMW24 Sample Date Locid 7/25/2001 MBMW24 7/25/2001 MBMW81	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1,2,3-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1,2,3-Trimethylbenzene	0.40220 Mass Fraction 0.01200 0.00150 0.07600 0.03310 0.12260 0.29000 1.20000 0.10000 0.14000 Mass Fraction 0.02600 0.00210 0.17000 0.18000 0.35810 0.24000	C _o - C 0.4880 1.3285 0.2940 2.2869 4.3974 -0.2900 0.3200 0.3600 C _o - C 0.4740 1.3279 0.2000 2.1600 4.1619 -0.2400	0.0889 Smit Line k 0.0237 0.0646 0.0143 0.1111 0.2137 -0.0141 -0.0092 0.0156 0.0175 Smit Line k 0.0230 0.0645 0.0097 0.1050 0.2023 0.2023 0.2023	4.83 h et al., 198 par %Red./yr 4.74 4.85 3.86 4.73 #DIV/0! -0.91 3.70 3.50 h et al., 198 par 4.61 4.85 2.63 4.48 #DIV/0!	0.0940 Expon k 0.1813 0.3299 0.0769 0.2065 0.1753 #DIV/0! -0.0084 0.0697 0.0619 Expon k 0.1437 0.3135 0.0378 0.1300 0.1232 #DIV/0!	8.97 **Red./yr 16.58 28.10 7.40 18.66 16.08 #DIV/0! -0.84 6.74 6.00 **ential **Red./yr 13.38 26.91 3.71 12.19 11.59 #DIV/0!	C _o -C 0.4992 1.7192 0.6809 2.3272 5.2265 0.1601 -0.3833 0.0218 0.1343 C _o -C 0.4852 1.7186 0.5869 2.2003 4.9910 0.2101	0.0041 Hugh Line k 0.0243 0.0836 0.0331 0.1131 0.2540 0.0078 0.0011 0.0065 Hugh Line k 0.0236 0.0835 0.0835 0.0285 0.1069 0.2426 0.0102	0.88 les et al., 19 ar 4.75 4.86 4.37 4.79 4.75 1.73 2.28 0.87 2.38 les et al., 19 ar 4.61 4.85 3.77 4.53 4.53 4.53 4.53 4.53	0.0095 84 Expone k 0.1823 0.3424 0.1117 0.2074 0.1835 0.0214 0.0327 84 Expone k 0.1448 0.3260 0.0726 0.1308 0.1314 0.0306	ntial %Red./yr 16.67 28.99 10.57 18.73 16.77 2.11 -1.89 0.95 3.22 ntial %Red./yr 13.48 27.82 7.00 12.26 12.31 3.01

								Smit	h et al 198	1			Huah	es et al., 19	84	
Lab		Fuel	Spill	Sample				Line	ar	Expon	ential		Line		Expon	nential
Code	Site Name	Type	Date	Date Locid	Analyte	Mass Fraction	C _o - C	k	%Red./yr	k	%Red./yr	C _o - C	k	%Red./yr	k	%Red./yr
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	12/1/1993 CH-EW6	Benzene	0.00130	0.4987	0.0274	5.49	0.3273	27.91	0.5099	0.0280	5.49	0.3285	28.00
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	12/1/1993 CH-EW6	Toluene	0.00568	1.3243	0.0728	5.48	0.3001	25.92	1.7150	0.0943	5.48	0.3142	26.96
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	12/1/1993 CH-EW6	Ethylbenzene	0.04778	0.3222	0.0177	4.79	0.1126	10.65	0.7091	0.0390	5.15	0.1519	14.10
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	12/1/1993 CH-EW6	Total Xylenes (m,p, and o)	0.18710	2.1329	0.1173	5.06	0.1385	12.93	2.1732	0.1195	5.06	0.1394	13.01
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	12/1/1993 CH-EW6	Total BTEX	0.24188	4.2781	0.2353	5.21	0.1610	14.87	5.1073	0.2809	5.25	0.1703	15.66
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	12/1/1993 CH-EW6	1,2,3-Trimethylbenzene	0.07782	-0.0778	-0.0043	#DIV/0!	#DIV/0!	#DIV/0!	0.3723	0.0205	4.55	0.0965	9.20
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	12/1/1993 CH-EW6	1,2,4-Trimethylbenzene	0.17500	0.8350	0.0459	4.55	0.0964	9.19	0.6417	0.0353	4.32	0.0847	8.12
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	12/1/1993 CH-EW6	1,3,5-Trimethylbenzene	0.09917	0.3208	0.0176	4.20	0.0794	7.63	0.0227	0.0012	1.02	0.0113	1.13
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	12/1/1993 CH-EW6	Naphthalene	0.05821	0.4418	0.0243	4.86	0.1183	11.16	0.2161	0.0119	4.33	0.0853	8.17
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	12/1/1993 CH-EW6	1-MethylNaphthalene	0.18990	0.5901	0.0325	4.16	0.0777	7.48	-0.1537	-0.0085	-23.39	-0.0912	-9.55
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	12/1/1993 CH-EW6	2-MethylNaphthalene	0.22465	0.3354	0.0184	3.29	0.0502	4.90	-0.0663	-0.0036	-2.30	-0.0192	-1.94
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	12/1/1993 CH-EW6	Total Naphthalenes	0.47276	1.3672	0.0752	4.09	0.0747	7.20	-0.0039	-0.0002	-0.05	-0.0005	-0.05
						_			h et al., 198					es et al., 19		
Lab		Fuel	Spill	Sample				Line	ear	Expon	ential		Line	ar	Expon	ential
Code	Site Name	Type	Date	Date Locid	Analyte	Mass Fraction	C _o - C	k	%Red./yr	k	%Red./yr	C _o - C	k	%Red./yr	k	%Red./yr
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	5/1/1995 WQ27B	Benzene	0.02697	0.4730	0.0241	4.83	0.1490	13.84	0.4843	0.0247	4.83	0.1502	13.94
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	5/1/1995 WQ27B	Toluene	0.00586	1.3241	0.0676	5.08	0.2769	24.18	1.7148	0.0875	5.09	0.2900	25.17
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	5/1/1995 WQ27B	Ethylbenzene	0.27355	0.0965	0.0049	1.33	0.0154	1.53	0.4833	0.0247	3.26	0.0519	5.06
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	5/1/1995 WQ27B	Total Xylenes (m,p, and o)	0.85845	1.4615	0.0746	3.22	0.0507	4.95	1.5019	0.0766	3.25	0.0516	5.03
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	5/1/1995 WQ27B	Total BTEX	1.16483	3.3552	0.1712	3.79	0.0692	6.69	4.1843	0.2135	3.99	0.0778	7.48
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	5/1/1995 WQ27B	1,2,3-Trimethylbenzene	0.12723	-0.1272	-0.0065	#DIV/0!	#DIV/0!	#DIV/0!	0.3229	0.0165	3.66	0.0645	6.25
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	5/1/1995 WQ27B	1,2,4-Trimethylbenzene	0.34452	0.6655	0.0340	3.36	0.0549	5.34	0.4722	0.0241	2.95	0.0441	4.31
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	5/1/1995 WQ27B	1,3,5-Trimethylbenzene	0.14581	0.2742	0.0140	3.33	0.0540	5.26	-0.0240	-0.0012	-1.00	-0.0092	-0.92
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	5/1/1995 WQ27B	Naphthalene	0.13548	0.3645	0.0186	3.72	0.0666	6.45	0.1388	0.0071	2.58	0.0360	3.54
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	5/1/1995 WQ27B	1-MethylNaphthalene	0.20516	0.5748	0.0293	3.76	0.0682	6.59	-0.1690	-0.0086	-23.85	-0.0886	-9.26
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	5/1/1995 WQ27B	2-MethylNaphthalene	0.26968	0.2903	0.0148	2.65	0.0373	3.66	-0.1113	-0.0057	-3.59	-0.0272	-2.75
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	5/1/1995 WQ27B	Total Naphthalenes	0.61032	1.2297	0.0628	3.41	0.0563	5.48	-0.1415	-0.0072	-1.54	-0.0135	-1.36
									L -4 -1 400	4					0.4	
						_			h et al., 198					es et al., 19		
Lab		Fuel	Spill	Sample		Ī		Line		Expon	ential		Line		Expon	ential
Code	Site Name	Туре	Date	Date Locid	Analyte	Mass Fraction	C _o - C	Line k	%Red./yr	Expon k	%Red./yr	C _o - C	Line k	ar %Red./yr	Expon k	%Red./yr
Code NRMRL	DFSP-Charleston, Tank 3 Area, Hanahan, SC	Type JP-4	Date 10/1/1975	Date Locid 5/1/1995 W108-DFSP	Benzene	0.00000	0.5000	k 0.0255	%Red./yr 5.10	k 0.6110	%Red./yr 45.72	0.5112	k 0.0261	%Red./yr 5.10	k 0.6121	%Red./yr 45.78
Code NRMRL NRMRL	DFSP-Charleston, Tank 3 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	Type JP-4 JP-4	Date 10/1/1975 10/1/1975	Date Locid 5/1/1995 W108-DFSP 5/1/1995 W108-DFSP	Benzene Toluene	0.00000 0.00265	0.5000 1.3273	k 0.0255 0.0677	%Red./yr 5.10 5.09	k 0.6110 0.3173	%Red./yr 45.72 27.19	0.5112 1.7180	k 0.0261 0.0877	%Red./yr 5.10 5.10	k 0.6121 0.3304	%Red./yr 45.78 28.14
Code NRMRL NRMRL NRMRL	DFSP-Charleston, Tank 3 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	Type JP-4 JP-4 JP-4	Date 10/1/1975 10/1/1975 10/1/1975	Date Locid 5/1/1995 W108-DFSP 5/1/1995 W108-DFSP 5/1/1995 W108-DFSP	Benzene Toluene Ethylbenzene	0.00000 0.00265 0.00671	0.5000 1.3273 0.3633	k 0.0255 0.0677 0.0185	%Red./yr 5.10 5.09 5.01	k 0.6110 0.3173 0.2046	%Red./yr 45.72 27.19 18.50	0.5112 1.7180 0.7501	k 0.0261 0.0877 0.0383	%Red./yr 5.10 5.10 5.06	k 0.6121 0.3304 0.2411	%Red./yr 45.78 28.14 21.43
Code NRMRL NRMRL NRMRL NRMRL	DFSP-Charleston, Tank 3 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	Type JP-4 JP-4 JP-4 JP-4	Date 10/1/1975 10/1/1975 10/1/1975 10/1/1975	Date Locid 5/1/1995 W108-DFSP 5/1/1995 W108-DFSP 5/1/1995 W108-DFSP 5/1/1995 W108-DFSP	Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o)	0.00000 0.00265 0.00671 0.02536	0.5000 1.3273 0.3633 2.2946	k 0.0255 0.0677 0.0185 0.1171	%Red./yr 5.10 5.09 5.01 5.05	k 0.6110 0.3173 0.2046 0.2305	%Red./yr 45.72 27.19 18.50 20.58	0.5112 1.7180 0.7501 2.3350	k 0.0261 0.0877 0.0383 0.1192	%Red./yr 5.10 5.10 5.06 5.05	k 0.6121 0.3304 0.2411 0.2314	%Red./yr 45.78 28.14 21.43 20.65
Code NRMRL NRMRL NRMRL NRMRL NRMRL	DFSP-Charleston, Tank 3 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	Type JP-4 JP-4 JP-4 JP-4 JP-4	Date 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975	Date Locid 5/1/1995 W108-DFSP 5/1/1995 W108-DFSP 5/1/1995 W108-DFSP 5/1/1995 W108-DFSP 5/1/1995 W108-DFSP	Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX	0.00000 0.00265 0.00671 0.02536 0.03473	0.5000 1.3273 0.3633 2.2946 4.4853	k 0.0255 0.0677 0.0185 0.1171 0.2289	%Red./yr 5.10 5.09 5.01 5.05 5.06	k 0.6110 0.3173 0.2046 0.2305 0.2485	%Red./yr 45.72 27.19 18.50 20.58 22.00	0.5112 1.7180 0.7501 2.3350 5.3144	k 0.0261 0.0877 0.0383 0.1192 0.2712	%Red./yr 5.10 5.10 5.06 5.05 5.07	k 0.6121 0.3304 0.2411 0.2314 0.2571	%Red./yr 45.78 28.14 21.43 20.65 22.67
Code NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	DFSP-Charleston, Tank 3 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Date 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975	Date Locid 5/1/1995 W108-DFSP 5/1/1995 W108-DFSP 5/1/1995 W108-DFSP 5/1/1995 W108-DFSP 5/1/1995 W108-DFSP 5/1/1995 W108-DFSP	Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene	0.00000 0.00265 0.00671 0.02536 0.03473 0.15297	0.5000 1.3273 0.3633 2.2946 4.4853 -0.1530	k 0.0255 0.0677 0.0185 0.1171 0.2289 -0.0078	%Red./yr 5.10 5.09 5.01 5.05 5.06 #DIV/0!	k 0.6110 0.3173 0.2046 0.2305 0.2485 #DIV/0!	%Red./yr 45.72 27.19 18.50 20.58 22.00 #DIV/0!	0.5112 1.7180 0.7501 2.3350 5.3144 0.2972	k 0.0261 0.0877 0.0383 0.1192 0.2712 0.0152	%Red./yr 5.10 5.10 5.06 5.05 5.07 3.37	k 0.6121 0.3304 0.2411 0.2314 0.2571 0.0551	%Red./yr 45.78 28.14 21.43 20.65 22.67 5.36
Code NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	DFSP-Charleston, Tank 3 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Date 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975	Date Locid 5/1/1995 W108-DFSP 5/1/1995 W108-DFSP 5/1/1995 W108-DFSP 5/1/1995 W108-DFSP 5/1/1995 W108-DFSP 5/1/1995 W108-DFSP 5/1/1995 W108-DFSP	Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene	0.00000 0.00265 0.00671 0.02536 0.03473 0.15297 0.20228	0.5000 1.3273 0.3633 2.2946 4.4853 -0.1530 0.8077	k 0.0255 0.0677 0.0185 0.1171 0.2289 -0.0078 0.0412	%Red./yr 5.10 5.09 5.01 5.05 5.06 #DIV/0! 4.08	k 0.6110 0.3173 0.2046 0.2305 0.2485 #DIV/0! 0.0821	%Red./yr 45.72 27.19 18.50 20.58 22.00 #DIV/0! 7.88	0.5112 1.7180 0.7501 2.3350 5.3144 0.2972 0.6144	k 0.0261 0.0877 0.0383 0.1192 0.2712 0.0152 0.0314	%Red./yr 5.10 5.10 5.06 5.05 5.07 3.37 3.84	k 0.6121 0.3304 0.2411 0.2314 0.2571 0.0551 0.0712	%Red./yr 45.78 28.14 21.43 20.65 22.67 5.36 6.87
Code NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	DFSP-Charleston, Tank 3 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Date 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975	Date Locid 5/1/1995 W108-DFSP	Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	0.00000 0.00265 0.00671 0.02536 0.03473 0.15297 0.20228 0.07345	0.5000 1.3273 0.3633 2.2946 4.4853 -0.1530 0.8077 0.3465	k 0.0255 0.0677 0.0185 0.1171 0.2289 -0.0078 0.0412 0.0177	%Red./yr 5.10 5.09 5.01 5.05 5.06 #DIV/0! 4.08 4.21	k 0.6110 0.3173 0.2046 0.2305 0.2485 #DIV/0! 0.0821 0.0890	%Red./yr 45.72 27.19 18.50 20.58 22.00 #DIV/0! 7.88 8.51	0.5112 1.7180 0.7501 2.3350 5.3144 0.2972 0.6144 0.0484	k 0.0261 0.0877 0.0383 0.1192 0.2712 0.0152 0.0314 0.0025	%Red./yr 5.10 5.10 5.06 5.05 5.07 3.37 3.84 2.03	k 0.6121 0.3304 0.2411 0.2314 0.2571 0.0551 0.0712 0.0258	%Red./yr 45.78 28.14 21.43 20.65 22.67 5.36 6.87 2.55
Code NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	DFSP-Charleston, Tank 3 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Date 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975	Date Locid 5/1/1995 W108-DFSP	Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene	0.00000 0.00265 0.00671 0.02536 0.03473 0.15297 0.20228 0.07345 0.09709	0.5000 1.3273 0.3633 2.2946 4.4853 -0.1530 0.8077 0.3465 0.4029	k 0.0255 0.0677 0.0185 0.1171 0.2289 -0.0078 0.0412 0.0177 0.0206	%Red./yr 5.10 5.09 5.01 5.05 5.06 #DIV/0! 4.08 4.21 4.11	k 0.6110 0.3173 0.2046 0.2305 0.2485 #DIV/0! 0.0821 0.0890 0.0836	%Red./yr 45.72 27.19 18.50 20.58 22.00 #DIV/0! 7.88 8.51 8.02	0.5112 1.7180 0.7501 2.3350 5.3144 0.2972 0.6144 0.0484 0.1772	k 0.0261 0.0877 0.0383 0.1192 0.2712 0.0152 0.0314 0.0025 0.0090	%Red./yr 5.10 5.10 5.06 5.05 5.07 3.37 3.84 2.03 3.30	k 0.6121 0.3304 0.2411 0.2314 0.2571 0.0551 0.0712 0.0258 0.0530	%Red./yr 45.78 28.14 21.43 20.65 22.67 5.36 6.87 2.55 5.16
Code NRMRL	DFSP-Charleston, Tank 3 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Date 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975	Date Locid 5/1/1995 W108-DFSP	Benzene Toluene Ethylbenzene Total Xylenes (m.p. and o) Total BTEX 1.2.3-Trimethylbenzene 1.2.4-Trimethylbenzene 1.3.5-Trimethylbenzene Naphthalene	0.00000 0.00265 0.00671 0.02536 0.03473 0.15297 0.20228 0.07345 0.09709 0.24399	0.5000 1.3273 0.3633 2.2946 4.4853 -0.1530 0.8077 0.3465 0.4029 0.5360	k 0.0255 0.0677 0.0185 0.1171 0.2289 -0.0078 0.0412 0.0177 0.0206 0.0274	%Red./yr 5.10 5.09 5.01 5.05 5.06 #DIV/0! 4.08 4.21 4.11 3.51	k 0.6110 0.3173 0.2046 0.2305 0.2485 #DIV/0! 0.0821 0.0821 0.0836 0.0593	%Red./yr 45.72 27.19 18.50 20.58 22.00 #DIV/0! 7.88 8.51 8.02 5.76	0.5112 1.7180 0.7501 2.3350 5.3144 0.2972 0.6144 0.0484 0.1772 -0.2078	k 0.0261 0.0877 0.0383 0.1192 0.2712 0.0152 0.0314 0.0025 0.0090 -0.0106	%Red./yr 5.10 5.10 5.06 5.05 5.07 3.37 3.84 2.03 3.30 -29.33	k 0.6121 0.3304 0.2411 0.2314 0.2571 0.0551 0.0712 0.0258 0.0530 -0.0974	%Red./yr 45.78 28.14 21.43 20.65 22.67 5.36 6.87 2.55 5.16 -10.23
Code NRMRL	DFSP-Charleston, Tank 3 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Date 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975	Date Locid 5/1/1995 W108-DFSP	Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1,2,3-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene	0.00000 0.00265 0.00671 0.02536 0.03473 0.15297 0.20228 0.07345 0.09709 0.24399 0.33123	0.5000 1.3273 0.3633 2.2946 4.4853 -0.1530 0.8077 0.3465 0.4029 0.5360 0.2288	k 0.0255 0.0677 0.0185 0.1171 0.2289 -0.0078 0.0412 0.0177 0.0206 0.0274 0.0117	%Red./yr 5.10 5.09 5.01 5.05 5.06 #DIV/0! 4.08 4.21 4.11 3.51 2.08	k 0.6110 0.3173 0.2046 0.2305 0.2485 #DIV/0! 0.0821 0.0890 0.0890 0.0593 0.0268	%Red./yr 45.72 27.19 18.50 20.58 22.00 #DIV/0! 7.88 8.51 8.02 5.76 2.64	0.5112 1.7180 0.7501 2.3350 5.3144 0.2972 0.6144 0.0484 0.1772 -0.2078 -0.1729	k 0.0261 0.0877 0.0383 0.1192 0.2712 0.0152 0.0314 0.0025 0.0090 -0.0106 -0.0088	%Red./yr 5.10 5.10 5.06 5.05 5.07 3.37 3.84 2.03 3.30	k 0.6121 0.3304 0.2411 0.2314 0.2571 0.0551 0.0712 0.0258 0.0530 -0.0974 -0.0377	%Red./yr 45.78 28.14 21.43 20.65 22.67 5.36 6.87 2.55 5.16 -10.23 -3.84
Code NRMRL	DFSP-Charleston, Tank 3 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Date 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975	Date Locid 5/1/1995 W108-DFSP	Benzene Toluene Ethylbenzene Total Xylenes (m.p. and o) Total BTEX 1.2.3-Trimethylbenzene 1.2.4-Trimethylbenzene 1.3.5-Trimethylbenzene Naphthalene	0.00000 0.00265 0.00671 0.02536 0.03473 0.15297 0.20228 0.07345 0.09709 0.24399	0.5000 1.3273 0.3633 2.2946 4.4853 -0.1530 0.8077 0.3465 0.4029 0.5360	k 0.0255 0.0677 0.0185 0.1171 0.2289 -0.0078 0.0412 0.0177 0.0206 0.0274 0.0117 0.0596	%Red./yr 5.10 5.09 5.01 5.05 5.06 #DIV/0! 4.08 4.21 4.11 3.51 2.08 3.24	k 0.6110 0.3173 0.2046 0.2305 0.2485 #DIV/0! 0.0821 0.0890 0.0836 0.0593 0.0268 0.0514	%Red./yr 45.72 27.19 18.50 20.58 22.00 #DIV/0! 7.88 8.51 8.02 5.76	0.5112 1.7180 0.7501 2.3350 5.3144 0.2972 0.6144 0.0484 0.1772 -0.2078	k 0.0261 0.0877 0.0383 0.1192 0.2712 0.0152 0.0314 0.0025 0.0090 -0.0106 -0.0088 -0.0104	%Red./yr 5.10 5.10 5.06 5.05 5.07 3.37 3.84 2.03 3.30 -29.33 -5.57 -2.22	k 0.6121 0.3304 0.2411 0.2314 0.2571 0.0551 0.0712 0.0258 0.0530 -0.0974 -0.0377 -0.0184	%Red./yr 45.78 28.14 21.43 20.65 22.67 5.36 6.87 2.55 5.16 -10.23
Code NRMRL	DFSP-Charleston, Tank 3 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Date 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975	Date Locid 5/1/1995 W108-DFSP	Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1,2,3-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene	0.00000 0.00265 0.00671 0.02536 0.03473 0.15297 0.20228 0.07345 0.09709 0.24399 0.33123	0.5000 1.3273 0.3633 2.2946 4.4853 -0.1530 0.8077 0.3465 0.4029 0.5360 0.2288	k 0.0255 0.0677 0.0185 0.1171 0.2289 -0.0078 0.0412 0.0177 0.0206 0.0274 0.0117 0.0596	%Red./yr 5.10 5.09 5.01 5.05 5.06 #DIV/0! 4.08 4.21 4.11 3.51 2.08 3.24	k 0.6110 0.3173 0.2046 0.2305 0.2485 #DIV/0! 0.0821 0.0896 0.0593 0.0268 0.0514	%Red./yr 45.72 27.19 18.50 20.58 22.00 #DIV/0! 7.88 8.51 8.02 5.76 2.64 5.01	0.5112 1.7180 0.7501 2.3350 5.3144 0.2972 0.6144 0.0484 0.1772 -0.2078 -0.1729	k 0.0261 0.0877 0.0383 0.1192 0.2712 0.0152 0.0314 0.0025 0.0090 -0.0106 -0.0088 -0.0104	%Red./yr 5.10 5.10 5.06 5.05 5.07 3.37 3.84 2.03 3.30 -29.33 -5.57 -2.22 use et al., 19	k 0.6121 0.3304 0.2411 0.2314 0.2571 0.0551 0.0712 0.0258 0.0530 -0.0974 -0.0377 -0.0184	%Red./yr 45.78 28.14 21.43 20.65 22.67 5.36 6.87 2.55 5.16 -10.23 -3.84 -1.86
Code NRMRL	DFSP-Charleston, Tank 3 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Date 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975	Date Locid 5/1/1995 W108-DFSP	Benzene Toluene Ethylbenzene Total Xylenes (m.p. and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene 1-MethylNaphthalene Z-MethylNaphthalene Total Naphthalenes	0.00000 0.00265 0.06671 0.02536 0.03473 0.15297 0.20228 0.07345 0.09709 0.24399 0.33123 0.67231	0.5000 1.3273 0.3633 2.2946 4.4853 0.1530 0.8077 0.3465 0.4029 0.5360 0.2288 1.1677	Line k 0.0255 0.0677 0.0185 0.1171 0.2289 -0.0078 0.0412 0.0177 0.0206 0.0274 0.0177 0.0596 Smit	%Red./yr 5.10 5.09 5.01 5.05 5.06 #DIV/0! 4.08 4.21 4.11 3.51 2.08 3.24 h et al., 198	k 0.6110 0.3173 0.2046 0.2305 0.2485 #DIV/0! 0.0821 0.0893 0.0268 0.0514 1 Expon	**Red./yr 45.72 27.19 18.50 20.58 22.00 #DIV/0! 7.88 8.51 8.02 5.76 2.64 5.01	0.5112 1.7180 0.7501 2.3350 5.3144 0.2972 0.6144 0.0484 0.1772 -0.2078 -0.1729 -0.2035	Line k 0.0261 0.0877 0.0383 0.1192 0.2712 0.0152 0.0314 0.0025 0.0090 -0.0106 -0.0088 -0.0104 Hugh	%Red.lyr 5.10 5.10 5.06 5.05 5.07 3.37 3.84 2.03 3.39 -29.33 -5.57 -2.22 ues et al., 19 ar	k 0.6121 0.3304 0.2411 0.2314 0.2511 0.0551 0.0712 0.0258 0.0530 -0.0974 -0.0377 -0.0184 Expon	%Red./yr 45.78 28.14 21.43 20.65 22.67 5.36 6.87 2.55 5.16 -10.23 -3.84 -1.86
Code NRMRL	DFSP-Charleston, Tank 3 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Date 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975	Date Locid 5/1/1995 W108-DFSP	Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte	0.00000 0.00265 0.00671 0.02536 0.03473 0.15297 0.20228 0.07345 0.09709 0.24399 0.33123 0.67231	0.5000 1.3273 0.3633 2.2946 4.4853 -0.1530 0.8077 0.3465 0.4029 0.5360 0.2288 1.1677	Line k 0.0255 0.0677 0.0185 0.1171 0.2289 -0.0078 0.0412 0.0177 0.0206 0.0274 0.0117 0.0596 Smitt	%Red./yr 5.10 5.09 5.01 5.05 5.06 #DIV/0! 4.08 4.21 4.11 3.51 2.08 3.24 h et al., 198 aar %Red./yr	k 0.6110 0.3173 0.2046 0.2305 0.2485 #DIV/0! 0.0821 0.0892 0.0853 0.0268 0.0593	%Red.Jyr 45.72 27.19 18.50 20.58 22.00 #DIV/0! 7.88 8.51 8.02 5.76 2.64 5.01	0.5112 1.7180 0.7501 2.3350 5.3144 0.2972 0.6144 0.0484 0.1772 -0.2078 -0.1729 -0.2035	Line k 0.0261 0.0877 0.0383 0.1192 0.2712 0.0152 0.0314 0.0025 0.0090 -0.0106 -0.0088 -0.0104 Hugh	%Red.lyr 5.10 5.10 5.05 5.07 3.37 2.03 3.30 -29.33 -5.57 -2.22 les et al., 19 ar	k 0.6121 0.3304 0.2411 0.2314 0.2571 0.0551 0.0712 0.0258 0.0530 -0.0974 -0.0377 -0.0184 84 Expon	%Red.lyr 45.78 28.14 21.43 20.65 22.67 5.36 6.87 2.55 5.16 -10.23 -3.84 -1.86
Code NRMRL	DFSP-Charleston, Tank 3 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC DFSP-Charleston, Tank 3 Area, Hanahan, SC	Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Date 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975	Date Locid 5/1/1995 W108-DFSP	Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene	0.00000 0.00265 0.00671 0.02536 0.03473 0.15297 0.20228 0.077345 0.09709 0.24399 0.33123 0.67231	0.5000 1.3273 0.3633 2.2946 4.4853 0.1530 0.8077 0.3465 0.4029 0.5360 0.2288 1.1677	k 0.0255 0.0677 0.0185 0.1171 0.2289 -0.0078 0.0412 0.0177 0.0206 0.0274 0.0177 0.0596 Smith Line k 0.0229	%Red./yr 5.10 5.09 5.01 5.05 5.06 #DIV/0! 4.08 4.21 4.11 3.51 2.08 3.24 h et al., 198 har %Red./yr 4.57	Expon k 0.6110 0.3173 0.2046 0.2305 0.2485 #DIV/0! 0.0821 0.0890 0.0593 0.0268 0.0514 1 Expon k 0.3823	%Red.Jyr 45.72 27.19 18.50 20.58 20.00 #DIV/0! 7.88 8.51 8.02 5.76 2.64 5.01 ential %Red.Jyr 31.77	0.5112 1.7180 0.7501 2.3350 5.3144 0.2972 0.6144 0.0484 0.1772 -0.2078 -0.2078 -0.2078 -0.2035	k 0.0261 0.0877 0.0383 0.1192 0.2712 0.0152 0.0314 0.0025 0.0090 -0.0106 -0.0008 -0.0104 Hugt Line k 0.0234	%Red.lyr 5.10 5.10 5.10 5.06 5.05 5.07 3.84 2.03 3.30 -29.33 -5.57 -2.22 les et al., 19 ar %Red.lyr 4.57	k 0.6121 0.3304 0.2411 0.2571 0.0551 0.0712 0.0258 0.0530 -0.0974 -0.0377 -0.0184 84 Expon k 0.3833	%Red.lyr 45,78 28.14 21.43 20.65 22.67 5.36 6.87 2.55 5.16 -10.23 -3.84 -1.86
Code NRMRL	DFSP-Charleston, Tank 3 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC DFSP-Charleston, Tank 3 Area, Hanahan, SC	Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Date 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975	Date Locid 5/1/1995 W108-DFSP 5/1/1997 W108-DFSP 5/1/1997 W108-DFSP	Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1,2,3-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene	0.00000 0.00265 0.00671 0.02536 0.03473 0.15297 0.20228 0.07345 0.09709 0.24399 0.33123 0.67231	0.5000 1.3273 0.3633 2.2946 4.4853 -0.1530 0.8077 0.3465 0.4029 0.5360 0.2288 1.1677	k 0.0255 0.0677 0.0185 0.1171 0.2289 -0.0078 0.0412 0.0177 0.0206 0.0274 0.0117 0.596 Smit Line k 0.0229 0.0607	%Red./yr 5.10 5.09 5.01 5.05 5.06 #DIV/0! 4.08 4.21 4.11 3.51 2.08 3.24 h et al., 198 har 4.57	Expon k 0.6110 0.3173 0.2046 0.2305 0.2485 #DIV/0! 0.0821 0.0890 0.0593 0.0268 0.0514 1 Expon k 0.3823 0.2752	%Red.Jyr 45.72 27.19 18.50 20.58 22.00 #DIV/0! 7.88 8.51 8.02 5.76 2.64 5.01 ential %Red.Jyr 31.77 24.06	0.5112 1.7180 0.7501 2.3350 5.3144 0.2972 0.6144 0.0484 0.1772 -0.2078 -0.1729 -0.2035	k 0.0261 0.0877 0.0383 0.1192 0.2712 0.0152 0.0314 0.0095 0.0090 -0.0106 -0.0088 -0.0104 Hugh Line k 0.0234	%Red.lyr 5.10 5.10 5.10 5.06 5.05 5.07 3.37 3.84 2.03 3.30 -29.33 -5.57 -2.22 tes et al., 19 ar 4.57 4.56	k 0.6121 0.3304 0.2411 0.2571 0.0551 0.0712 0.0588 0.0530 -0.0974 -0.0377 -0.0184 Expon k 0.3833 0.2870	%Red.lyr 45.78 28.14 21.43 20.65 22.67 5.36 6.87 2.55 5.16 -10.23 -3.84 -1.86 wential %Red.lyr 31.84 24.95
Code NRMRL	DFSP-Charleston, Tank 3 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC DFSP-Charleston, Tank 3 Area, Hanahan, SC DFSP-Charleston, Tank 3 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC DFSP-Charleston, Tank 3 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Date 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975	Date Locid 5/1/1995 W108-DFSP Cample Date Locid 8/8/1997 W-108 8/8/1997 W-108	Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene	0.00000 0.00265 0.00671 0.02536 0.03473 0.15297 0.20228 0.07345 0.09709 0.24399 0.33123 0.67231	0.5000 1.3273 0.3633 2.2946 4.4853 -0.1530 0.8077 0.3465 0.4029 0.5360 0.2288 1.1677	k 0.0255 0.0677 0.0185 0.1171 0.2289 0.0078 0.0412 0.0177 0.0206 0.0274 0.0117 0.0596 Smitt Line k 0.0229 0.0607 0.0159	%Red./yr 5.10 5.09 5.01 5.05 5.06 #DIV/0! 4.08 4.21 4.11 3.51 2.08 3.24 h et al., 198 ear %Red./yr 4.57 4.56	Expon k 0.6110 0.3173 0.2046 0.2305 0.2485 moltoward 0.0821 0.0890 0.0836 0.0514 Expon k 0.3823 0.2752 0.1273 0.2752	%Red.lyr 45.72 27.19 18.50 20.58 22.00 #DIV/01 7.88 8.51 8.02 5.76 2.64 5.01 ential %Red.lyr 31.77 24.06 11.95	0.5112 1.7180 0.7501 2.3350 5.3144 0.2972 0.6144 0.0484 0.1772 -0.2078 -0.2035 	k 0.0261 0.0876 0.0383 0.1192 0.2712 0.0152 0.0314 0.0025 0.0090 -0.0106 -0.0104 Hugt Line k 0.0234 0.0782 0.0336	%Red.lyr 5.10 5.10 5.10 5.06 5.05 5.07 3.37 3.84 2.03 3.30 -29.33 -5.57 -2.29 we et al., 19 ar 4.57 4.56 4.43	k 0.6121 0.3304 0.2411 0.2314 0.2571 0.0551 0.0712 0.0258 0.0530 -0.0974 -0.0377 -0.0184 Expon k 0.3833 0.2870 0.1600	%Red./yr 45.78 28.14 21.43 20.65 22.67 5.36 6.87 2.55 5.16 -10.23 -3.84 -1.86 weetial %Red./yr 31.84 24.95 14.79
Code NRMRL	DFSP-Charleston, Tank 3 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Date 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975	Date Locid 5/1/1995 W108-DFSP 5/1/1997 W108-DFSP Date Locid 8/8/1997 W-108 8/8/1997 W-108 8/8/1997 W-108	Benzene Toluene Ethylbenzene Total Xylenes (m.p. and o) Total BTEX 1.2.3-Trimethylbenzene 1.2.4-Trimethylbenzene 1.3.5-Trimethylbenzene Naphthalene 1-MethyllNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p. and o)	0.00000 0.00265 0.00671 0.02536 0.03473 0.15297 0.20228 0.07345 0.09709 0.24399 0.33123 0.67231	0.5000 1.3273 0.3633 2.2946 4.4853 -0.1530 0.8077 0.3465 0.4029 0.5360 0.2288 1.1677 C _o - C 0.4999 1.3268 0.3471 2.2679	k 0.0255 0.0677 0.0185 0.1171 0.2289 -0.0078 0.0412 0.0177 0.0206 0.0274 0.0117 0.0596 Smitt Line k 0.0229 0.0607 0.0159 0.0159	%Red.lyr 5.10 5.09 5.01 5.05 5.06 #DIV/0! 4.08 4.21 4.11 3.51 2.08 3.24 th et al., 198 ar %Red.lyr 4.57 4.56 4.29	k 0.6110 0.3173 0.2046 0.2305 0.2485 #DIV/0! 0.0821 0.0890 0.0593 0.0268 0.0514 1 Expon k 0.3823 0.2752 0.1273	%Red.lyr 45.72 27.19 18.50 20.58 20.08 #DIV/0! #DIV/0! 8.02 5.76 4.5.01 ential %Red.lyr 24.06 11.95 15.93	0.5112 1.7180 0.7501 2.3350 5.3144 0.2972 0.6144 0.1772 -0.2078 -0.1729 -0.2035 C _o -C	k 0.0261 0.0877 0.0383 0.1192 0.2712 0.0314 0.0025 0.0090 -0.0106 -0.0088 -0.0104 Hugh Line k 0.0234 0.0785 0.0336 0.0036 0.0036	%Red./yr 5.10 5.10 5.10 5.06 5.05 5.07 3.37 3.84 2.03 3.30 -29.33 -5.57 -2.22 tes et al., 19 ar 4.57 4.56 4.43	k 0.6121 0.3304 0.2411 0.2314 0.2571 0.07512 0.0258 0.0530 -0.0974 -0.0377 -0.0184 Expon k 0.3833 0.2870 0.1600 0.1744	%Red.lyr 45.78 28.14 21.43 20.65 22.65 5.36 6.87 2.55 5.16 -10.23 -3.84 -1.86 eential %Red.lyr 31.84 24.95 14.79 16.00
Code NRMRL	DFSP-Charleston, Tank 3 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Date 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975	Date Locid 5/1/1995 W108-DFSP 5/1/1997 W108-DFSP 5/1/1997 W108 8/8/1997 W108 8/8/1997 W108	Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX	0.00000 0.00265 0.00671 0.02536 0.03473 0.15297 0.20228 0.07345 0.09709 0.24399 0.33123 0.67231 Mass Fraction 0.00012 0.00012 0.00323 0.02288 0.05212 0.07835	0.5000 1.3273 0.3633 2.2946 4.4853 -0.1530 0.8077 0.3465 0.4029 0.5360 0.2288 1.1677 C _o - C 0.4999 1.3268 0.3471 2.2679 4.44417	k 0.0255 0.0677 0.0185 0.1171 0.2289 -0.0078 0.0412 0.0177 0.0206 0.0274 0.0117 0.0596 Smitt Line k 0.0229 0.0607 0.0159 0.1037	%Red./yr 5.10 5.09 5.01 5.05 5.06 #DIV/0! 4.08 4.21 4.11 3.51 2.08 3.24 h et al., 198 haar %Red./yr 4.57 4.56 4.29 4.47	k 0.6110 0.3173 0.2046 0.2305 0.2485 #DIV/0! 0.0821 0.0896 0.0593 0.0268 0.0514 1 Expon k 0.3823 0.2752 0.1273 0.1736 0.1854	%Red.lyr 45.72 27.19 18.50 20.58 22.00 #DIV/0! 7.88 8.51 8.02 5.76 2.64 5.01 ential %Red.lyr 31.77 24.06 11.95 15.93	0.5112 1.7180 0.7501 2.3350 5.3144 0.2972 0.6144 0.1772 -0.2078 -0.1729 -0.2035 C _o -C 0.5111 1.7175 0.7340 2.3082 5.2708	k 0.0261 0.0877 0.0383 0.1192 0.2712 0.0152 0.00152 0.0090 -0.0106 -0.0008 -0.0104 Hugh Line k 0.0234 0.0785 0.0336 0.1056 0.0336 0.1056	%Red.lyr 5.10 5.10 5.10 5.06 5.05 5.07 3.37 3.84 2.03 3.30 -29.33 -5.57 -2.22 ess et al., 19 ar 4.56 4.43 4.47 4.51	k 0.6121 0.3304 0.2411 0.2314 0.2571 0.0712 0.0258 0.0530 -0.0974 -0.0377 -0.0184 Expon k 0.3833 0.2870 0.1600 0.1744 0.1931	%Red./yr 45.78 28.14 21.43 20.65 22.67 5.36 6.87 2.55 5.16 -10.23 -3.84 -1.86 wential %Red./yr 31.84 24.95 24.95 14.79 16.00 17.56
Code NRMRL	DFSP-Charleston, Tank 3 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	Type JP-4	Date 10/1/1975	Date Locid 5/1/1995 W108-DFSP 8/8/1997 W-108 8/8/1997 W-108 8/8/1997 W-108 8/8/1997 W-108	Benzene Toluene Ethylbenzene Total Xylenes (m.p. and o) Total BTEX 1.2.3-Trimethylbenzene 1.2.4-Trimethylbenzene 1.3.5-Trimethylbenzene Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p. and o) Total BTEX 1.2.3-Trimethylbenzene	0.00000 0.00265 0.00671 0.02536 0.03473 0.15297 0.20228 0.077345 0.09709 0.24399 0.33123 0.67231 Mass Fraction 0.00012 0.00323 0.02288 0.05212 0.07835 0.07835	0.5000 1.3273 0.3633 2.2946 4.4853 -0.1530 0.8077 0.3465 0.4029 0.5360 0.2288 1.1677 C _o - C 0.4999 1.3268 0.3471 2.2679 4.4417	k 0.0255 0.0677 0.0185 0.1171 0.2289 -0.0078 0.0412 0.0177 0.0596 Smitt Line k 0.0229 0.0607 0.0159 0.1037 0.2031	%Red.lyr 5.10 5.09 5.01 5.05 5.06 #DIV/0! 4.08 4.21 4.11 3.51 2.08 3.24 h et al., 198 het al., 198 het al., 498 het al., 4	k 0.6110 0.3173 0.2046 0.2305 0.2485 #DIV/0! 0.0821 0.0821 0.0890 0.0593 0.0268 0.0514 1 Expon k 0.3823 0.2752 0.1273 0.1736 4#DIV/0!	%Red.lyr 45.72 27.19 18.50 20.58 22.00 #DIV/0! 7.88 8.51 8.02 5.76 2.64 5.01 ential %Red.lyr 24.06 11.95 15.93 16.93 #DIV/0!	0.5112 1.7180 0.7501 2.3350 5.3144 0.2972 0.6144 0.0484 0.1772 -0.2078 -0.1729 -0.2035 C _o - C 0.5111 1.7175 0.7340 2.3082 5.2708	k 0.0261 0.0877 0.0383 0.1192 0.2712 0.0152 0.0314 0.0025 0.0090 -0.0106 -0.0106 k 0.0234 0.0785 0.0336 0.1056 0.2410 0.0136	%Red.lyr 5.10 5.10 5.10 5.06 5.05 5.07 3.37 3.84 2.03 3.30 -29.33 -5.57 -2.22 see et al., 19 ar 4.57 4.56 4.43 4.47 4.51 2.96	k 0.6121 0.3304 0.2411 0.2314 0.2571 0.0551 0.0752 0.0258 0.0530 -0.0974 -0.0377 -0.0184 Expon k 0.3833 0.2870 0.1600 0.1744 0.1931	%Red.lyr 45.78 28.14 21.43 20.65 22.67 5.36 6.87 2.55 5.16 -10.23 -3.84 -1.86 **Red.lyr 31.84 24.95 14.79 16.00 17.56 4.66
Code NRMRL	DFSP-Charleston, Tank 3 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Date 10/1/1975	Date Locid 5/1/1995 W108-DFSP 5/1/1997 W108-DFSP 5/1/1997 W108-DFSP 5/1/1997 W108-DFSP 5/1/1997 W108 8/8/1997 W-108 8/8/1997 W-108 8/8/1997 W-108 8/8/1997 W-108	Benzene Toluene Ethylbenzene Total Xylenes (m.p. and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p. and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene	0.00006 0.00265 0.00671 0.02536 0.03473 0.15297 0.20228 0.07345 0.09709 0.24399 0.33123 0.67231 Mass Fraction 0.00012 0.00323 0.02288 0.05212 0.07835 0.15865 0.15865 0.15865	0.5000 1.3273 0.3633 2.2946 4.4853 -0.1530 0.8077 0.3465 0.4029 0.5360 0.2288 1.1677 C _o - C 0.4999 1.3268 0.3471 2.2679 4.4417 -0.1587 0.7407	k 0.0255 0.0677 0.0185 0.1171 0.2289 -0.0078 0.0412 0.0177 0.0206 0.0274 0.0177 0.0596 Smitt Line k 0.0229 0.0607 0.0159 0.1037 0.2031 -0.0073	%Red.lyr 5.00 5.00 5.00 5.00 5.06 #DIV/0! 4.08 4.21 4.11 3.51 2.08 3.24 h et al., 198 ear %Red.lyr 4.57 4.56 4.29 4.47 #DIV/0! 3.36	k 0.6110 0.3173 0.2046 0.2305 0.2485 #DIV/0! 0.0821 0.0836 0.0593 0.0268 0.0514 1 Expon k 0.3823 0.2752 0.1273 0.1736 0.1854 #DIV/0! 0.0604	%Red./yr 45.72 27.19 18.50 18.50 20.58 20.58 8.51 8.02 5.76 5.01 ential %Red./yr 31.77 24.06 11.95 15.93 #DIV/0! 5.86	0.5112 1.7180 0.7501 2.3350 5.3144 0.2972 0.6144 0.1772 -0.2078 -0.1729 -0.2035 	k 0.0261 0.0877 0.0383 0.1192 0.2712 0.0152 0.00314 0.0025 0.0090 -0.0106 -0.0088 -0.0104 Hugh Line k 0.0234 0.0785 0.0336 0.1056 0.2410 0.0133 0.0250	%Red.lyr 5.10 5.10 5.10 5.10 5.06 5.05 5.07 3.37 3.84 2.03 3.30 -29.33 -5.57 -2.22 tes et al., 19 ar %Red.lyr 4.57 4.56 4.43 4.47 4.51 2.96 3.06	k 0.6121 0.3304 0.2411 0.2314 0.2571 0.0551 0.0712 0.0258 0.0530 -0.0974 -0.0377 -0.0184 Expon k 0.3833 0.2870 0.1600 0.1744 0.1931 0.0477	%Red.lyr 45.78 28.14 21.43 20.65 22.67 5.36 6.87 2.55 5.16 -10.23 -3.84 -1.86 **Red.lyr 31.84 24.95 14.79 16.00 17.56 4.66
Code NRMRL	DFSP-Charleston, Tank 3 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	Date 10/1/1975	Date Locid 5/1/1995 W108-DFSP 8/1/1997 W108 8/8/1997 W-108 8/8/1997 W-108 8/8/1997 W-108 8/8/1997 W-108 8/8/1997 W-108 8/8/1997 W-108	Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	0.00000 0.00265 0.00671 0.02536 0.03473 0.15297 0.20228 0.07345 0.09709 0.24399 0.33123 0.67231 Mass Fraction 0.00012 0.00012 0.00323 0.05212 0.07835 0.15865 0.15865 0.26934 0.06835	0.5000 1.3273 0.3633 2.2946 4.4853 -0.1530 0.8077 0.3465 0.4029 0.5360 0.2288 1.1677 C _o - C 0.4999 1.3268 0.3471 2.2679 4.4417 -0.1587 0.7407	k 0.0255 0.0677 0.0185 0.1171 0.2289 -0.0078 0.0412 0.0177 0.0296 Smit Line k 0.0229 0.0607 0.0159 0.1037 0.2031 -0.0073 0.0339 0.0153	%Red.lyr 5.10 5.09 5.01 5.05 5.06 #DIV/0! 4.08 4.21 4.11 3.51 2.08 3.24 h et al., 198 har 4.57 4.56 4.29 4.47 4.49 #DIV/0! 3.35 3.64	Expon k 0.6110 0.3173 0.2046 0.2305 0.2485 0.0821 0.0821 0.0821 1 Expon k 0.3823 0.2752 0.1273 0.1736 0.1854 #DIV/0! 0.0604 0.00729 0.0604 0.0729 0.0604 0.0729 0.0604 0.0729 0.0604 0.0729 0.00604 0.0729 0.00729 0.00604 0.00729 0.00729 0.00614 0.00729	%Red.lyr 45.72 27.19 18.50 20.58 22.00 #DIV/0! 8.02 5.76 2.64 5.01 ential %Red.lyr 31.77 24.06 11.95 15.93 16.93 #DIV/0! 5.86 7.03	0.5112 1.7180 0.7501 2.3350 5.3144 0.2972 0.6144 0.1772 -0.2078 -0.1729 -0.2035 C _o - C 0.5111 1.7175 0.7340 2.3082 5.2082 5.2082 0.2915 0.5474 0.0368	k 0.0261 0.0877 0.0383 0.1192 0.2712 0.0152 0.0314 0.0025 0.0090 -0.0106 -0.0088 -0.0104 Hugh Line k 0.0234 0.0735 0.0336 0.1056 0.2410 0.0133 0.0250	%Red.lyr 5.10 5.10 5.10 5.06 5.05 5.07 3.37 3.84 2.03 3.30 -29.33 -5.57 -2.29 we et al., 19 ar 4.57 4.56 4.43 4.47 4.51 2.96 3.06 3.06	k 0.6121 0.3304 0.2411 0.2314 0.2571 0.0551 0.0712 0.0258 0.0530 -0.0974 -0.0377 -0.0184 Expon k 0.3833 0.2870 0.1600 0.1744 0.1931 0.0477 0.0507	%Red./yr 45.78 28.14 21.43 20.65 22.67 5.36 6.87 2.55 5.16 -10.23 -3.84 -1.86 wential %Red./yr 31.84 24.95 14.79 16.00 17.56 4.96 4.96 4.95
Code NRMRL	DFSP-Charleston, Tank 3 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	Type JP-4	Date 10/1/1975	Date Locid 5/1/1995 W108-DFSP 8/8/1997 W-108	Benzene Toluene Ethylbenzene Total Xylenes (m.p. and o) Total BTEX 1.2.3-Trimethylbenzene 1.2.4-Trimethylbenzene 1.3.5-Trimethylbenzene Naphthalene 2-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p. and o) Total BTEX 1.2.3-Trimethylbenzene 1.2.4-Trimethylbenzene 1.3.5-Trimethylbenzene Naphthalene	0.00006 0.00265 0.00671 0.02536 0.03473 0.15297 0.20228 0.07345 0.09709 0.24399 0.33123 0.67231 Mass Fraction 0.00012 0.00323 0.02288 0.05242 0.07835 0.15865 0.26934 0.08535 0.18844	0.5000 1.3273 0.3633 2.2946 4.4853 -0.1530 0.8077 0.3465 0.4029 0.5360 0.2288 1.1677 Co. C 0.4999 1.3268 0.3471 2.2679 4.4417 -0.1587 0.7407 0.3346 0.3346	k 0.0255 0.0677 0.0185 0.1171 0.2289 -0.0078 0.0412 0.0177 0.0206 0.0177 0.0596 Smit Line k 0.0229 0.0607 0.0153 0.2031 0.2031 0.0073	%Red.lyr 5.10 5.09 5.01 5.05 5.06 #DIV/0! 4.08 4.21 4.11 3.51 2.08 3.24 h et al., 198 ar %Red.lyr 4.57 4.56 4.29 4.47 #DIV/0! 3.35 3.64	k 0.6110 0.3173 0.2046 0.2305 0.2485 #DIV/0! 0.0821 0.0890 0.0893 0.0268 0.0514 1 Expon k 0.3823 0.2752 0.12736 0.1854 #DIV/0! 0.06604 0.0729 0.06639	%Red.lyr 45.72 27.19 18.50 20.58 20.58 8.51 8.02 5.76 5.01 ential %Red.lyr 31.77 24.06 11.95 15.93 16.93 #DIV/0! 5.86 7.03 6.37	0.5112 1.7180 0.7501 2.3350 5.3144 0.2972 0.6144 0.0484 0.1772 -0.2078 -0.1729 -0.2035 Co - C 0.5111 1.7175 0.73402 2.3082 5.2708 0.2915 0.5474 0.0365 0.1559	k 0.0261 0.0877 0.0383 0.1192 0.2712 0.0152 0.0314 0.0025 0.0090 -0.0106 -0.0088 -0.0104 Hugt Line k 0.0234 0.0785 0.0306 0.1056 0.2410 0.0133 0.0250 0.0017	%Red.lyr 5.10 5.10 5.10 5.10 5.06 5.05 5.07 3.37 3.84 2.03 3.30 -29.33 -25.57 -2.22 tes et al., 19 ar 4.57 4.56 4.43 4.47 4.51 2.96 3.06 1.37 2.60	k 0.6121 0.3304 0.2411 0.2314 0.2571 0.0551 0.0712 0.0258 0.0530 -0.0974 -0.0377 -0.0184 Expon k 0.3833 0.2870 0.1604 0.1744 0.1931 0.0477 0.0507 0.0163	%Red.lyr 45.78 28.14 21.43 20.65 22.65 5.36 6.87 2.55 5.16 -10.23 -3.84 -1.86 **Red.lyr 31.84 24.95 14.79 16.00 17.56 4.66 4.95 1.61 3.77
Code NRMRL	DFSP-Charleston, Tank 3 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	Type JP-4	Date 10/1/1975	Date Locid 5/1/1995 W108-DFSP 5/1/1997 W108-DFSP 5/1/1997 W108-DFSP 5/1/1997 W108-DFSP 5/1/1997 W108 8/8/1997 W108	Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Naphthalene	0.00000 0.00265 0.00671 0.02536 0.03473 0.15297 0.20228 0.07345 0.09709 0.24399 0.33123 0.67231 Mass Fraction 0.00012 0.00323 0.02288 0.05212 0.07835 0.15865 0.26934 0.08535 0.18846	0.5000 1.3273 0.3633 2.2946 4.4853 -0.1530 0.8077 0.3465 0.4029 0.5360 0.2288 1.1677 Co - C 0.4999 1.3268 0.3471 2.2679 4.4417 -0.1587 0.7407 0.3346 0.3816 0.5070	k 0.0255 0.0677 0.0185 0.1171 0.2289 -0.0078 0.0412 0.0177 0.0266 0.0274 0.0174 0.0596 k 0.0229 0.0607 0.0159 0.1037 0.2031 -0.0073 0.0073 0.0153 0.0174 0.0025	%Red./yr 5.10 5.09 5.01 5.05 5.06 #DIV/0! 4.08 4.21 4.11 3.51 2.08 3.24 h et al., 198 har 4.57 4.56 4.29 4.47 4.49 #DIV/0! 3.363 3.64 3.49	k 0.6110 0.3173 0.2046 0.2305 0.2485 #DIV/0! 0.0821 0.0836 0.0593 0.0268 0.0514 1 Expon k 0.3823 0.2752 0.1273 0.1736 0.1854 #DIV/0! 0.0604 0.0729 0.0659 0.0659	%Red.lyr 45.72 27.19 18.50 20.58 22.00 #DIV/0! 8.02 5.76 2.64 5.01 ential %Red.lyr 31.77 24.06 11.95 15.93 16.93 #DIV/0! 5.86 7.03 6.37 4.69	0.5112 1.7180 0.7501 2.3350 5.3144 0.2972 0.6144 0.1772 -0.2078 -0.1729 -0.2035 Co - C 0.5111 1.7175 0.7340 2.3082 2.3082 0.2915 0.5474 0.0365 0.1559 -0.2359	k 0.0261 0.0877 0.0383 0.1192 0.2712 0.0152 0.00152 0.0090 0.0106 -0.0108 -0.0104 Hugh Line k 0.0234 0.0785 0.0336 0.1056 0.2410 0.0133 0.0250 0.0017 0.0071	%Red.lyr 5.10 5.10 5.10 5.06 5.07 3.37 3.84 2.03 3.30 -29.33 -2.22 tes et al., 19 ar 4.57 4.56 4.43 4.47 4.51 2.96 3.37 2.96 1.37 2.29,95	k 0.6121 0.3304 0.2411 0.2314 0.2571 0.0551 0.0752 0.0258 0.0530 -0.0974 -0.0377 -0.0184 Expon k 0.3833 0.2870 0.1600 0.1744 0.1931 0.0477 0.0507 0.0163 0.0384 -0.0924	%Red.lyr 45.78 28.14 21.43 20.65 22.67 5.36 6.87 2.55 5.16 -10.23 -3.84 -1.86 wential %Red.lyr 31.84 24.95 14.79 16.00 17.56 4.66 4.95 4.95 1.61 3.77 -9.69
Code NRMRL	DFSP-Charleston, Tank 3 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area,	Type JP-4 JP-4	Date 10/1/1975	Date Locid 5/1/1995 W108-DFSP 6/1/1995 W108-DFSP 8/1/1995 W108-DFSP 8/1/1995 W108-DFSP 8/1/1995 W108-DFSP 8/1/1995 W108-DFSP 8/1/1997 W-108	Benzene Toluene Ethylbenzene Tolal Xylenes (m.p. and o) Total BTEX 1.2.3-Trimethylbenzene 1.2.4-Trimethylbenzene 1.3.5-Trimethylbenzene Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p. and o) Total BTEX 1.2.3-Trimethylbenzene 1.2.4-Trimethylbenzene 1.3.5-Trimethylbenzene Naphthalene 1-MethylNaphthalene 1-MethylNaphthalene 1-MethylNaphthalene	0.00000 0.00265 0.00671 0.02536 0.03473 0.15297 0.20228 0.077345 0.09709 0.24399 0.33123 0.67231 Mass Fraction 0.00012 0.00323 0.02288 0.05212 0.07835 0.15865 0.26934 0.08535 0.11844 0.27303 0.36773	0.5000 1.3273 0.3633 2.2946 4.4853 -0.1530 0.8077 0.3465 0.4029 0.5360 0.2288 1.1677 Co C 0.4999 1.3268 0.3471 2.2679 4.4417 -0.1587 0.7407 0.3346 0.3816 0.5070 0.1923	k 0.0255 0.0677 0.0185 0.1171 0.2289 -0.0078 0.0412 0.0177 0.0206 Smill Line k 0.0229 0.0607 0.0159 0.1037 0.2031 -0.0073 0.0339 0.0153 0.0174 0.0232 0.0082	%Red.lyr 5.10 5.09 5.01 5.05 5.06 #DIV/0! 4.08 4.21 4.11 3.51 2.08 3.24 h et al., 198 har 4.57 4.59 4.79 4.79 4.79 4.79 4.79 4.79 4.79 4.7	Expon k 0.6110 0.3173 0.2046 0.2305 0.2485 0.0821 0.0821 0.0821 0.0823 0.0593 0.0593 0.0514 1 Expon k 0.3823 0.2752 0.1273 0.1736 0.1854 #DIV/0 0.0604 0.0729 0.0669 0.0480 0.0192 0.0659 0.04480 0.0192 0.0659 0.04480 0.0192 0.06172 0.0659 0.04480 0.0192 0.0659 0.04480 0.0659 0.04480 0.0659 0.04480 0.0659 0.04480 0.0659 0.04480 0.0659 0.04480 0.0659 0.04480 0.0659 0.04480 0.0659 0.04480 0.0659 0.04480 0.0659 0.04480 0.0659 0.0459 0.0659 0.0459 0.0659 0.0459 0.0659 0.0459 0.0659 0.0459 0.0659 0.0	%Red.lyr 45.72 27.19 18.50 20.58 22.00 #DIV/0! 7.88 8.51 8.02 5.76 2.64 5.01 ential %Red.lyr 31.77 24.06 11.95 15.93 16.93 #DIV/0! 5.86 7.03 6.37 4.69 1.90	0.5112 1.7180 0.7501 2.3350 5.3144 0.2972 0.6144 0.0484 0.1772 -0.2035 Co C 0.5111 1.7175 0.7340 2.3082 5.2708 0.2915 0.5474 0.3655 0.1559 -0.2369 -0.2089	k 0.0261 0.0877 0.0383 0.1192 0.2712 0.0152 0.0314 0.0025 0.0090 -0.0106 -0.0106 k 0.0234 0.0785 0.0336 0.1056 0.2410 0.0133 0.0250 0.0017 0.0071 0.0071	%Red.lyr 5.10 5.10 5.10 5.10 5.06 5.05 5.07 3.37 3.84 2.03 3.30 -29.33 -5.57 -2.25 4.57 4.56 4.43 4.47 4.51 2.96 3.06 1.06 1.07 2.60 -29.95	k 0.6121 0.3304 0.2411 0.2314 0.2571 0.0551 0.0712 0.0258 0.0530 -0.0974 -0.0377 -0.0184 Expon k 0.3833 0.2870 0.1744 0.1931 0.0477 0.0507 0.0163 0.0384 -0.0924 -0.0934	%Red./yr 45.78 28.14 21.43 20.65 22.67 5.36 6.87 2.55 5.16 -10.23 -3.84 -1.86 wRed./yr 11.75 4.66 4.95 1.61 3.777 -9.99
Code NRMRL	DFSP-Charleston, Tank 3 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	Type JP-4	Date 10/1/1975	Date Locid 5/1/1995 W108-DFSP 5/1/1997 W108-DFSP 5/1/1997 W108-DFSP 5/1/1997 W108-DFSP 5/1/1997 W108 8/8/1997 W108	Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Naphthalene	0.00000 0.00265 0.00671 0.02536 0.03473 0.15297 0.20228 0.07345 0.09709 0.24399 0.33123 0.67231 Mass Fraction 0.00012 0.00323 0.02288 0.05212 0.07835 0.15865 0.26934 0.08535 0.18846	0.5000 1.3273 0.3633 2.2946 4.4853 -0.1530 0.8077 0.3465 0.4029 0.5360 0.2288 1.1677 Co - C 0.4999 1.3268 0.3471 2.2679 4.4417 -0.1587 0.7407 0.3346 0.3816 0.5070	k 0.0255 0.0677 0.0185 0.1171 0.2289 -0.0078 0.0412 0.0177 0.0266 0.0274 0.0174 0.0596 k 0.0229 0.0607 0.0159 0.1037 0.2031 -0.0073 0.0073 0.0153 0.0174 0.0025	%Red./yr 5.10 5.09 5.01 5.05 5.06 #DIV/0! 4.08 4.21 4.11 3.51 2.08 3.24 h et al., 198 har 4.57 4.56 4.29 4.47 4.49 #DIV/0! 3.363 3.64 3.49 2.97	k 0.6110 0.3173 0.2046 0.2305 0.2485 #DIV/0! 0.0821 0.0836 0.0593 0.0268 0.0514 1 Expon k 0.3823 0.2752 0.1273 0.1736 0.1854 #DIV/0! 0.0604 0.0729 0.0659 0.0659	%Red.lyr 45.72 27.19 18.50 20.58 22.00 #DIV/0! 8.02 5.76 2.64 5.01 ential %Red.lyr 31.77 24.06 11.95 15.93 16.93 #DIV/0! 5.86 7.03 6.37 4.69	0.5112 1.7180 0.7501 2.3350 5.3144 0.2972 0.6144 0.1772 -0.2078 -0.1729 -0.2035 Co - C 0.5111 1.7175 0.7340 2.3082 2.3082 0.2915 0.5474 0.0365 0.1559 -0.2359	k 0.0261 0.0877 0.0383 0.1192 0.2712 0.0152 0.00152 0.0090 0.0106 -0.0108 -0.0104 Hugh Line k 0.0234 0.0785 0.0336 0.1056 0.2410 0.0133 0.0250 0.0017 0.0071	%Red.lyr 5.10 5.10 5.10 5.06 5.07 3.37 3.84 2.03 3.30 -29.33 -2.22 tes et al., 19 ar 4.57 4.56 4.43 4.47 4.51 2.96 3.37 2.96 1.37 2.29,95	k 0.6121 0.3304 0.2411 0.2314 0.2571 0.0551 0.0752 0.0258 0.0530 -0.0974 -0.0377 -0.0184 Expon k 0.3833 0.2870 0.1600 0.1744 0.1931 0.0477 0.0507 0.0163 0.0384 -0.0924	%Red.lyr 45.78 28.14 21.43 20.65 22.67 5.36 6.87 2.55 5.16 -10.23 -3.84 -1.86 wential %Red.lyr 31.84 24.95 14.79 16.00 17.56 4.66 4.95 4.95 1.61 3.77 -9.69

Smith et al., 1981

Hughes et al., 1984

Lab		Fuel	Spill	Sample		Г		Lin	ear	Expon	ential		Line	ar	Expone	ntial
Code	Site Name	Type	Date	Date Locid	Analyte	Mass Fraction	Co - C	k	%Red./yr	k	%Red./yr	C _o - C	k '	%Red./yr	k ^c	%Red./yr
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	5/17/1997 CH-EW6	Benzene	0.00000	0.5000	0.0231	4.62	0.5535	42.51	0.5112	0.0236	4.62	0.5545	42.56
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	5/17/1997 CH-EW6	Toluene	0.00017	1.3298	0.0614	4.62	0.4144	33.92	1.7205	0.0795	4.62	0.4263	34.71
NRMRL NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4 JP-4	10/1/1975 10/1/1975	5/17/1997 CH-EW6 5/17/1997 CH-EW6	Ethylbenzene Total Xylenes (m,p, and o)	0.01147 0.04412	0.3585 2.2759	0.0166 0.1052	4.48 4.53	0.1605 0.1831	14.83 16.73	0.7454 2.3162	0.0344 0.1070	4.55 4.53	0.1936 0.1839	17.60 16.80
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	5/17/1997 CH-EW6	Total BTEX	0.05576	4.4642	0.1032	4.55	0.2031	18.38	5.2934	0.1070	4.53	0.1039	19.01
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	5/17/1997 CH-EW6	1,2,3-Trimethylbenzene	0.05628	-0.0563	-0.0026	#DIV/0!	#DIV/0!	#DIV/0!	0.3938	0.0182	4.04	0.0961	9.16
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	5/17/1997 CH-EW6	1,2,4-Trimethylbenzene	0.09598	0.9140	0.0422	4.18	0.1088	10.30	0.7207	0.0333	4.08	0.0989	9.42
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	5/17/1997 CH-EW6	1,3,5-Trimethylbenzene	0.06796	0.3520	0.0163	3.87	0.0842	8.07	0.0539	0.0025	2.04	0.0270	2.66
NRMRL NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4 JP-4	10/1/1975 10/1/1975	5/17/1997 CH-EW6 5/17/1997 CH-EW6	Naphthalene 1-MethylNaphthalene	0.05603 0.18593	0.4440 0.5941	0.0205 0.0275	4.10 3.52	0.1011 0.0663	9.62 6.41	0.2183 -0.1498	0.0101 -0.0069	3.68 -19.14	0.0734 -0.0757	7.08 -7.86
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4 JP-4	10/1/1975	5/17/1997 CH-EW6 5/17/1997 CH-EW6	2-MethylNaphthalene	0.18593	0.5941	0.0275	2.81	0.0663	4.23	-0.1498 -0.0615	-0.0069	-19.14 -1.79	-0.0757	-7.86 -1.53
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	5/17/1997 CH-EW6	Total Naphthalenes	0.46181	1.3782	0.0137	3.46	0.0432	6.19	0.0070	0.0028	0.07	0.0007	0.07
Lab		Fuel	Spill	Sample		г		Smi Lin	th et al., 198	1 Expon	antial		Hugh Line	es et al., 19 ar	84 Expone	ntial
			-	•						Expon					-	
Code NRMRL	Site Name DFSP-Charleston, Tank 1 Area, Hanahan, SC	Type JP-4	Date 10/1/1975	Date Locid 5/16/1997 CH-MW-103	Analyte Benzene	Mass Fraction 0.00000	C _o - C 0.5000	0.0231	%Red./yr 4.62	0.5514	%Red./yr 42.39	C _o - C 0.5112	0.0236	%Red./yr 4.62	0.5524	%Red./yr 42.45
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	5/16/1997 CH-MW-103	Toluene	0.02684	1.3032	0.0602	4.53	0.1804	16.50	1.6939	0.0783	4.55	0.1923	17.49
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	5/16/1997 CH-MW-103	Ethylbenzene	0.11263	0.2574	0.0119	3.21	0.0550	5.35	0.6442	0.0298	3.93	0.0880	8.43
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	5/16/1997 CH-MW-103	Total Xylenes (m,p, and o)	0.57868	1.7413	0.0805	3.47	0.0642	6.22	1.7817	0.0823	3.49	0.0650	6.29
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	5/16/1997 CH-MW-103	Total BTEX	0.71816	3.8018	0.1757	3.89	0.0850	8.15	4.6310	0.2140	4.00	0.0928	8.86
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	5/16/1997 CH-MW-103	1,2,3-Trimethylbenzene	0.12539	-0.1254	-0.0058	#DIV/0!	#DIV/0!	#DIV/0!	0.3247	0.0150	3.33	0.0591	5.74
NRMRL NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4 JP-4	10/1/1975 10/1/1975	5/16/1997 CH-MW-103 5/16/1997 CH-MW-103	1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	0.28684 0.13684	0.7232 0.2832	0.0334 0.0131	3.31 3.12	0.0582 0.0518	5.65 5.05	0.5299 -0.0150	0.0245 -0.0007	3.00 -0.57	0.0484 -0.0054	4.72 -0.54
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4 JP-4	10/1/1975	5/16/1997 CH-MW-103	Naphthalene	0.06605	0.4339	0.0131	4.01	0.0316	8.93	0.2083	0.0007	3.51	0.0658	6.37
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	5/16/1997 CH-MW-103	1-MethylNaphthalene	0.18421	0.5958	0.0275	3.53	0.0667	6.45	-0.1481	-0.0068	-18.92	-0.0752	-7.81
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	5/16/1997 CH-MW-103	2-MethylNaphthalene	0.23684	0.3232	0.0149	2.67	0.0398	3.90	-0.0785	-0.0036	-2.29	-0.0186	-1.88
NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	5/16/1997 CH-MW-103	Total Naphthalenes	0.48711	1.3529	0.0625	3.40	0.0614	5.96	-0.0183	-0.0008	-0.18	-0.0018	-0.18
								Smi	h et al., 198	1			Hugh	es et al., 19	84	
Lab		Fuel	Spill	Sample		Γ		Line		Expon	ential		Line		Expone	ntial
Code	Site Name	Tuno	Date	Date Locid	Analuta	Mass Fraction	Co-C		%Red./yr	l.	%Red./yr	C _o - C	h (%Red./yr		%Red./yr
OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	Type JP-4	10/1/1975	2/7/2002 CH-EW6	Analyte Benzene	0.00110	0.4989	0.0189	3.78	0.2320	20.71	0.5101	0.0193	3.78	0.2329	20.77
OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	2/7/2002 CH-EW6	Toluene	0.00110	1.3289	0.0504	3.79	0.2691	23.60	1.7196	0.0652	3.79	0.2789	24.34
OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	2/7/2002 CH-EW6	Ethylbenzene	0.04900	0.3210	0.0122	3.29	0.0767	7.38	0.7079	0.0268	3.55	0.1038	9.86
OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	2/7/2002 CH-EW6	Total Xylenes (m,p, and o)	0.17110	2.1489	0.0815	3.51	0.0989	9.41	2.1892	0.0830	3.52	0.0995	9.47
OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	2/7/2002 CH-EW6	Total BTEX	0.22230	4.2977	0.1630	3.61	0.1142	10.79	5.1268	0.1944	3.63	0.1206	11.36
OBG OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4 JP-4	10/1/1975 10/1/1975	2/7/2002 CH-EW6 2/7/2002 CH-EW6	1,2,3-Trimethylbenzene	0.05900 0.18000	-0.0590 0.8300	-0.0022 0.0315	#DIV/0! 3.12	#DIV/0! 0.0654	#DIV/0! 6.33	0.3911 0.6367	0.0148 0.0241	3.29 2.96	0.0770 0.0573	7.42 5.57
OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4 JP-4	10/1/1975	2/7/2002 CH-EW6	1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	0.09600	0.8300	0.0315	2.93	0.0560	5.44	0.0258	0.0241	0.80	0.0573	0.90
OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	2/7/2002 CH-EW6	Naphthalene	0.12000	0.3800	0.0144	2.88	0.0541	5.27	0.1543	0.0059	2.13	0.0314	3.09
Lab		Fuel	Spill	Sample				Line	th et al., 198 ear	Expon	ential		Hugn Line	es et al., 19 ar	Expone	ential
Code	Site Name	Type	Date	Date Locid	Analyte	Mass Fraction	Co - C	k	%Red./yr	k	%Red./yr	C ₀ - C	k '	%Red./yr	k '	%Red./yr
OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	2/7/2002 CH-MW-103	Benzene	0.00510	0.4949	0.0188	3.75	0.1739	15.96	0.5061	0.0192	3.75	0.1747	16.03
OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	2/7/2002 CH-MW-103	Toluene	0.30000	1.0300	0.0391	2.94	0.0565	5.49	1.4207	0.0539	3.13	0.0662	6.41
OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	2/7/2002 CH-MW-103	Ethylbenzene	0.21000	0.1600	0.0061	1.64	0.0215	2.12	0.5469	0.0207	2.74	0.0486	4.75
OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	2/7/2002 CH-MW-103				0.0402	1.73	0.0231	2.29	1.1003	0.0417 0.1355	1.77	0.0238	2.35
OBG					Total Xylenes (m,p, and o)	1.26000	1.0600							2.53	0.0418	4.10 5.20
OBC	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	2/7/2002 CH-MW-103	Total BTEX	1.77510	2.7449	0.1041	2.30	0.0354	3.48	3.5740				3.73
OBG OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4 JP-4	10/1/1975 10/1/1975	2/7/2002 CH-MW-103 2/7/2002 CH-MW-103	Total BTEX 1,2,3-Trimethylbenzene	1.77510 0.11000	2.7449 -0.1100	-0.0042	#DIV/0!	#DIV/0!	#DIV/0!	0.3401	0.0129	2.87	0.0534	
OBG OBG OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/1/1975	2/7/2002 CH-MW-103	Total BTEX	1.77510	2.7449								0.0534 0.0380 0.0039	0.39
OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4 JP-4 JP-4	10/1/1975 10/1/1975 10/1/1975	2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103	Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene	1.77510 0.11000 0.30000	2.7449 -0.1100 0.7100	-0.0042 0.0269	#DIV/0! 2.67	#DIV/0! 0.0460	#DIV/0! 4.50	0.3401 0.5167	0.0129 0.0196	2.87 2.40	0.0380	
OBG OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4 JP-4 JP-4 JP-4	10/1/1975 10/1/1975 10/1/1975 10/1/1975	2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103	Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	1.77510 0.11000 0.30000 0.11000	2.7449 -0.1100 0.7100 0.3100	-0.0042 0.0269 0.0118 0.0148	#DIV/0! 2.67 2.80 2.96	#DIV/0! 0.0460 0.0508 0.0574	#DIV/0! 4.50 4.95	0.3401 0.5167 0.0118	0.0129 0.0196 0.0004 0.0062	2.87 2.40 0.37 2.27	0.0380 0.0039 0.0346	0.39
OBG OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4 JP-4 JP-4 JP-4	10/1/1975 10/1/1975 10/1/1975 10/1/1975	2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103	Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	1.77510 0.11000 0.30000 0.11000	2.7449 -0.1100 0.7100 0.3100	-0.0042 0.0269 0.0118 0.0148	#DIV/0! 2.67 2.80 2.96 th et al., 198	#DIV/0! 0.0460 0.0508 0.0574	#DIV/0! 4.50 4.95 5.58	0.3401 0.5167 0.0118	0.0129 0.0196 0.0004 0.0062	2.87 2.40 0.37 2.27 es et al., 19	0.0380 0.0039 0.0346	0.39 3.41
OBG OBG OBG Lab	DFSP-Charleston, Tank 1 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4 JP-4 JP-4 JP-4 JP-4	10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 Spill	2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103	Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene	1.77510 0.11000 0.30000 0.11000 0.11000	2.7449 -0.1100 0.7100 0.3100 0.3900	-0.0042 0.0269 0.0118 0.0148	#DIV/0! 2.67 2.80 2.96 th et al., 198	#DIV/0! 0.0460 0.0508 0.0574	#DIV/0! 4.50 4.95 5.58	0.3401 0.5167 0.0118 0.1643	0.0129 0.0196 0.0004 0.0062 Hugh	2.87 2.40 0.37 2.27 es et al., 19 ar	0.0380 0.0039 0.0346 B4 Expone	0.39 3.41
OBG OBG OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4 JP-4 JP-4 JP-4 JP-4	10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975	2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103	Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Analyte	1.77510 0.11000 0.30000 0.11000	2.7449 -0.1100 0.7100 0.3100	-0.0042 0.0269 0.0118 0.0148 Smi	#DIV/0! 2.67 2.80 2.96 th et al., 198	#DIV/0! 0.0460 0.0508 0.0574	#DIV/0! 4.50 4.95 5.58	0.3401 0.5167 0.0118	0.0129 0.0196 0.0004 0.0062 Hugh	2.87 2.40 0.37 2.27 es et al., 19	0.0380 0.0039 0.0346 B4 Expone	0.39 3.41
OBG OBG OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC Site Name	JP-4 JP-4 JP-4 JP-4 JP-4 Fuel	10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 Spill	2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 Sample	Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene	1.77510 0.11000 0.30000 0.11000 0.11000	2.7449 -0.1100 0.7100 0.3100 0.3900	-0.0042 0.0269 0.0118 0.0148 Smi	#DIV/0! 2.67 2.80 2.96 th et al., 198 ear %Red./yr	#DIV/0! 0.0460 0.0508 0.0574 1 Expon-	#DIV/0! 4.50 4.95 5.58 ential %Red./yr	0.3401 0.5167 0.0118 0.1643	0.0129 0.0196 0.0004 0.0062 Hugh	2.87 2.40 0.37 2.27 es et al., 19 ar %Red./yr	0.0380 0.0039 0.0346 84 Expone	0.39 3.41 ential %Red./yr
OBG OBG OBG Lab Code OBG OBG OBG OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC Site Name DFSP-Charleston, Tank 1 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4 JP-4 JP-4 JP-4 JP-4 Fuel Type JP-4 JP-4 JP-4	10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 Spill Date 10/1/1975 10/1/1975	2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 Sample Locid 2/7/2002 W-108 2/7/2002 W-108 2/7/2002 W-108	Total BTEX 1.2.3-Trimethylbenzene 1.2.4-Trimethylbenzene 1.3.5-Trimethylbenzene Naphthalene Analyte Benzene Toluene Ethylbenzene	1.77510 0.11000 0.30000 0.11000 0.11000 0.11000 Mass Fraction 0.00200 0.00200 0.01700	2.7449 -0.1100 0.7100 0.3100 0.3900 C _o - C 0.4980 1.3280 0.3530	-0.0042 0.0269 0.0118 0.0148 Smi Line k 0.0189 0.0504 0.0134	#DIV/0! 2.67 2.80 2.96 th et al., 198 ear %Red./yr 3.78 3.79 3.62	#DIV/0! 0.0460 0.0508 0.0574 Expon: k 0.2094 0.2465 0.1168	#DIV/0! 4.50 4.95 5.58 ential %Red./yr 18.89 21.84 11.02	0.3401 0.5167 0.0118 0.1643 C _o - C 0.5092 1.7187 0.7399	0.0129 0.0196 0.0004 0.0062 Hugh Line: k 0.0193 0.0652 0.0281	2.87 2.40 0.37 2.27 es et al., 19 ar %Red./yr 3.78 3.79 3.71	0.0380 0.0039 0.0346 84 Expone k 0.2102 0.2562 0.1439	0.39 3.41 Initial MRed./yr 18.96 22.60 13.41
OBG OBG OBG Lab Code OBG OBG OBG OBG OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC Site Name DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4 JP-4 JP-4 JP-4 JP-4 Type JP-4 JP-4 JP-4 JP-4	10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 Spill Date 10/1/1975 10/1/1975 10/1/1975	2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 W-108 2/7/2002 W-108 2/7/2002 W-108 2/7/2002 W-108	Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o)	1.77510 0.11000 0.30000 0.11000 0.11000 0.11000 Mass Fraction 0.00200 0.00200 0.00200 0.01700 0.04600	2.7449 -0.1100 0.7100 0.3100 0.3900 C _o - C 0.4980 1.3280 0.3530 2.2740	-0.0042 0.0269 0.0118 0.0148 Smi Line k 0.0189 0.0504 0.0134 0.0862	#DIV/0! 2.67 2.80 2.96 th et al., 198 ear %Red./yr 3.78 3.79 3.62 3.72	#DIV/0! 0.0460 0.0508 0.0574 Expon: k 0.2094 0.2465 0.1168 0.1487	#DIV/0! 4.50 4.95 5.58 ential %Red./yr 18.89 21.84 11.02 13.81	0.3401 0.5167 0.0118 0.1643 C _o - C 0.5092 1.7187 0.7399 2.3143	0.0129 0.0196 0.0004 0.0062 Hugh Line: k 0.0193 0.0652 0.0281 0.0878	2.87 2.40 0.37 2.27 es et al., 19 ar %Red./yr 3.78 3.79 3.71 3.72	0.0380 0.0039 0.0346 84 Expone k 0.2102 0.2562 0.1439 0.1493	0.39 3.41 Initial IMRed./yr 18.96 22.60 13.41 13.87
OBG OBG OBG Lab Code OBG OBG OBG OBG OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC Site Name DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4 JP-4 JP-4 JP-4 Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4	10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 Spill Date 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975	2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 Sample Date	Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX	1.77510 0.11000 0.30000 0.11000 0.11000 0.11000 Mass Fraction 0.00200 0.00200 0.01700 0.04600 0.06700	2.7449 -0.1100 0.7100 0.3100 0.3900 C _o - C 0.4980 1.3280 0.3530 2.2740 4.4530	-0.0042 0.0269 0.0118 0.0148 Smi Line k 0.0189 0.0504 0.0134 0.0862 0.1688	#DIV/0! 2.67 2.80 2.96 th et al., 198 ear %Red./yr 3.78 3.79 3.62 3.72 3.74	#DIV/0! 0.0460 0.0508 0.0574 Expon: k 0.2094 0.2465 0.1168 0.1487 0.1597	#DIV/0! 4.50 4.95 5.58 ential %Red./yr 18.89 21.84 11.02 13.81 14.76	0.3401 0.5167 0.0118 0.1643 C _o - C 0.5092 1.7187 0.7399 2.3143 5.2821	0.0129 0.0196 0.0004 0.0062 Hugh Line: k 0.0193 0.0652 0.0281 0.0878 0.2003	2.87 2.40 0.37 2.27 es et al., 19 ar %Red./yr 3.78 3.79 3.71 3.72 3.74	0.0380 0.0039 0.0346 84 Expone k 0.2102 0.2562 0.1439 0.1493 0.1661	0.39 3.41 **Red./yr 18.96 22.60 13.41 13.87 15.30
OBG OBG OBG Lab Code OBG OBG OBG OBG OBG OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC Site Name DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4 JP-4 JP-4 JP-4 JP-4 Type JP-4 JP-4 JP-4 JP-4	10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975	2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 W-108 2/7/2002 W-108 2/7/2002 W-108 2/7/2002 W-108	Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene	1.77510 0.11000 0.30000 0.11000 0.11000 0.11000 Mass Fraction 0.00200 0.00200 0.01700 0.04600 0.06700 0.14000	2,7449 -0,1100 0,7100 0,3100 0,3900 C _o - C 0,4980 1,3280 0,3530 2,2740 4,4530 -0,1400	-0.0042 0.0269 0.0118 0.0148 Smi Line k 0.0189 0.0504 0.0134 0.0862 0.1688 -0.0053	#DIV/0! 2.67 2.80 2.96 th et al., 198 ear %Red./yr 3.78 3.79 3.62 3.72 3.74 #DIV/0!	#DIV/0! 0.0460 0.0508 0.0574 Expon: k 0.2094 0.2465 0.1168 0.1487 0.1597 #DIV/0!	#DIV/0! 4.50 4.95 5.58 ential %Red./yr 18.89 21.84 11.02 13.81 14.76 #DIV/0!	0.3401 0.5167 0.0118 0.1643 C _o - C 0.5092 1.7187 0.7399 2.3143 5.2821 0.3101	0.0129 0.0196 0.0004 0.0062 Hugh Line k 0.0193 0.0652 0.0281 0.0878 0.2003 0.0118	2.87 2.40 0.37 2.27 es et al., 19 ar 3.78 3.79 3.71 3.72 3.74 2.61	0.0380 0.0039 0.0346 B4 Expone k 0.2102 0.2562 0.1439 0.14493 0.1661 0.0443	0.39 3.41 **Red./yr 18.96 22.60 13.41 13.87 15.30 4.33
OBG OBG OBG Lab Code OBG OBG OBG OBG OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC Site Name DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 Spill Date 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975	2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 Sample Date	Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX	1.77510 0.11000 0.30000 0.11000 0.11000 0.11000 Mass Fraction 0.00200 0.00200 0.01700 0.04600 0.06700	2.7449 -0.1100 0.7100 0.3100 0.3900 C _o - C 0.4980 1.3280 0.3530 2.2740 4.4530	-0.0042 0.0269 0.0118 0.0148 Smi Line k 0.0189 0.0504 0.0134 0.0862 0.1688	#DIV/0! 2.67 2.80 2.96 th et al., 198 ear %Red./yr 3.78 3.79 3.62 3.72 3.74	#DIV/0! 0.0460 0.0508 0.0574 Expon: k 0.2094 0.2465 0.1168 0.1487 0.1597	#DIV/0! 4.50 4.95 5.58 ential %Red./yr 18.89 21.84 11.02 13.81 14.76	0.3401 0.5167 0.0118 0.1643 C _o - C 0.5092 1.7187 0.7399 2.3143 5.2821	0.0129 0.0196 0.0004 0.0062 Hugh Line: k 0.0193 0.0652 0.0281 0.0878 0.2003	2.87 2.40 0.37 2.27 es et al., 19 ar %Red./yr 3.78 3.79 3.71 3.72 3.74	0.0380 0.0039 0.0346 84 Expone k 0.2102 0.2562 0.1439 0.1493 0.1661	0.39 3.41 **Red./yr 18.96 22.60 13.41 13.87 15.30
OBG OBG OBG OBG OBG OBG OBG OBG OBG OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4 JP-4 JP-4 JP-4 Fuel Type JP-4 JP-4 JP-4 JP-4 JP-4 JP-4 JP-4	10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975 10/1/1975	2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 2/7/2002 CH-MW-103 Sample Date	Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p. and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene	1.77510 0.11000 0.30000 0.11000 0.11000 0.11000 Mass Fraction 0.00200 0.00200 0.01700 0.04600 0.06700 0.14000 0.30000	2,7449 -0,1100 0,7100 0,3100 0,3900 C _o - C 0,4980 1,3280 0,3530 2,2740 4,4530 -0,1400 0,7100	-0.0042 0.0269 0.0118 0.0148 Smi Line k 0.0189 0.0504 0.0134 0.0862 0.1688 -0.0053	#DIV/0! 2.67 2.80 2.96 th et al., 198 ear %Red./yr 3.78 3.79 3.62 3.72 3.74 #DIV/0! 2.67	#DIV/0! 0.0460 0.0508 0.0574 Expon k 0.2094 0.2465 0.1168 0.1487 0.1597 #DIV/0!	#DIV/0! 4.50 4.95 5.58 ential %Red./yr 18.89 21.84 11.02 13.81 14.76 #DIV/0! 4.50	0.3401 0.5167 0.0118 0.1643 C _o - C 0.5092 1.7187 0.7399 2.3143 5.2821 0.3101 0.5167	0.0129 0.0196 0.0004 0.0062 Hugh Line k 0.0193 0.0652 0.0281 0.0878 0.2003 0.0118	2.87 2.40 0.37 2.27 es et al., 19 ar %Red./yr 3.78 3.79 3.71 3.72 3.74 2.61 2.40	0.0380 0.0039 0.0346 B4 Expone k 0.2102 0.2562 0.1439 0.1463 0.1661 0.0443 0.0380	0.39 3.41 **Red./yr 18.96 22.60 13.41 13.87 15.30 4.33 3.73

TOTAL DE	EVAMENTI EDINIO AT ID A OIT	F0						
TOTAL BI	EX WEATHERING AT JP-4 SIT	ES						
Data for co	mb_plot							
		First Order Total BTEX		First Order Be				
		y = 4.52e ^ -0.1783x Percent		$y = 0.5e ^ -0.3$	099x	Percent		
		Reduction				Reduction		
		Co k1 per Year		Co	k1	per Year		
	with eaker	4.52 0.1176 11.09		0.5	0.26	22.89		
	without eaker	4.52 0.1329 12.4 4	ı	0.5	0.2163	19.45		
Time	Benzene Total BTEX	Data Source						
0	0.50 4.52	Smith et al., 1981						
2.76	0.24 1.86	Average Shaw 1997 Data						
3.78	0.19 1.79	Average Shaw 1998 Data						
8.13	0.13 2.05	Average Shaw 2002 Data						
16.57	0.02 1.94	Seymour Johnson Average 7/24/01	data					
16.18	0.02 0.57	Average Myrtle Beach 1997 Data						
20.58	0.02 0.24	Average Myrtle Beach 2001 Data						
18.18	0.00 0.24	DFSP-Charleston EW6 (1993)						
19.59	0.09 1.22	DFSP-Charleston average 5/1/95 da						
21.64	0.00 0.27	Average DFSP-Charleston 1997 Da	ta					
26.37	0.00 0.69	Average DFSP-Charleston 2/7/02 Da	ata					
22.32	0.00 0.00	McChord AFB 1997 Data						
23.92	0.06 1.75	Average Eaker 1997 Data						
28.04	0.11 1.82	Average Eaker 2001 Data						

Linear (Zero Order) Assumption

linear equation

 $C = C_0 - kt$

summary statistics presented as follows

ana	lyte
k	Co
sek	seC_o
r ²	seC
F stat.	df
SS _{regr}	SS _{resid}

k = zero order weathering rate; k = dC/dt or slope

sek = slope standard error value

Co = intercept or initial analyte concentration as calculated by regression analysis

seCo = standard error value for the constant Co

 r^2 = coefficient of determination

seC = standard error value of the estimated concentration C (i.e., a "standard deviation" for the regression

F stat. = F statistic or F-observed value

df = degrees of freedom

 ss_{regr} = the regression sum of squares

ss_{resid} = the residual sum of squares

Exponential (1st Order) Assumption

exponential equation $C = C_0 e^{-kt}$

summary statistics presented as follows

ana	alyte
m	Co
sek	seC_o
r ²	seC
F stat.	df
SS _{regr}	SS _{resid}
	In C₀

m = coefficient for statistics equation shown; note $m = e^{-kt}$, therefore, ln m = -k

sek = standard error value for the exponential rate constant k

Co = intercept or initial analyte concentration as calculated by regression analysis

seCo = standard error value for the constant Co; compare to In Co

 r^2 = coefficient of determination

seC = standard error value of the estimated concentration C (i.e., a "standard deviation" for the regression

F stat. = F statistic or F-observed value

df = degrees of freedom

 ss_{regr} = the regression sum of squares

ss_{resid} = the residual sum of squares

In C_o = natural log of Co for comparing to seCo

SHAW AFB, BLD	G 1610								
Sample									
Location	Date	Time (yrs)	Benzene	Toluene	Ethylbenzene	o-Xylene	m,p-Xylenes	Total Xylenes	Total BTEX
SHMW1610-2	6/1/1994	0.00	0.50	1.33	0.37	1.01	1.31	2.32	4.52
	3/6/1997	2.76	0.29	0.64	0.18	0.39	0.73	1.12	2.22
	3/11/1998	3.78	0.16	0.36	0.13	0.31	0.61	0.92	1.58
	7/18/2002	8.13	0.14	0.37	0.15			1.41	2.08
linear									
Co			0.4297	1.0789	0.2954	#VALUE!	#VALUE!	1.7763	3.5803
Predicted C - lates	st sample date	!	0.0842	0.1857	0.1018	#VALUE!	#VALUE!	1.0339	1.4056
linear rate constar	nt (k) (slope)		0.0425	0.1098	0.0238	0.1935	0.1907	0.0913	0.2673
average yearly red	duction (%)		9.88	10.18	8.06	#VALUE!	#VALUE!	5.14	7.47

linear summary stats

Ī	Benz	ene	Tolu	iene	Ethylbe	nzene	Total >	(ylenes	Total	BTEX
	-0.0425	0.4297	-0.1098	1.0789	-0.0238	0.2954	-0.0913	1.7763	-0.2673	3.5803
	0.0173	0.0810	0.0550	0.2580	0.0155	0.0727	0.1124	0.5277	0.1987	0.9322
	0.7518	0.1009	0.6660	0.3217	0.5411	0.0907	0.2478	0.6579	0.4752	1.1623
	6	2	4	2	2	2	1	2	2	2
	0.0617	0.0204	0.4127	0.2069	0.0194	0.0164	0.2852	0.8656	2.4465	2.7019

exponential	Benzene	Toluene	Ethylbenzene	o-Xylene	m,p-Xylenes	Total Xylenes	Total BTEX
Co	0.4235	1.0128	0.2735	#VALUE!	#VALUE!	1.6174	3.2843
exponential rate constant (k)	0.1547	0.1510	0.0980	#VALUE!	#VALUE!	0.0485	0.0860
% reduction/year	14.33	14.02	9.33	#VALUE!	#VALUE!	4.74	8.24

Benz	Benzene Toluene		uene	Ethylbe	enzene	Total	Xylenes	Total BTEX		
0.8567	0.4235	0.8598	1.0128	0.9067	0.2735	0.9526	1.6174	0.9176	3.2843	
0.0550	0.2579	0.0700	0.3284	0.0653	0.3066	0.0762	0.3577	0.0716	0.3358	
0.7984	0.3215	0.6996	0.4094	0.5291	0.3823	0.1684	0.4459	0.4196	0.4186	
8	2	5	2	2	2	0	2	1	2	
0.8191	0.2068	0.7808	0.3352	0.3284	0.2923	0.0805	0.3977	0.2534	0.3505	
	-0.8591		0.0127		-1.2963		0.4808		1.1892	

SHAW AFB, BLDG 1610 (continued)

Sample

Location	Date	Time (yrs)	Benzene	Toluene	Ethylbenzene	m-Xylene	o-Xylene	p-Xylene	m,p-xylenes	Total Xylenes	Total BTEX
SHMW1610-3	6/1/1994	0.00	0.50	1.33	0.37	0.96	1.01	0.35	1.31	2.32	2.32
	3/6/1997	2.76	0.18	0.32	0.12	0.41	0.31	0.15	0.57	0.87	1.49
	3/11/1998	3.78	0.21	0.42	0.14	0.45	0.32	0.17	0.61	0.93	1.70
	7/18/2002	8.13	0.15	0.33	0.15					1.28	1.92
linear											
Co			0.3982	0.9915	0.2771	#VALUE!	#VALUE!	#VALUE!	#VALUE!	1.7227	1.9744
Predicted C - late	st sample date		0.0931	0.1276	0.0956	#VALUE!	#VALUE!	#VALUE!	#VALUE!	0.8970	1.7162
linear rate consta	nt (k) (slope)		0.0375	0.1062	0.0223	0.1489	0.1989	0.0535	0.2024	0.1015	0.0317
average yearly re	duction (%)		9.42	10.71	8.05	#VALUE!	#VALUE!	#VALUE!	#VALUE!	5.89	1.61

linear summary stats

Benz	Benzene Toluene		iene	Ethylbe	nzene	Total X	Kylenes	Total BTEX		
-0.0375	0.3982	-0.1062	0.9915	-0.0223	0.2771	-0.1015	1.7227	-0.0317	1.9744	
0.0209	0.0982	0.0691	0.3244	0.0188	0.0884	0.1209	0.5672	0.0710	0.3332	
0.6163	0.1225	0.5414	0.4044	0.4124	0.1102	0.2607	0.7072	0.0908	0.4155	
3	2	2	2	1	2	1	2	0	2	
0.0482	0.0300	0.3861	0.3271	0.0170	0.0243	0.3528	1.0003	0.0345	0.3452	

exponential	Benzene	Toluene	Ethylbenzene	m-Xylene	o-Xylene	p-Xylene	m,p-xylenes	Total Xylenes	Total BTEX
Co	0.3717	0.8479	0.2413	#VALUE!	#VALUE!	#VALUE!	#VALUE!	1.5202	1.9276
exponential rate constant (k)	0.1289	0.1465	0.0877	#VALUE!	#VALUE!	#VALUE!	#VALUE!	0.0544	0.0137
% reduction/year	12.09	13.63	8.40	#VALUE!	#VALUE!	#VALUE!	#VALUE!	5.29	1.36

Ber	zene	Tol	uene	Ethylb	enzene	Tota	l Xylenes	Total BTEX		
0.8791	0.3717	0.8637	0.8479	0.9160	0.2413	0.9471	1.5202	0.9864	1.9276	
0.0631	0.2963	0.0945	0.4435	0.0869	0.4079	0.0856	0.4015	0.0383	0.1799	
0.6758	0.3694	0.5459	0.5529	0.3374	0.5086	0.1681	0.5005	0.0601	0.2243	
4	2	2	2	1	2	0	2	0	2	
0.5688	0.2729	0.7350	0.6114	0.2634	0.5173	0.1012	0.5011	0.0064	0.1006	
	-0.9896		-0.1650		-1.4216		0.4188		0.6563	

DFSP-Charleston, Tank 1

Sample											
Location	Date	Time (yrs)	Benzene	Toluene	Ethylbenzene	m-Xylene	o-Xylene	p-Xylene	m,p-xylenes	Total Xylenes	Total BTEX
EW-6	10/1/1975	0.00	0.50	1.33	0.37	0.96	1.01	0.35	1.31	2.32	4.52
	12/1/1993	18.18	0.0013	0.0057	0.0478	0.1328	0.0115	0.0428	0.1756	0.1871	0.2419
	5/17/1997	21.64	0.0000	0.0002	0.0115	0.0276	0.0027	0.0138	0.0415	0.0441	0.0558
	2/7/2002	26.37	0.0011	0.0011	0.0490		0.0011		0.1700	0.1711	0.2223
linear											
Co			0.4683	1.2463	0.3479	#VALUE!	0.9478	#VALUE!	1.2336	2.1814	4.2439
Predicted C - lat	test sample date		-0.0778	-0.2072	-0.0160	#VALUE!	-0.1542	#VALUE!	-0.0562	-0.2103	-0.5114
linear rate const	ant (k) (slope)		0.0207	0.0551	0.0138	0.0439	0.0418	0.0160	0.0489	0.0907	0.1803
average yearly i	reduction (%)		4.42	4.42	3.97	#VALUE!	4.41	#VALUE!	3.96	4.16	4.25

linear summary stats

Benz	Benzene		ene	Ethylbe	nzene	Total X	(ylenes	Total BTEX		
-0.0245	0.4927	-0.0652	1.3109	-0.0169	0.3681	-0.1092	2.2996	-0.2159	4.4713	
0.0036	0.0593	0.0096	0.1562	0.0010	0.0159	0.0102	0.1666	0.0244	0.3981	
0.9785	0.0598	0.9789	0.1574	0.9967	0.0160	0.9913	0.1679	0.9874	0.4010	
46	1	46	1	304	1	114	1	78	1	
0.1627	0.0036	1.1493	0.0248	0.0776	0.0003	3.2216	0.0282	12.5946	0.1608	

exponential	Benzene	Toluene	Ethylbenzene	m-Xylene	o-Xylene	p-Xylene	m,p-xylenes	Total Xylenes	Total BTEX
Co	0.2785	1.0627	0.3062	#VALUE!	1.0387	#VALUE!	1.0957	1.8957	3.5922
exponential rate constant (k)	0.3279	0.3115	0.1025	#VALUE!	0.2621	#VALUE!	0.1026	0.1251	0.1423
% reduction/vear	27.96	26.77	9.74	#VALUE!	23.06	#VALUE!	9.75	11.76	13.26

Ī	Ben	Benzene Toluene		uene	Ethylb	enzene	Tota	l Xylenes	Total BTEX		
Ī	0.6195	0.7310	0.6862	1.6114	0.8653	0.4010	0.8450	2.5005	0.8276	4.8507	
	0.1901	3.1026	0.0961	1.5678	0.0403	0.6575	0.0375	0.6119	0.0353	0.5767	
	0.8638	3.1258	0.9389	1.5795	0.9280	0.6624	0.9527	0.6165	0.9663	0.5811	
	6	1	15	1	13	1	20	1	29	1	
	61.9656	9.7706	38.3405		5.6589	0.4387	7.6621	0.3801	9.6766	0.3376	
		-0.3133		0.4771		-0.9138		0.9165		1.5791	

DFSP-Charleston, Tank 1

Sample

Location	Date	Time (yrs)	Benzene	Toluene	Ethylbenzene	m-Xylene	o-Xylene	p-Xylene	m,p-xylenes	Total Xylenes	Total BTEX
MW103	10/1/1975	0.00	0.50	1.33	0.37	0.96	1.01	0.35	1.31	2.32	4.52
	5/16/1997	21.64	0.0000	0.0268	0.1263					0.7105	0.8637
	2/7/2002	26.37	0.0051	0.3000	0.2100		0.2800		0.9800	1.2600	1.7751
linear											
Co			0.4901	1.2818	0.3582	#VALUE!	#VALUE!	#VALUE!	#VALUE!	2.2421	4.3722
Predicted C - la	test sample date	!	-0.0401	0.0796	0.1559	#VALUE!	#VALUE!	#VALUE!	#VALUE!	0.9041	1.0996
linear rate cons	tant (k) (slope)		0.0201	0.0456	0.0077	#DIV/0!	0.0277	#DIV/0!	0.0125	0.0507	0.1241
average yearly	reduction (%)		4.10	3.56	2.14	#VALUE!	#VALUE!	#VALUE!	#VALUE!	2.26	2.84

linear

summary stats

ſ	Benzene		Tolu	iene	Ethylbe	nzene	Total X	(ylenes	Total BTEX		
	-0.0201	0.4901	-0.0456	1.2818	-0.0077	0.3582	-0.0507	2.2421	-0.1241	4.3722	
	0.0036	0.0712	0.0176	0.3474	0.0043	0.0853	0.0285	0.5611	0.0541	1.0650	
	0.9686	0.0719	0.8698	0.3508	0.7584	0.0861	0.7603	0.5665	0.8404	1.0752	
	31	1	7	1	3	1	3	1	5	1	
	0.1598	0.0052	0.8215	0.1230	0.0233	0.0074	1.0178	0.3209	6.0885	1.1561	

exponential	Benzene	Toluene	Ethylbenzene	m-Xylene	o-Xylene	p-Xylene	m,p-xylenes	Total Xylenes	Total BTEX
Co	0.2116	1.0030	0.3470	#VALUE!	#VALUE!	#VALUE!	#VALUE!	2.1592	4.1166
exponential rate constant (k)	0.2903	0.0947	0.0302	#VALUE!	#VALUE!	#VALUE!	#VALUE!	0.0329	0.0481
% reduction/year	25.20	9.03	2.97	#VALUE!	#VALUE!	#VALUE!	#VALUE!	3.23	4.70

exponential summary stats

Ben	zene	Tol	uene	Ethylb	enzene	Tota	l Xylenes	Tot	al BTEX
0.7480	0.2116	0.9097	1.0030	0.9703	0.3470	0.9677	2.1592	0.9530	4.1166
0.3146	6.1963	0.1033	2.0336	0.0235	0.4627	0.0263	0.5176	0.0342	0.6737
0.4599	6.2557	0.4568	2.0531	0.6226	0.4671	0.6101	0.5226	0.6641	0.6801
1	1	1	1	2	1	2	1	2	1
33.3189	39.1335	3.5440	4.2151	0.3599	0.2182	0.4273	0.2731	0.9147	0.4626
	-1.5531		0.0030		-1.0585		0.7697		1.4150

DFSP-Charleston, Tank 1

Sample

Location	Date	Time (yrs)	Benzene	loluene	Ethylbenzene	m-Xylene	o-Xylene	p-Xylene	m,p-xylenes	Total Xylenes	Total BTEX
W108	10/1/1975	0.00	0.50	1.33	0.37	0.96	1.01	0.35	1.31	2.32	4.52
	5/1/1995	19.59	0.0000	0.0027	0.0067	0.0063	0.0122	0.0068	0.0132	0.0254	0.0347

8/8.	/1997 21.8	7 0.0001	0.0032	0.0229	0.0216	0.0207	0.0098	0.0315	0.0521	0.0783
2/7	/2002 26.3	7 0.0020	0.0020	0.0170		0.0300		0.0160	0.0460	0.0670
linear										
Co		0.4778	1.2719	0.3534	#VALUE!	0.9641	#VALUE!	1.2536	2.2177	4.3208
Predicted C - latest sample	e date	-0.0700	-0.1859	-0.0342	#VALUE!	-0.1181	#VALUE!	-0.1630	-0.2811	-0.5712
linear rate constant (k) (slo	ppe)	0.0208	0.0553	0.0147	0.0452	0.0410	0.0163	0.0537	0.0947	0.1855
average yearly reduction (%)	4.35	4.35	4.16	#VALUE!	4.26	#VALUE!	4.28	4.27	4.29

linear

summary stats

Benzene		Toluene		Ethylbe	nzene	Total >	(ylenes	Total BTEX		
-0.0239	0.4970	-0.0634	1.3221	-0.0169	0.3670	-0.1089	2.3049	-0.2132	4.4910	
0.0023	0.0386	0.0061	0.1026	0.0023	0.0387	0.0115	0.1944	0.0221	0.3742	
0.9910	0.0387	0.9910	0.1029	0.9821	0.0388	0.9890	0.1950	0.9894	0.3753	
110	1	110	1	55	1	90	1	93	1	
0.1651	0.0015	1.1635	0.0106	0.0827	0.0015	3.4318	0.0380	13.1417	0.1409	

exponential	Benzene	Toluene	Ethylbenzene	m-Xylene	o-Xylene	p-Xylene	m,p-xylenes	Total Xylenes	Total BTEX
Co	#REF!	1.0639	0.2876	#VALUE!	0.7502	#VALUE!	1.0837	1.8074	3.4518
exponential rate constant (k)	0.3059	0.2630	0.1307	#VALUE!	0.1567	#VALUE!	0.1765	0.1656	0.1777
% reduction/vear	26.35	23.13	12.25	#VALUE!	14.51	#VALUE!	16.18	15.26	16.28

exponential summary stats

Ben	zene	Tol	uene	Ethylb	enzene	Tota	l Xvlenes	Total BTEX		
0.6239	0.3867	0.7470	1.2687	0.8542	0.3392	0.8221	2.1763	0.8105	4.2110	
0.1957	3.3170	0.0360	0.6096	0.0662	1.1219	0.0487	0.8255	0.0539	0.9144	
0.8532	3.3269	0.9850	0.6114	0.8500	1.1253	0.9418	0.8280	0.9382	0.9172	
6	1	66	1	6	1	16	1	15	1	
64.3509	11.0684	24.5973	0.3738	7.1759	1.2663	11.0885	0.6856	12.7618	0.8412	
	-0.9500		0.2380		-1.0811		0.7776		1.4377	

Myrtle Beach MW8I OBG DATA

Sample

Location	Date	Time (yrs)	Benzene	Toluene	Ethylbenzene	m-Xylene	o-Xylene	p-Xylene	m,p-xylenes	Total Xylenes	Total BTEX
MW8I	1/1/1981	0.00	0.50	1.33	0.37	0.96	1.01	0.35	1.31	2.32	4.52
	3/4/1997	16.18	0.0281	0.0010	0.1813	0.4587	0.0016	0.1080	0.5667	0.5683	0.7788
	7/25/2001	20.58	0.0260	0.0021	0.1700		0.0021		0.1600	0.1600	0.3581
linear											
Co			0.4932	1.3103	0.3681	#VALUE!	0.9951	#VALUE!	1.3306	2.3258	4.4974
Predicted C - la	test sample date)	-0.0097	-0.1015	0.1600	#VALUE!	-0.0763	#VALUE!	0.2681	0.1905	0.2393
linear rate cons	tant (k) (slope)		0.0232	0.0652	0.0096	0.0276	0.0495	0.0133	0.0491	0.0987	0.1968
average yearly	reduction (%)		4.71	4.98	2.61	#VALUE!	4.98	#VALUE!	3.69	4.24	4.37

linear summary stats

Ī	Benz	ene	Tolu	ene	Ethylbe	nzene	Total >	(ylenes	Total BTEX		
ſ	-0.0247	0.4873			5 -0.0102 0.3660		-0.1059	2.3132	-0.2101	4.4599	
	0.0050	0.0758	0.0144	0.2177	0.0016	0.0240	0.0027	0.0406	0.0237	0.3580	
	0.9604	0.0768	0.9586	0.2207	0.9766	0.0243	0.9994	0.0411	0.9874	0.3630	
	24	1	23	1	42	1	1556	1	79	1	
	0.1432	0.0059	1.1278	0.0487	0.0246	0.0006	2.6319	0.0017	10.3667	0.1318	

exponential	Benzene	Toluene	Ethylbenzene	m-Xylene	o-Xylene	p-Xylene	m,p-xylenes	Total Xylenes	Total BTEX
Co	0.4821	1.1296	0.3680	#VALUE!	0.8998	#VALUE!	1.4273	2.5071	4.6778
exponential rate constant (k)	0.1438	0.3302	0.0370	#VALUE!	0.3081	#VALUE!	0.0803	0.1083	0.1104
% reduction/year	13.39	28.12	3.63	#VALUE!	26.51	#VALUE!	7.72	10.27	10.45

Ber	Benzene Tolue		uene	Ethylbenzene		Tota	l Xylenes	Total BTEX		
0.8582	0.4658	0.7055	1.0139	0.9613	0.3652	0.8884	2.5369	0.8876	4.6586	
0.0280	0.4225	0.1070	1.6165	0.0051	0.0776	0.0352	0.5323	0.0119	0.1799	
0.9677	0.4284	0.9141	1.6391	0.9834	0.0787	0.9186	0.5398	0.9901	0.1824	
30	1	11	1	59	1	11	1	100	1	
5.4925	0.1835	28.5866	2.6867	0.3663	0.0062	3.2874	0.2913	3.3416	0.0333	
	-0.7641		0.0138		-1.0073		0.9309		1.5387	

Myrtle Beach MW24 OBG DATA

Sample	Э
--------	---

Location	Date	Time (yrs)	Benzene	Toluene	Ethylbenzene	m-Xylene	o-Xylene	p-Xylene	m,p-xylenes	Total Xylenes	Total BTEX
MW24	1/1/1981	0.00	0.50	1.33	0.37	0.96	1.01	0.35	1.31	2.32	4.52
	3/4/1997	16.18	0.0074	0.0007	0.0785	0.2369	0.0019	0.0410	0.2779	0.2797	0.3664
	7/25/2001	20.58	0.0120	0.0015	0.0760		0.0021		0.0310	0.0331	0.1226
linear											
Co			0.4924	1.3103	0.3659	#VALUE!	0.9951	#VALUE!	1.3139	2.3090	4.4776
Predicted C - lat	est sample date)	-0.0281	-0.1019	0.0544	#VALUE!	-0.0762	#VALUE!	0.0516	-0.0247	-0.1003
linear rate const	ant (k) (slope)		0.0241	0.0653	0.0144	0.0398	0.0495	0.0170	0.0583	0.1078	0.2115
average yearly r	eduction (%)		4.88	4.98	3.93	#VALUE!	4.97	#VALUE!	4.44	4.67	4.72

linear summary stats

Benzene		Toluene		Ethylbe	nzene	Total >	(ylenes	Total BTEX		
-0.0255	0.4860	-0.0693	1.2935	-0.0153	0.3623	-0.1152	2.2890	-0.2254	4.4307	
0.0055	0.0832	0.0144	0.2175	0.0030	0.0461	0.0122	0.1849	0.0352	0.5317	
0.9556	0.0844	0.9587	0.2206	0.9618	0.0467	0.9888	0.1874	0.9762	0.5391	
22	1	23	1	25	1	89	1	41	1	
0.1532	0.0071	1.1286	0.0486	0.0549	0.0022	3.1160	0.0351	11.9258	0.2906	

exponential	Benzene	Toluene	Ethylbenzene	m-Xylene	o-Xylene	p-Xylene	m,p-xylenes	Total Xylenes	Total BTEX
Co	0.4523	1.1256	0.3625	#VALUE!	0.9116	#VALUE!	1.5178	2.6536	4.7414
exponential rate constant (k)	0.1921	0.3464	0.0771	#VALUE!	0.3055	#VALUE!	0.1440	0.1700	0.1573
% reduction/year	17.47	29.28	7.42	#VALUE!	26.33	#VALUE!	13.42	15.63	14.55

Ben	zene	Toluene		Ethylb	enzene	Tota	l Xylenes	Total BTEX		
0.8165	0.4239	0.6934	1.0065	0.9212	0.3558	0.8303	2.7156	0.8437	4.7121	
0.0651	0.9831	0.1098	1.6598	0.0154	0.2334	0.0621	0.9378	0.0164	0.2479	
0.9067	0.9969	0.9175	1.6831	0.9658	0.2366	0.8999	0.9509	0.9908	0.2513	
10	1	11	1	28	1	9	1	107	1	
9.6565	0.9938	31.4921	2.8327	1.5802	0.0560	8.1262	0.9042	6.7784	0.0632	
	-0.8582		0.0065		-1.0334		0.9990		1.5501	

Date	Time (yrs)	Benzene	Toluene	Ethylbenzene	m-Xylene	o-Xylene	p-Xylene	m,p-xylenes	Total Xylenes	Total BTEX
10/1/1973	0.00	0.50	1.33	0.37	0.96	1.01	0.35	1.31	2.32	4.52
8/27/1997	23.92	0.0004	0.0000	0.3252	0.0695	0.2216	0.3842	0.4537	0.6753	1.0009
10/10/2001	28.04	0.0012	0.0017	0.2500)	0.0530		0.4800	0.5300	0.7829
	Date 10/1/1973 8/27/1997	Date Time (yrs) 10/1/1973 0.00 8/27/1997 23.92	Date Time (yrs) Benzene 10/1/1973 0.00 0.50 8/27/1997 23.92 0.0004	Date Time (yrs) Benzene Toluene 10/1/1973 0.00 0.50 1.33 8/27/1997 23.92 0.0004 0.0000	Date Time (yrs) Benzene Toluene Ethylbenzene 10/1/1973 0.00 0.50 1.33 0.37 8/27/1997 23.92 0.0004 0.0000 0.3252	Date Time (yrs) Benzene Toluene Ethylbenzene m-Xylene 10/1/1973 0.00 0.50 1.33 0.37 0.96 8/27/1997 23.92 0.0004 0.0000 0.3252 0.0695	Date Time (yrs) Benzene Toluene Ethylbenzene m-Xylene o-Xylene 10/1/1973 0.00 0.50 1.33 0.37 0.96 1.01 8/27/1997 23.92 0.0004 0.0000 0.3252 0.0695 0.2216	Date Time (yrs) Benzene Toluene Ethylbenzene m-Xylene o-Xylene p-Xylene 10/1/1973 0.00 0.50 1.33 0.37 0.96 1.01 0.35 8/27/1997 23.92 0.0004 0.0000 0.3252 0.0695 0.2216 0.3842	Date Time (yrs) Benzene Toluene Ethylbenzene m-Xylene o-Xylene p-Xylene m,p-xylenes 10/1/1973 0.00 0.50 1.33 0.37 0.96 1.01 0.35 1.31 8/27/1997 23.92 0.0004 0.0000 0.3252 0.0695 0.2216 0.3842 0.4537	Date Time (yrs) Benzene Toluene Ethylbenzene m-Xylene o-Xylene p-Xylene m,p-xylenes Total Xylenes 10/1/1973 0.00 0.50 1.33 0.37 0.96 1.01 0.35 1.31 2.32 8/27/1997 23.92 0.0004 0.0000 0.3252 0.0695 0.2216 0.3842 0.4537 0.6753

linear

0.3748 #VALUE! #VALUE! 1.2975 2.3101 4.4921 0.4938 1.3134 1.0123 Predicted C - latest sample date 0.0666 #VALUE! 0.4077 0.4725 0.6213 -0.0350 -0.0944 0.2781 #VALUE! linear rate constant (k) (slope) 0.0189 0.0502 0.0372 0.0337 -0.0014 0.0317 0.0655 0.1380 0.0035 average yearly reduction (%) 3.82 3.82 0.92 #VALUE! 3.33 #VALUE! 2.45 2.84 3.07

linear summary stats

Benzene		Toluene		Ethylbe	nzene	Total >	(ylenes	Total BTEX		
-0.0189	0.4938	-0.0502	1.3134	-0.0035	0.3748	-0.0655	2.3101	-0.1380	4.4921	
0.0026	0.0557	0.0070	0.1480	0.0020	0.0433	0.0042	0.0886	0.0117	0.2491	
0.9811	0.0561	0.9812	0.1490	0.7424	0.0435	0.9960	0.0891	0.9929	0.2506	
52	1	52	1	3	1	248	1	139	1	
0.1630	0.0031	1.1556	0.0222	0.0055	0.0019	1.9688	0.0079	8.7364	0.0628	

exponential	Benzene	Toluene	Ethylbenzene	m-Xylene	o-Xylene	p-Xylene	m,p-xylenes	Total Xylenes	Total BTEX
Co	0.4188	0.7243	0.3764	#VALUE!	1.0983	#VALUE!	1.2877	2.3249	4.5154
exponential rate constant (k)	0.2454	0.3416	0.0110	#VALUE!	0.0907	#VALUE!	0.0387	0.0523	0.0627
% reduction/year	21.76	28.94	1.10	#VALUE!	8.68	#VALUE!	3.80	5.09	6.08

exponential summary stats

Ben	zene	Toluene		Ethylb	enzene	Tota	l Xylenes	Total BTEX		
0.7824	0.4188	0.7106	0.7243	0.9890	0.3764	0.9491	2.3249	0.9392	4.5154	
0.0744	1.5837	0.2553	5.4332	0.0073	0.1543	0.0009	0.0190	0.0004	0.0091	
0.9158	1.5935	0.6416	5.4671	0.6981	0.1553	0.9997	0.0191	1.0000	0.0092	
11	1	2	1	2	1	3445	1	21354	1	
27.6217	2.5394	53.5163	29.8895 -0.3226	0.0557	0.0241 -0.9770	1.2535	0.0004 0.8437	1.8023	0.0001 1.5075	

4.52

1.0009 0.7829

Eaker OBG DATA

Sample	Э
--------	---

Location	Date	Time (yrs)	Benzene	Toluene	Ethylbenzene	m-Xylene	o-Xylene	p-Xylene	m,p-xylenes	Total Xylenes	Total BTEX
MW316	10/1/1973	0.00	0.50	1.33	0.37	0.96	1.01	0.35	1.31	2.32	4.52
	8/27/1997	23.92	0.1168	0.0000	0.3842	1.1526	0.3115	0.5348	1.6874	1.9990	2.5000
	10/10/2001	28.04	0.2200	0.0008	0.4400		0.0560		2.1000	2.2000	2.8608
linear											
Co			0.4879	1.3135	0.3662	#VALUE!	1.0197	#VALUE!	1.2851	2.3016	4.4692
Predicted C - late	est sample date	:	0.1496	-0.0949	0.4178	#VALUE!	0.1122	#VALUE!	1.9555	2.0934	2.5659
linear rate consta	int (k) (slope)		0.0121	0.0502	-0.0018	-0.0081	0.0324	-0.0077	-0.0239	0.0074	0.0679
average yearly re	eduction (%)		2.47	3.82	-0.50	#VALUE!	3.17	#VALUE!	-1.86	0.32	1.52

linear summary stats

Ī	Benz	ene	Tolu	iene	Ethylbe	enzene	Total >	(ylenes	Total	BTEX
ĺ	-0.0121	0.4879	-0.0502	1.3135	0.0018	0.3662	-0.0074	2.3016	-0.0679	4.4692
	0.0051	0.1085	0.0069	0.1475	0.0016	0.0342	0.0077	0.1643	0.0214	0.4544
	0.8485	0.1091	0.9813	0.1484	0.5679	0.0344	0.4805	0.1653	0.9099	0.4573
	6	1	53	1	1	1	1	1	10	1
	0.0667	0.0119	1.1565	0.0220	0.0016	0.0012	0.0253	0.0273	2.1121	0.2091

exponential	Benzene	Toluene	Ethylbenzene	m-Xylene	o-Xylene	p-Xylene	m,p-xylenes	Total Xylenes	Total BTEX
Co	0.4693	0.7638	0.3666	#VALUE!	1.1258	#VALUE!	1.2937	2.2999	4.4439
exponential rate constant (k)	0.0401	0.3594	-0.0046	#VALUE!	0.0846	#VALUE!	-0.0147	0.0034	0.0192
% reduction/year	3.93	30.19	-0.46	#VALUE!	8.11	#VALUE!	-1.48	0.34	1.90

Benz	zene	Tolu	uene	Ethylb	enzene	Tota	l Xylenes	Tota	al BTEX
0.9607	0.4693	0.6981	0.7638	1.0046	0.3666	0.9966	2.2999	0.9810	4.4439
0.0266	0.5663	0.2330	4.9578	0.0039	0.0827	0.0037	0.0779	0.0071	0.1518
0.6945	0.5699 0.7041		4.9887	0.5828	0.0832	0.4611	0.0784	0.8789	0.1528
2	1	2	1	1	1	1	1	7	1
0.7381	0.3247	59.2292	24.8870	0.0097	0.0069	0.0053	0.0061	0.1694	0.0233
	-0.7565		-0.2694		-1.0035		0.8329		1.4915

Seymour Johnson-AGE OBG DATA

S	а	m	aı	le

Location	Date	Time (yrs)	Benzene	Toluene	Ethylbenzene	m-Xylene	o-Xylene	p-Xylene	m,p-xylenes	Total Xylenes	Total BTEX
MW13	1/1/1985	0.00	0.50	1.33	0.37	0.96	1.01	0.35	1.31	2.32	4.52
	7/24/2001	16.57	0.1298	0.4543	0.2985					0.9476	1.8302
	7/24/2001	16.57	0.0440	0.4800	0.0920		0.3700		0.8200	1.2000	1.8160
linear											
Co			0.5000	1.3300	0.3700	#VALUE!	#VALUE!	#VALUE!	#VALUE!	2.3200	4.5200
Predicted C - late	est sample date)	0.0869	0.4672	0.1953	#VALUE!	#VALUE!	#VALUE!	#VALUE!	1.0738	1.8231
linear rate consta	ant (k) (slope)		0.0249	0.0521	0.0105	#DIV/0!	0.0386	#DIV/0!	0.0296	0.0752	0.1628
average yearly re	eduction (%)		4.99	3.92	2.85	#VALUE!	#VALUE!	#VALUE!	#VALUE!	3.24	3.60

linear summary stats

Benz	ene	Tolu	iene	Ethylbe	nzene	Total X	(ylenes	Total	BTEX
-0.0249			1.3300	-0.0105	0.3700	-0.0752	2.3200	-0.1628	4.5200
0.0045	0.0607	0.0013	0.0182	0.0108	0.1461	0.0132	0.1785	0.0007	0.0101
0.9687	0.0607	0.9993	0.0182	0.4883	0.1461	0.9701	0.1785	1.0000	0.0101
31	1	1504	1	1	1	32	1	47972	1
0 1138	0.0037	0.4963	0.0003	0.0204	0.0213	1 0354	0.0319	4 8488	0.0001

exponential	Benzene	Toluene	Ethylbenzene	m-Xylene	o-Xylene	p-Xylene	m,p-xylenes	Total Xylenes	Total BTEX
Co	0.5000	1.3300	0.3700	#VALUE!	#VALUE!	#VALUE!	#VALUE!	2.3200	4.5200
exponential rate constant (k)	0.1140	0.0632	0.0485	#VALUE!	#VALUE!	#VALUE!	#VALUE!	0.0469	0.0548
% reduction/vear	10.78	6.12	4.73	#VALUE!	#VALUE!	#VALUE!	#VALUE!	4.58	5.33

В	enzene	Tol	uene	Ethylb	enzene	Tota	l Xylenes	Tot	al BTEX
0.8922	0.5000	0.9388	1.3300	0.9527	0.3700	0.9542	2.3200	0.9467	4.5200
0.0568	0.7650	0.0029	0.0389	0.0615	0.8324	0.0123	0.1670	0.0004	0.0055
0.8027				0.3830	0.8324	0.9352	0.1670	0.9999	0.0055
4	1	483	1	1	1	14	1	18073	1
2.3802	0.5852	0.7303	0.0015	0.4300	0.6928	0.4028	0.0279	0.5496	0.0000
	-0.6931		0.2852		-0.9943		0.8416		1.5085

									Beaufort	MCAS Fresh	JP-5			Hugl	nes et al., 1	984	
Lab		Fuel	Spill	Sample					Line	ear	Expon	ential		Line	ear	Expor	ential
Code	Site Name	Type	Date	Date	Locid	Analyte	Mass Fraction	C _o - C	k	%Red./yr	k	%Red./yr	C _o - C	k	%Red./yr	k	%Red./yr
NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	6/1/1990	8/12/1997 BFT-4	401-3	Benzene	0.00028	-0.0001	0.0000	-6.13	-0.0508	-5.21	-0.0003	0.0000	#DIV/0!	#DIV/0!	#DIV/0!
NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	6/1/1990	8/12/1997 BFT-4	401-3	Toluene	0.00162	0.0031	0.0004	9.08	0.1472	13.69	-0.0016	-0.0002	#DIV/0!	#DIV/0!	#DIV/0!
NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	6/1/1990	8/12/1997 BFT-4	401-3	Ethylbenzene	0.01442	0.0275	0.0038	9.11	0.1482	13.77	-0.0144	-0.0020	#DIV/0!	#DIV/0!	#DIV/0!
NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	6/1/1990	8/12/1997 BFT-4	401-3	Total Xylenes (m,p, and o)	0.07591	0.1635	0.0227	9.48	0.1594	14.74	-0.0558	-0.0077	-38.50	-0.1844	-20.24
NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	6/1/1990	8/12/1997 BFT-4	401-3	Total BTEX	0.09222	0.1939	0.0269	9.41	0.1572	14.55	-0.0721	-0.0100	-49.76	-0.2114	-23.54
NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	6/1/1990	8/12/1997 BFT-4	401-3	1,2,3-Trimethylbenzene	0.21134	0.0951	0.0132	4.31	0.0516	5.03	0.3555	0.0494	8.71	0.1370	12.80
NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	6/1/1990	8/12/1997 BFT-4	401-3	1,2,4-Trimethylbenzene	0.25609	0.2785	0.0387	7.23	0.1022	9.71	0.2457	0.0341	6.80	0.0934	8.92
NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	6/1/1990	8/12/1997 BFT-4	401-3	1,3,5-Trimethylbenzene	0.10641	0.0346	0.0048	3.41	0.0391	3.83	0.0380	0.0053	3.65	0.0424	4.15
NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	6/1/1990	8/12/1997 BFT-4	401-3	Naphthalene	0.05656	0.0637	0.0088	7.35	0.1047	9.94	0.8298	0.1152	13.00	0.3820	31.75
NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	6/1/1990	8/12/1997 BFT-4	401-3	1-MethylNaphthalene	0.16037	0.0666	0.0092	4.07	0.0482	4.71	0.1059	0.0147	5.52	0.0704	6.80
NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	6/1/1990	8/12/1997 BFT-4	401-3	2-MethylNaphthalene	0.18647	0.1084	0.0150	5.10	0.0636	6.16	0.2656	0.0369	8.16	0.1229	11.57
NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	6/1/1990	8/12/1997 BFT-4	401-3	Total Naphthalenes	0.4034	0.2386	0.0331	5.16	0.0645	6.25	1.2013	0.1668	10.39	0.1917	17.44

								Beaufort	MCAS Fresh	ı JP-5			Hugi	nes et al., 1	984	
Lab	Fuel	Spill	Sample					Line	ear	Expon	ential		Line	ear	Expon	ential
Code	Туре	Date	Date	Locid	Analyte	Mass Fraction	C _o - C	k	%Red./yr	k	%Red./yr	C _o -C	k	%Red./yr	k	%Red./yr
OBG	JP-5	6/1/1981	2/8/2002	CEF-VEW-1	Benzene	0.0052	-0.0050	-0.0002	-125.77	-0.1593	-17.26	-0.0052	-0.0003	#DIV/0!	#DIV/0!	#DIV/0!
OBG	JP-5	6/1/1981	2/8/2002	CEF-VEW-1	Toluene	0.0052	-0.0005	0.0000	-0.55	-0.0052	-0.52	-0.0052	-0.0003	#DIV/0!	#DIV/0!	#DIV/0!
OBG	JP-5	6/1/1981	2/8/2002	CEF-VEW-1	Ethylbenzene	0.0120	0.0299	0.0014	3.45	0.0604	5.86	-0.0120	-0.0006	#DIV/0!	#DIV/0!	#DIV/0!
OBG	JP-5	6/1/1981	2/8/2002	CEF-VEW-1	Total Xylenes (m,p, and o)	0.1000	0.1394	0.0067	2.81	0.0422	4.13	-0.0799	-0.0039	-19.18	-0.0775	-8.05
OBG	JP-5	6/1/1981	2/8/2002	CEF-VEW-1	Total BTEX	0.1224	0.1637	0.0079	2.76	0.0410	4.02	-0.1023	-0.0049	-24.56	-0.0872	-9.11
OBG	JP-5	6/1/1981	2/8/2002	CEF-VEW-1	1,2,3-Trimethylbenzene	0.1800	0.1264	0.0061	1.99	0.0257	2.54	0.3869	0.0187	3.30	0.0554	5.39
OBG	JP-5	6/1/1981	2/8/2002	CEF-VEW-1	1,2,4-Trimethylbenzene	0.1500	0.3846	0.0186	3.47	0.0614	5.95	0.3518	0.0170	3.39	0.0583	5.67
OBG	JP-5	6/1/1981	2/8/2002	CEF-VEW-1	1,3,5-Trimethylbenzene	0.1000	0.0410	0.0020	1.41	0.0166	1.65	0.0444	0.0021	1.48	0.0177	1.76
OBG	JP-5	6/1/1981	2/8/2002	CEF-VEW-1	Naphthalene	0.0740	0.0463	0.0022	1.86	0.0235	2.32	0.8124	0.0392	4.43	0.1199	11.30
NRMRL	JP-5	6/1/1981	5/20/1997	CEF-293-9FP	Benzene	0.0029	-0.0027	-0.0002	-89.46	-0.1707	-18.61	-0.0029	-0.0002	#DIV/0!	#DIV/0!	#DIV/0!
NRMRL	JP-5	6/1/1981	5/20/1997	CEF-293-9FP	Toluene	0.0153	-0.0106	-0.0007	-14.22	-0.0742	-7.70	-0.0153	-0.0010	#DIV/0!	#DIV/0!	#DIV/0!
NRMRL	JP-5	6/1/1981	5/20/1997	CEF-293-9FP	Ethylbenzene	0.3154	-0.2735	-0.0171	-40.83	-0.1263	-13.46	-0.3154	-0.0197	#DIV/0!	#DIV/0!	#DIV/0!
NRMRL	JP-5	6/1/1981	5/20/1997	CEF-293-9FP	Total Xylenes (m,p, and o)	0.5991	-0.3598	-0.0225	-9.41	-0.0574	-5.91	-0.5790	-0.0362	-180.12	-0.2124	-23.66
NRMRL	JP-5	6/1/1981	5/20/1997	CEF-293-9FP	Total BTEX	0.9327	-0.6466	-0.0405	-14.14	-0.0740	-7.68	-0.9126	-0.0571	-283.90	-0.2401	-27.14
NRMRL	JP-5	6/1/1981	5/20/1997	CEF-293-9FP	1,2,3-Trimethylbenzene	0.2328	0.0736	0.0046	1.50	0.0172	1.71	0.3341	0.0209	3.69	0.0557	5.42
NRMRL	JP-5	6/1/1981	5/20/1997	CEF-293-9FP	1,2,4-Trimethylbenzene	0.5006	0.0340	0.0021	0.40	0.0041	0.41	0.0011	0.0001	0.01	0.0001	0.01
NRMRL	JP-5	6/1/1981	5/20/1997	CEF-293-9FP	1,3,5-Trimethylbenzene	0.1752	-0.0342	-0.0021	-1.52	-0.0136	-1.37	-0.0308	-0.0019	-1.34	-0.0121	-1.22
NRMRL	JP-5	6/1/1981	5/20/1997	CEF-293-9FP	Naphthalene	0.2353	-0.1150	-0.0072	-5.99	-0.0420	-4.29	0.6511	0.0407	4.60	0.0830	7.97
NRMRL	JP-5	6/1/1981	5/20/1997	CEF-293-9FP	1-MethylNaphthalene	0.2866	-0.0597	-0.0037	-1.65	-0.0146	-1.47	-0.0203	-0.0013	-0.48	-0.0046	-0.46
NRMRL	JP-5	6/1/1981	5/20/1997	CEF-293-9FP	2-MethylNaphthalene	0.4155	-0.1206	-0.0076	-2.56	-0.0379	-3.86	0.0366	0.0023	0.51	0.0053	0.53
NRMRL	JP-5	6/1/1981	5/20/1997	CEF-293-9FP	Total Naphthalenes	0.9374	-0.2954	-0.0185	-2.88	-0.1285	-13.71	0.6673	0.0418	2.60	0.0336	3.31

Cecil Field 293-9/VEW-1 OBG DATA

Sample

Location	Date	Time (yrs)	Benzene	Toluene	Ethylbenzene	m-Xylene	o-Xylene	p-Xylene	m,p-xylene	Total Xylen	Total BTEX
MW293-9/VEW-1	6/1/1981	0.00	0.0002	0.0047	0.0419	0.0977	0.1010	0.0406	0.1383	0.2394	0.2861
	5/20/1997	15.98	0.0029	0.0153	0.3154	0.3504	0.0397	0.2090	0.5594	0.5991	0.9327
	2/8/2002	20.70	0.0052	0.0052	0.0120		0.0550		0.0450	0.1000	0.1224
linear											
Co			0.0000	0.0061	0.0830	#VALUE!	0.0974	#VALUE!	0.2067	0.3041	0.3932
Predicted C - late	st sample dat	е	0.0047	0.0100	0.1509	#VALUE!	0.0429	#VALUE!	0.2760	0.3189	0.4844
linear rate consta	nt (k) (slope)		-0.0002	-0.0002	-0.0033	-0.0158	0.0026	-0.0105	-0.0033	-0.0007	-0.0044
average yearly re	duction (%)		-593.85	-3.09	-3.95	#VALUE!	2.70	#VALUE!	-1.62	-0.23	-1.12

linear summary stats

ſ	Benz	zene	Tolu	iene	Ethylbe	nzene	Total >	Kylenes	Total	BTEX
	0.0002	0.0000	0.0002	0.0061	0.0033	0.0830	0.0007	0.3041	0.0044	0.3932
	0.0001	0.0009	0.0005	0.0078	0.0151	0.2274	0.0237	0.3583	0.0392	0.5926
	0.9399	0.0009	0.1167	0.0079	0.0453	0.2310	0.0009	0.3641	0.0124	0.6022
	16	1	0	1	0	1	0	1	0	1
	0.0000	0.0000	0.0000	0.0001	0.0025	0.0534	0.0001	0.1325	0.0046	0.3626

exponential	Benzene	Toluene	Ethylbenzene	m-Xylene	o-Xylene	p-Xylene	m,p-xylene T	otal Xylen T	otal BTEX
Co	0.0002	0.0054	0.0634	#VALUE!	0.0947	#VALUE!	0.1893	0.2984	0.3691
exponential rate constant (k)	-0.1622	-0.0228	0.0129	#VALUE!	0.0368	#VALUE!	0.0182	0.0168	0.0118
% reduction/year	-17.61	-2.30	1.28	#VALUE!	3.61	#VALUE!	1.80	1.67	1.17

В	enzene	To	luene	Ethylb	enzene	Total	Xylenes	Tota	I BTEX
1.176	0.0002	1.0230	0.0054	0.9872	0.0634	0.9833	0.2984	0.9883	0.3691
0.0093		0.0559	0.8447	0.1515	2.2871	0.0808	1.2198	0.0933	1.4083
0.9967		0.1422	0.8584	0.0072	2.3242	0.0415	1.2395	0.0156	1.4311
305	1	0	1	0	1	0	1	0	1
6.1918		0.1222	0.7369	0.0391	5.4018	0.0665	1.5364	0.0325	2.0480
	-8.5311		-5.2147		-2.7586		-1.2094		-0.9968

									Smi	th et al., 198 [.]	1			Ma	ayfield, 19	96	
Lab	Fuel	Spill	Sample						Line	ear	Expon	ential		Line	ear	Expoi	nential
Code	Type	Date	Date Locid	Analyte	Results	Units	Mass Fraction	C _o - C	k	%Red./yr	k	%Red./yr	C _o - C	k	%Red./yr	k	%Red./yr
NRMRL	JP-8	4/1/1996	7/17/1996 SOURCE AREA	Density	0.79	3 g/mL	0.0001										
NRMRL	JP-8	4/1/1996	7/17/1996 SOURCE AREA	Benzene	0.02	5 ug/mL	0.0000	0.0000	0.0000	#DIV/0!	#DIV/0!	#DIV/0!	0.0321	0.1096	341.09	31.4846	100.00
NRMRL	JP-8	4/1/1996	7/17/1996 SOURCE AREA	Toluene	0.02	5 ug/mL	0.0000	0.0000	0.0000	#DIV/0!	#DIV/0!	#DIV/0!	0.2083	0.7107	341.12	37.8600	100.00
NRMRL	JP-8	4/1/1996	7/17/1996 SOURCE AREA	Ethylbenzene	6	3 ug/mL	0.0079	-0.0079	-0.0271	#DIV/0!	#DIV/0!	#DIV/0!	0.1432	0.4886	323.20	10.0496	100.00
NRMRL	JP-8	4/1/1996	7/17/1996 SOURCE AREA	m-Xylene	44	1 ug/mL	0.0556	0.0044	0.0150	24.95	0.2591	22.82	-0.0556	-0.1897	#DIV/0!	#DIV/0!	#DIV/0!
NRMRL	JP-8	4/1/1996	7/17/1996 SOURCE AREA	o-Xylene	45	3 ug/mL	0.0571	0.0029	0.0098	16.35	0.1675	15.42	0.3536	1.2062	293.68	6.7292	99.88
NRMRL	JP-8	4/1/1996	7/17/1996 SOURCE AREA	p-Xylene	11	1 ug/mL	0.0140	-0.0140	-0.0477	#DIV/0!	#DIV/0!	#DIV/0!	-0.0140	-0.0477	#DIV/0!	#DIV/0!	#DIV/0!
NRMRL	JP-8	4/1/1996	7/17/1996 SOURCE AREA	m,p-xylenes	55	2 ug/mL	0.0696	-0.0096	-0.0328	-54.63	-0.5067	-65.99	0.6506	2.2194	308.15	7.9709	99.97
NRMRL	JP-8	4/1/1996	7/17/1996 SOURCE AREA	Total Xylenes (m,p, and o)	100	5 ug/mL	0.1267	-0.0067	-0.0230	-19.14	-0.1862	-20.47	1.0042	3.4256	302.90	7.4662	99.94
NRMRL	JP-8	4/1/1996	7/17/1996 SOURCE AREA	Total BTEX	1068.0	5 ug/mL	0.1347	-0.0147	-0.0501	-41.74	-0.3938	-48.26	1.3879	4.7345	310.95	8.2731	99.97
NRMRL	JP-8	4/1/1996	7/17/1996 SOURCE AREA	B+T	0.0	5 ug/mL	0.0000										
NRMRL	JP-8	4/1/1996	7/17/1996 SOURCE AREA	E+X	106	3 ug/mL	0.1347										
NRMRL	JP-8	4/1/1996	7/17/1996 SOURCE AREA	B/T		1	0.0001										
NRMRL	JP-8	4/1/1996	7/17/1996 SOURCE AREA	B/E	0.00039682	5	0.0000										
NRMRL	JP-8	4/1/1996	7/17/1996 SOURCE AREA	B/X	2.48756E-0	5	0.0000										
NRMRL	JP-8	4/1/1996	7/17/1996 SOURCE AREA	T/E	0.00039682	5	0.0000										
NRMRL	JP-8	4/1/1996	7/17/1996 SOURCE AREA	T/X	2.48756E-0	5	0.0000										
NRMRL	JP-8	4/1/1996	7/17/1996 SOURCE AREA	E/X	0.06268656	7	0.0000										
NRMRL			7/17/1996 SOURCE AREA	(B+T)/(E+X)	4.68165E-0		0.0000										

JP-8_FP.xls\Pope 1-point Page 1 of 1

								Smit	h et al., 1981				Ma	yfield, 1996		
Lab		Fuel	Spill	Sample		ſ		Line		Expon			Line		Expone	
Code	Site Name	Type	Date	Date Locid	Analyte	Mass Fraction	Co - C	k	%Red./yr	k	%Red./yr	Co - C		%Red./yr		%Red./yr
OBG	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	7/12/1996 SJMW1S	Benzene	0.03102	-0.0310	-0.0505	#DIV/0!	#DIV/0!	#DIV/0!	0.0011	0.0018	5.68	0.0579	5.62
OBG	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	7/12/1996 SJMW1S	Toluene	0.20567	-0.2057	-0.3351	#DIV/0!	#DIV/0!	#DIV/0!	0.0027	0.0043	2.08	0.0209	2.07
OBG	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	7/12/1996 SJMW1S	Ethylbenzene	0.15624	-0.1562	-0.2546	#DIV/0!	#DIV/0!	#DIV/0!	-0.0051	-0.0082	-5.44	-0.0536	-5.50
OBG	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	7/12/1996 SJMW1S	Total Xylenes (m,p, and o)	0.94918	-0.8292	-1.3511	-1125.93	-3.3699	-2807.58	0.1818	0.2962	26.19	0.2855	24.84
OBG	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	7/12/1996 SJMW1S	Total BTEX	1.34212	-1.2221	-1.9914	-1659.50	-3.9344	-5012.95	0.1805	0.2941	19.32	0.2056	18.58
OBG	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	7/12/1996 SJMW1S	1,2,3-Trimethylbenzene	NA										
OBG	Bldg 4522, Seymour Johnson AFB, SC Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	7/12/1996 SJMW1S 7/12/1996 SJMW1S	1,2,4-Trimethylbenzene	NA										
OBG OBG	Bldg 4522, Seymour Johnson AFB, SC	JP-8 JP-8	12/1/1995 12/1/1995	7/12/1996 SJMW1S	1,3,5-Trimethylbenzene Naphthalene	NA NA										
ODG	Diag 1522, Seymon Johnson 11 D, Se	31 0	12/1/1995	7/12/7/0 03/11/110	rupitiuieile	****										
Lab		Fuel	Spill	Sample		Γ		Line	ar	Expon	ential		Line	ar	Expone	ntial
Code	Site Name	Type	Date	Date Locid	Analyte	Mass Fraction	C _o - C	k	%Red./yr	k	%Red./yr	C _o - C	k	%Red./yr	k '	%Red./yr
NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	5/15/1997 SJMW2SFP	Benzene	0.02455	-0.0245	-0.0169	#DIV/0!	#DIV/0!	#DIV/0!	0.0076	0.0052	16.24	0.1853	16.91
NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	5/15/1997 SJMW2SFP	Toluene	0.13307	-0.1331	-0.0915	#DIV/0!	#DIV/0!	#DIV/0!	0.0753	0.0517	24.83	0.3081	26.52
NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	5/15/1997 SJMW2SFP	Ethylbenzene	0.14987	-0.1499	-0.1030	#DIV/0!	#DIV/0!	#DIV/0!	0.0013	0.0009	0.60	0.0060	0.60
NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	5/15/1997 SJMW2SFP	Total Xylenes (m,p, and o)	0.78165	-0.6617	-0.4548	-379.01	-1.2881	-262.59	0.3493	0.2401	21.23	0.2539	22.42
NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	5/15/1997 SJMW2SFP	Total BTEX	1.08915	-0.9691	-0.6662	-555.15	-1.5161	-355.46	0.4335	0.2980	19.57	0.2303	20.57
NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	5/15/1997 SJMW2SFP	1,2,3-Trimethylbenzene	0.35530	-0.3553	-0.2442	#DIV/0!	#DIV/0!	#DIV/0!	0.3185	0.2189	32.49	0.4399	35.59
NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	5/15/1997 SJMW2SFP	1,2,4-Trimethylbenzene	0.72997	-0.4600	-0.3162	-117.10	-0.6837	-98.11	0.7343	0.5048	34.47	0.4785	38.03
NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	5/15/1997 SJMW2SFP	1,3,5-Trimethylbenzene	0.27519	-0.2752	-0.1892	#DIV/0!	#DIV/0!	#DIV/0!	0.2331	0.1603	31.53	0.4218	34.41
NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	5/15/1997 SJMW2SFP	Naphthalene	0.16667	0.9733	0.6691	58.69	1.3217	73.33	0.0881	0.0606	23.77	0.2917	25.30
NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	5/15/1997 SJMW2SFP	1-MethylNaphthalene	0.19251	1.6475	1.1325	61.55	1.5517	78.81	0.2349	0.1614	37.78	0.5482	42.20
NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	5/15/1997 SJMW2SFP	2-MethylNaphthalene	0.29974	1.1603	0.7975	54.63	1.0883	66.32	0.0550	0.0378	10.66	0.1158	10.94
NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	5/15/1997 SJMW2SFP	Total Naphthalenes	0.65891	3.7811	2.5991	58.54	1.3114	73.06	0.3780	0.2598	25.06	0.3117	26.78
Lab		Fuel	Spill	Sample		Г		Line		Expon	ontial		Line		Expone	ntial
Code	Site Name	Туре	Date	Date Locid	Analyte	Mass Fraction	C C	k	%Red./vr	k k	%Red./vr	Co-C		%Red./vr		%Red./vr
NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	5/15/1997 SJMW1SFP	Benzene	0.02446	-0.0245	-0.0168	#DIV/0!	#DIV/0!	#DIV/0!	0.0077	0.0053	16.42	0.1876	17.11
NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	5/15/1997 SIMWISEP	Toluene	0.12989	-0.1299	-0.0103	#DIV/0!	#DIV/0!	#DIV/0!	0.0774	0.0539	25.88	0.3248	27.73
NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	5/15/1997 SJMW1SFP	Ethylbenzene	0.14754	-0.1475	-0.0075	#DIV/0!	#DIV/0!	#DIV/0!	0.0036	0.0025	1.66	0.0168	1.67
NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	5/15/1997 SJMW1SFP	Total Xylenes (m,p, and o)	0.75536	-0.6354	-0.4367	-363.95	-1.2646	-254.16	0.3756	0.2582	22.83	0.2774	24.23
NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	5/15/1997 SJMW1SFP	Total BTEX	1.05725	-0.9373	-0.6442	-536.87	-1.4957	-346.25	0.4654	0.3199	21.01	0.2507	22.18
NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	5/15/1997 SJMW1SFP	1,2,3-Trimethylbenzene	0.34300	-0.3430	-0.2358	#DIV/0!	#DIV/0!	#DIV/0!	0.3308	0.2274	33.75	0.4641	37.13
NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	5/15/1997 SJMW1SFP	1,2,4-Trimethylbenzene	0.70492	-0.4349	-0.2990	-110.72	-0.6597	-93.41	0.7594	0.5220	35.65	0.5025	39.50
	Bldg 4522 Seymour Johnson AFR SC	IP-8		5/15/1007 SIMWISEP	1.3.5-Trimethylbenzene		-0.2648	-0.1820	#DIV/0!	#DIV/0!	#DIV/0!	0.2435	0.1674	32.03	0.4482	36.12
NRMRL	Bldg 4522, Seymour Johnson AFB, SC Bldg 4522, Seymour Johnson AFB, SC	JP-8 IP-8	12/1/1995	5/15/1997 SJMW1SFP 5/15/1997 SIMW1SFP	1,3,5-Trimethylbenzene Naphthalene	0.26482	-0.2648 0.9786	-0.1820 0.6727	#DIV/0!	#DIV/0!	#DIV/0!	0.2435	0.1674	32.93 25.19	0.4482	36.12 26.93
NRMRL NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995 12/1/1995	5/15/1997 SJMW1SFP	Naphthalene	0.26482 0.16141	0.9786	0.6727	59.01	1.3437	73.91	0.0933	0.0642	25.19	0.3137	26.93
NRMRL NRMRL NRMRL	Bldg 4522, Seymour Johnson AFB, SC Bldg 4522, Seymour Johnson AFB, SC	JP-8 JP-8	12/1/1995 12/1/1995 12/1/1995	5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP	Naphthalene 1-MethylNaphthalene	0.26482 0.16141 0.19042	0.9786 1.6496	0.6727 1.1339	59.01 61.62	1.3437 1.5592	73.91 78.97	0.0933 0.2370	0.0642 0.1629	25.19 38.11	0.3137 0.5557	26.93 42.63
NRMRL NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995 12/1/1995	5/15/1997 SJMW1SFP	Naphthalene	0.26482 0.16141	0.9786	0.6727	59.01	1.3437	73.91	0.0933	0.0642	25.19	0.3137	26.93
NRMRL NRMRL NRMRL NRMRL	Bldg 4522, Seymour Johnson AFB, SC Bldg 4522, Seymour Johnson AFB, SC Bldg 4522, Seymour Johnson AFB, SC	JP-8 JP-8 JP-8	12/1/1995 12/1/1995 12/1/1995 12/1/1995	5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP	Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene	0.26482 0.16141 0.19042 0.28878	0.9786 1.6496 1.1712	0.6727 1.1339 0.8051 2.6116	59.01 61.62 55.14 58.82	1.3437 1.5592 1.1139 1.3308	73.91 78.97 67.17 73.57	0.0933 0.2370 0.0660	0.0642 0.1629 0.0454 0.2724	25.19 38.11 12.79 26.27	0.3137 0.5557 0.1415 0.3310	26.93 42.63 13.19 28.18
NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	Bidg 4522, Seymour Johnson AFB, SC Bidg 4522, Seymour Johnson AFB, SC	JP-8 JP-8 JP-8 JP-8	12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 Spill	5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP Sample	Naphthalene I-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes	0.26482 0.16141 0.19042 0.28878 0.64061	0.9786 1.6496 1.1712 3.7994	0.6727 1.1339 0.8051 2.6116	59.01 61.62 55.14 58.82	1.3437 1.5592 1.1139 1.3308	73.91 78.97 67.17 73.57	0.0933 0.2370 0.0660 0.3963	0.0642 0.1629 0.0454 0.2724	25.19 38.11 12.79 26.27	0.3137 0.5557 0.1415 0.3310	26.93 42.63 13.19 28.18
NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	Bldg 4522, Seymour Johnson AFB, SC Bldg 4522, Seymour Johnson AFB, SC Bldg 4522, Seymour Johnson AFB, SC Bldg 4522, Seymour Johnson AFB, SC Site Name	JP-8 JP-8 JP-8 JP-8 Fuel Type	12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 Spill Date	5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP Sample Date Locid	Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte	0.26482 0.16141 0.19042 0.28878 0.64061	0.9786 1.6496 1.1712 3.7994 C _o - C	0.6727 1.1339 0.8051 2.6116 Line	59.01 61.62 55.14 58.82 ar %Red./yr	1.3437 1.5592 1.1139 1.3308 Expon	73.91 78.97 67.17 73.57 ential %Red./yr	0.0933 0.2370 0.0660 0.3963	0.0642 0.1629 0.0454 0.2724 Lines	25.19 38.11 12.79 26.27	0.3137 0.5557 0.1415 0.3310 Exponer	26.93 42.63 13.19 28.18 ntial %Red./yr
NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	Bldg 4522, Seymour Johnson AFB, SC Bldg 4522, Seymour Johnson AFB, SC Bldg 4522, Seymour Johnson AFB, SC Bldg 4522, Seymour Johnson AFB, SC Site Name Bldg 4522, Seymour Johnson AFB, SC	JP-8 JP-8 JP-8 JP-8 Fuel Type JP-8	12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 Spill Date 12/1/1995	5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP Sample Date Locid 3/10/1998 SJ98-MP2	Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene	0.26482 0.16141 0.19042 0.28878 0.64061 Mass Fraction 0.00602	0.9786 1.6496 1.1712 3.7994 C _o - C	0.6727 1.1339 0.8051 2.6116 Line k	59.01 61.62 55.14 58.82 ar %Red./yr #DIV/0!	1.3437 1.5592 1.1139 1.3308 Expon k	73.91 78.97 67.17 73.57 ential %Red./yr #DIV/0!	0.0933 0.2370 0.0660 0.3963 C _o - C	0.0642 0.1629 0.0454 0.2724 Lines k	25.19 38.11 12.79 26.27 ar %Red./yr 35.74	0.3137 0.5557 0.1415 0.3310 Exponer k 0.7365	26.93 42.63 13.19 28.18 ntial %Red./yr 52.12
NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL Lab Code NRMRL NRMRL	Bidg 4522, Seymour Johnson AFB, SC Bidg 4522, Seymour Johnson AFB, SC Bidg 4522, Seymour Johnson AFB, SC Bidg 4522, Seymour Johnson AFB, SC Site Name Bidg 4522, Seymour Johnson AFB, SC Bidg 4522, Seymour Johnson AFB, SC	JP-8 JP-8 JP-8 JP-8 JP-8 JP-8 JP-8	12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 Spill Date 12/1/1995 12/1/1995	5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP Sample Date Locid 3/10/1998 SJ98-MP2 3/10/1998 SJ98-MP2	Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene	0.26482 0.16141 0.19042 0.28878 0.64061 Mass Fraction 0.00602 0.07857	0.9786 1.6496 1.1712 3.7994 C _o - C -0.0060 -0.0786	0.6727 1.1339 0.8051 2.6116 Line k	59.01 61.62 55.14 58.82 ar %Red./yr #DIV/0! #DIV/0!	1.3437 1.5592 1.1139 1.3308 Expon k #DIV/0! #DIV/0!	73.91 78.97 67.17 73.57 ential %Red./yr #DIV/0! #DIV/0!	0.0933 0.2370 0.0660 0.3963 C _o - C 0.0261 0.1298	0.0642 0.1629 0.0454 0.2724 Line: k 0.0115 0.0571	25.19 38.11 12.79 26.27 ar %Red./yr 35.74 27.39	0.3137 0.5557 0.1415 0.3310 Expone k 0.7365 0.4288	26.93 42.63 13.19 28.18 ntial %Red./yr 52.12 34.87
NRMRL NRMRL NRMRL NRMRL NRMRL Lab Code NRMRL NRMRL NRMRL	Bidg 4522, Seymour Johnson AFB, SC Bidg 4522, Seymour Johnson AFB, SC Bidg 4522, Seymour Johnson AFB, SC Bidg 4522, Seymour Johnson AFB, SC Site Name Bidg 4522, Seymour Johnson AFB, SC Bidg 4522, Seymour Johnson AFB, SC Bidg 4522, Seymour Johnson AFB, SC Bidg 4522, Seymour Johnson AFB, SC	JP-8 JP-8 JP-8 JP-8 Fuel Type JP-8 JP-8	12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 Spill Date 12/1/1995 12/1/1995 12/1/1995	5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP Sample Date Locid 3/10/1998 SJ98-MP2 3/10/1998 SJ98-MP2 3/10/1998 SJ98-MP2	Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene	0.26482 0.16141 0.19042 0.28878 0.64061 Mass Fraction 0.00602 0.07857 0.10468	0.9786 1.6496 1.1712 3.7994 C _o - C -0.0060 -0.0786 -0.1047	0.6727 1.1339 0.8051 2.6116 Line k -0.0026 -0.0346 -0.0460	59.01 61.62 55.14 58.82 ar %Red./yr #DIV/0! #DIV/0! #DIV/0!	1.3437 1.5592 1.1139 1.3308 Expon k #DIV/0! #DIV/0! #DIV/0!	73.91 78.97 67.17 73.57 ential %Red./yr #DIV/0! #DIV/0! #DIV/0!	0.0933 0.2370 0.0660 0.3963 C _o - C 0.0261 0.1298 0.0465	0.0642 0.1629 0.0454 0.2724 Line: k 0.0115 0.0571 0.0205	25.19 38.11 12.79 26.27 ar %Red./yr 35.74 27.39 13.53	0.3137 0.5557 0.1415 0.3310 Expone k 0.7365 0.4288 0.1617	26.93 42.63 13.19 28.18 ntial %Red./yr 52.12 34.87 14.93
NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL Lab Code NRMRL NRMRL NRMRL NRMRL	Bidg 4522, Seymour Johnson AFB, SC Bidg 4522, Seymour Johnson AFB, SC Bidg 4522, Seymour Johnson AFB, SC Bidg 4522, Seymour Johnson AFB, SC Site Name Bidg 4522, Seymour Johnson AFB, SC Bidg 4522, Seymour Johnson AFB, SC Bidg 4522, Seymour Johnson AFB, SC Bidg 4522, Seymour Johnson AFB, SC	JP-8 JP-8 JP-8 JP-8 JP-8 JP-8 JP-8 JP-8	12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 Spill Date 12/1/1995 12/1/1995 12/1/1995 12/1/1995	5/15/1997 SIMW1SEP 5/15/1997 SIMW1SEP 5/15/1997 SIMW1SEP 5/15/1997 SIMW1SEP Sample Date Locid 3/10/1998 SJ98-MP2 3/10/1998 SJ98-MP2 3/10/1998 SJ98-MP2 3/10/1998 SJ98-MP2	Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o)	0.26482 0.16141 0.19042 0.28878 0.64061 Mass Fraction 0.00602 0.07857 0.10468 0.39557	0.9786 1.6496 1.1712 3.7994 C _o - C -0.0060 -0.0786 -0.1047 -0.2756	0.6727 1.1339 0.8051 2.6116 Line k -0.0026 -0.0346 -0.0460 -0.1212	59.01 61.62 55.14 58.82 ar %Red./yr #DIV/0! #DIV/0! #DIV/0! -100.99	1.3437 1.5592 1.1139 1.3308 Expon k #DIV/0! #DIV/0! #DIV/0! -0.5246	73.91 78.97 67.17 73.57 ential %Red./yr #DIV/0! #DIV/0! -68.97	0.0933 0.2370 0.0660 0.3963 C _o - C 0.0261 0.1298 0.0465 0.7354	0.0642 0.1629 0.0454 0.2724 Line: k 0.0115 0.0571 0.0205 0.3234	25.19 38.11 12.79 26.27 26.27 35.74 27.39 13.53 28.59	0.3137 0.5557 0.1415 0.3310 Expone: k 0.7365 0.4288 0.1617 0.4620	26.93 42.63 13.19 28.18 ntial 26Red./yr 52.12 34.87 14.93 37.00
NRMRL NRMRL NRMRL NRMRL NRMRL Lab Code NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	Bidg 4522, Seymour Johnson AFB, SC Site Name Bidg 4522, Seymour Johnson AFB, SC	JP-8 JP-8 JP-8 JP-8 Fuel Type JP-8 JP-8 JP-8 JP-8	12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995	5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP Sample Date	Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX	0.26482 0.16141 0.19042 0.28878 0.64061 Mass Fraction 0.00602 0.07857 0.10468 0.39557 0.58484	0.9786 1.6496 1.1712 3.7994 C _o - C -0.0060 -0.0786 -0.1047 -0.2756 -0.4648	0.6727 1.1339 0.8051 2.6116 Line k -0.0026 -0.0346 -0.0460 -0.1212 -0.2044	59.01 61.62 55.14 58.82 ar **MRed./yr **DIV/0! **DIV/0! **DIV/0! **DIV/0! -100.99 -170.35	1.3437 1.5592 1.1139 1.3308 Expon k #DIV/0! #DIV/0! -0.5246 -0.6965	73.91 78.97 67.17 73.57 ential %Red./yr #DIV/0! #DIV/0! +BIV/0! -68.97 -100.67	0.0933 0.2370 0.0660 0.3963 C _o - C 0.0261 0.1298 0.0465 0.7354 0.9378	0.0642 0.1629 0.0454 0.2724 Line: k 0.0115 0.0571 0.0205 0.3234 0.4124	25.19 38.11 12.79 26.27 ar %Red./yr 35.74 27.39 13.53 28.59 27.08	0.3137 0.5557 0.1415 0.3310 Expone k 0.7365 0.4288 0.1617 0.4620 0.4208	26.93 42.63 13.19 28.18 ntial 26Red./yr 52.12 34.87 14.93 37.00 34.35
NRMRL	Bidg 4522, Seymour Johnson AFB, SC Site Name Bidg 4522, Seymour Johnson AFB, SC	JP-8 JP-8 JP-8 JP-8 JP-8 JP-8 JP-8 JP-8	12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995	5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP Sample Locid 3/10/1998 SJ98-MP2 3/10/1998 SJ98-MP2 3/10/1998 SJ98-MP2 3/10/1998 SJ98-MP2 3/10/1998 SJ98-MP2 3/10/1998 SJ98-MP2	Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1,2,3-Timnethylbenzene	0.26482 0.16141 0.19042 0.28878 0.64061 Mass Fraction 0.00602 0.07887 0.10468 0.39557 0.58484 0.28695	0.9786 1.6496 1.1712 3.7994 C _o - C -0.0060 -0.0786 -0.1047 -0.2756 -0.4648 -0.2869	0.6727 1.1339 0.8051 2.6116 Line k -0.0026 -0.0346 -0.0460 -0.1212 -0.2044 -0.1262	59.01 61.62 55.14 58.82 ar %Red./yr #DIV/0! #DIV/0! #DIV/0! -100.99 -170.35 #DIV/0!	1.3437 1.5592 1.1139 1.3308 Expon k #DIV/0! #DIV/0! -0.5246 -0.6965 #DIV/0!	73.91 78.97 67.17 73.57 ential %Red./yr #DIV/0! #DIV/0! -68.97 -100.67 #DIV/0!	0.0933 0.2370 0.0660 0.3963 C _o - C 0.0261 0.1298 0.0465 0.7354 0.9378 0.3869	0.0642 0.1629 0.0454 0.2724 Lines k 0.0115 0.0571 0.0205 0.3234 0.4124 0.1701	25.19 38.11 12.79 26.27 ar %Red./yr 35.74 27.39 13.53 28.59 27.08 25.25	0.3137 0.5557 0.1415 0.3310 Expone k 0.7365 0.4288 0.1617 0.4620 0.4208 0.3754	26.93 42.63 13.19 28.18 ***Med_/yr** 52.12 34.87 14.93 37.00 34.35 31.30
NRMRL NRMRL NRMRL NRMRL NRMRL Lab Code NRMRL	Bidg 4522, Seymour Johnson AFB, SC Site Name Bidg 4522, Seymour Johnson AFB, SC	P-8 P-8 P-8 P-8 Fuel Type P-8 P-8 P-8 P-8 P-8 P-8 P-8	12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995	5/15/1997 SJMW1SEP 5/15/1997 SJMW1SEP 5/15/1997 SJMW1SEP 5/15/1997 SJMW1SEP Sample Date J/10/1998 SJ98-MP2 3/10/1998 SJ98-MP2 3/10/1998 SJ98-MP2 3/10/1998 SJ98-MP2 3/10/1998 SJ98-MP2 3/10/1998 SJ98-MP2 3/10/1998 SJ98-MP2	Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene	0.26482 0.16141 0.19042 0.28878 0.64061 Mass Fraction 0.00602 0.07857 0.10468 0.39557 0.53444	0.9786 1.6496 1.1712 3.7994 C _o - C -0.0060 -0.0786 -0.1047 -0.2756 -0.4648 -0.2869 -0.2694	0.6727 1.1339 0.8051 2.6116 Line k -0.0026 -0.0346 -0.0460 -0.1212 -0.2044 -0.1262 -0.1185	59.01 61.62 55.14 58.82 #DIV/0! #DIV/0! #DIV/0! -100.99 -170.35 #DIV/0! -43.88	1.3437 1.5592 1.1139 1.3308 Expon k #DIV/0! #DIV/0! #DIV/0! -0.5246 -0.6965 #DIV/0! -0.3043	73.91 78.97 67.17 73.57 ential %Red./yr #DIV/0! #DIV/0! -68.97 -100.67 #DIV/0! -35.57	0.0933 0.2370 0.0660 0.3963 C _o - C 0.0261 0.1298 0.0465 0.7354 0.9378 0.3869 0.9249	0.0642 0.1629 0.0454 0.2724 Lines k 0.0115 0.0571 0.0205 0.3234 0.4124 0.1701 0.4067	25.19 38.11 12.79 26.27 ar %Red./yr 35.74 27.39 13.53 28.59 27.08 25.25 27.78	0.3137 0.5557 0.1415 0.3310 Exponer k 0.7365 0.4288 0.1617 0.4620 0.4208 0.3754 0.4392	26.93 42.63 13.19 28.18 ntial %Red./yr 52.12 34.87 14.93 37.00 34.35 31.30 35.54
NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL Lab Code NRMRL	Bidg 4522, Seymour Johnson AFB, SC	P-8 P-8 P-8 P-8 Fuel Type P-8 P-8 P-8 P-8 P-8 P-8 P-8 P-8 P-8	12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995	5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP Sample Date Locid 3/10/1998 SJ98-MP2	Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p. and o) Total BTEX 1.2,3-Trimethylbenzene 1.2,4-Trimethylbenzene 1.3,5-Trimethylbenzene	0.26482 0.16141 0.19042 0.28878 0.64061 Mass Fraction 0.00602 0.07857 0.10468 0.39557 0.58484 0.28695 0.53941 0.14163	0.9786 1.6496 1.1712 3.7994 C _o - C -0.0060 -0.0786 -0.1047 -0.2756 -0.4648 -0.2869 -0.2694 -0.1416	0.6727 1.1339 0.8051 2.6116 Line k -0.0026 -0.0346 -0.0460 -0.1212 -0.2044 -0.1262 -0.1185 -0.0623	59.01 61.62 55.14 58.82 ***********************************	1.3437 1.5592 1.1139 1.3308 Expon k #DIV/0! #DIV/0! -0.5246 -0.6965 #DIV/0! -0.3043 #DIV/0!	73.91 78.97 67.17 73.57 ential %Red./yr #DIV/0! #DIV/0! -68.97 -100.67 #DIV/0! -35.57 #DIV/0!	0.0933 0.2370 0.0660 0.3963 C _o - C 0.0261 0.1298 0.0465 0.7354 0.9378 0.3669 0.9249	0.0642 0.1629 0.0454 0.2724 Lines k 0.0115 0.0571 0.0205 0.3234 0.4124 0.1701 0.4067 0.1613	25.19 38.11 12.79 26.27 ar %Red./yr 35.74 27.39 13.53 28.59 27.08 25.25 27.78 31.72	0.3137 0.5557 0.1415 0.3310 Expone k 0.7365 0.4288 0.1617 0.4620 0.4208 0.3754 0.4392 0.5620	26.93 42.63 13.19 28.18 ntial %Red./yr 52.12 34.87 14.93 37.00 34.35 31.30 35.54 42.99
NRMRL NRMRL NRMRL NRMRL NRMRL Lab Code NRMRL	Bidg 4522, Seymour Johnson AFB, SC	P-8 P-8 P-8 P-8 Fuel Type P-8	12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995	5/15/1997 SIMW1SFP 5/15/1997 SIMW1SFP 5/15/1997 SIMW1SFP 5/15/1997 SIMW1SFP 5/15/1997 SIMW1SFP Sample Locid 3/10/1998 SJ98-MP2 3/10/1998 SJ98-MP2 3/10/1998 SJ98-MP2 3/10/1998 SJ98-MP2 3/10/1998 SJ98-MP2 3/10/1998 SJ98-MP2 3/10/1998 SJ98-MP2 3/10/1998 SJ98-MP2 3/10/1998 SJ98-MP2 3/10/1998 SJ98-MP2	Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1.2,3-Trimethylbenzene 1.2,4-Trimethylbenzene 1.3,5-Trimethylbenzene Naphthalene	0.26482 0.16141 0.19042 0.28878 0.64061 Mass Fraction 0.00602 0.07887 0.10468 0.39557 0.53848 4 0.28695 0.53941 0.14163 0.10825	0.9786 1.6496 1.1712 3.7994 C _o - C -0.0060 -0.0786 -0.1047 -0.2756 -0.4648 -0.2869 -0.2694 -0.1416 1.0317	0.6727 1.1339 0.8051 2.6116 Line k -0.0026 -0.0346 -0.0460 -0.1212 -0.2044 -0.1262 -0.1185 -0.0623 0.4537	59.01 61.62 55.14 78.82 82 ar %Red./yr #DIV/0! #DIV/0! -100.99 -170.35 #DIV/0! -43.88 #DIV/0! 39.80	1.3437 1.5592 1.1139 1.3308 Expon k #DIV/0! #DIV/0! -0.5246 -0.6965 #DIV/0! -0.3043 #DIV/0! 1.0353	73.91 78.97 67.17 73.57 ential %Red./yr #DIV/0! #DIV/0! -68.97 -100.67 #DIV/0! -35.57 #DIV/0! 64.49	0.0933 0.2370 0.0660 0.3963 C _o - C 0.0261 0.1298 0.0465 0.7354 0.9378 0.3869 0.9249 0.3667 0.1465	0.0642 0.1629 0.0454 0.2724 Lines k 0.0115 0.0571 0.0205 0.3234 0.4124 0.1701 0.4067 0.1613	25.19 38.11 12.79 26.27 26.27 35.74 27.39 13.53 28.59 27.08 25.25 27.78 31.72 25.29	0.3137 0.5557 0.1415 0.3310 Exponer k 0.7365 0.4288 0.1617 0.4620 0.4208 0.3754 0.4398 0.3754 0.4398	26.93 42.63 13.19 28.18 ntial 26Red./yr 52.12 34.87 14.93 37.00 34.35 31.30 35.54 42.99 31.37
NRMRL NRMRL NRMRL NRMRL NRMRL Lab Code NRMRL	Bidg 4522, Seymour Johnson AFB, SC	P-8 P-8 P-8 P-8 Fuel Type P-8	12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995	5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP Sample Date	Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene	0.26482 0.16141 0.19042 0.28878 0.64061 Mass Fraction 0.00602 0.07857 0.10468 0.39557 0.53444 0.28695 0.53941 0.14163 0.10825 0.15887	0.9786 1.6496 1.1712 3.7994 C _s - C -0.0060 -0.0786 -0.1047 -0.2756 -0.4648 -0.2869 -0.2694 -0.1416 1.0317 1.6811	0.6727 1.1339 0.8051 2.6116 k -0.026 -0.0346 -0.0460 -0.1212 -0.2044 -0.1262 -0.1185 -0.0623 0.4537 0.7393	59.01 61.62 55.14 58.82 **WRed./yr **DIV/0! **DIV/0! **10.35 **DIV/0! 43.88 **DIV/0! 39.80 40.18	1.3437 1.5592 1.13308 Expon k #DIV/0! #DIV/0! -0.5246 -0.6965 #DIV/0! -0.3043 #DIV/0! 1.03533 1.0772	73.91 78.97 67.17 73.57 ential %Red./yr #DIV/0! #DIV/0! -68.97 -100.67 #DIV/0! -35.57 #DIV/0! 64.49 65.94	0.0933 0.2370 0.0660 0.3963 C _o - C 0.0261 0.1298 0.0465 0.7354 0.9378 0.3869 0.9249 0.3667 0.1465 0.2685	0.0642 0.1629 0.0454 0.2724 Lines k 0.0115 0.0571 0.0205 0.3234 0.4124 0.1701 0.4067 0.1613 0.0644 0.1181	25.19 38.11 12.79 26.27 ar %Red./yr 35.74 27.39 13.53 28.59 27.08 25.25 27.78 31.72 25.29 27.63	0.3137 0.5557 0.1415 0.3310 Expone k 0.7365 0.4288 0.1617 0.4620 0.4208 0.3754 0.4392 0.5620 0.3764 0.4352	26.93 42.63 13.19 28.18 ntial %Red./yr 52.12 34.87 14.93 37.00 34.35 31.30 35.54 42.99 31.37 35.29
NRMRL NRMRL NRMRL NRMRL NRMRL Lab Code NRMRL	Bidg 4522, Seymour Johnson AFB, SC	P-8 P-8 P-8 P-8 Fuel Type P-8	12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995	5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP Sample Date Locid 3/10/1998 SJ98-MP2	Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1.2,3-Trimethylbenzene 1.2,4-Trimethylbenzene 1.3,5-Trimethylbenzene Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene	0.26482 0.16141 0.19042 0.28878 0.64061 Mass Fraction 0.00602 0.07857 0.10468 0.39557 0.58484 0.28695 0.53941 0.114163 0.10825 0.15887	0.9786 1.6496 1.1712 3.7994 C _o - C -0.0060 -0.0786 -0.1047 -0.2756 -0.4648 -0.2869 -0.2694 -0.1416 1.0317 1.6811 1.2260	0.6727 1.1339 0.8051 2.6116 Line k -0.0026 -0.0346 -0.1212 -0.2044 -0.1262 -0.1185 -0.0623 0.4537 0.7393 0.5391	\$9,01 61,62 55,14 58,82 ar %Red_yr #DIV/0! #DIV/0! #DIV/0! -100,99 -170,35 #DIV/0! -43,88 #DIV/0! 39,80 40,18 40,18	1.3437 1.5592 1.1139 1.3308 Expon k #DIV/0! #DIV/0! -0.5246 -0.6965 #DIV/0! 1.0353 1.0772 0.8052	73.91 78.97 67.17 73.57 **MRed/yr #DIV/0! #DIV/0! -68.97 -100.67 #DIV/0! -35.57 #DIV/0! 64.49 65.94 55.30	0.0933 0.2370 0.0660 0.3963 C _e -C 0.0261 0.1298 0.0465 0.7354 0.9378 0.3867 0.9249 0.3667 0.1268	0.0642 0.1629 0.0454 0.2724 Line: k 0.0115 0.0571 0.0205 0.3234 0.4124 0.1701 0.4067 0.1613 0.0644 0.1181 0.0531	25.19 38.11 12.79 26.27 35.74 27.39 13.53 28.59 27.08 25.25 27.78 31.72 25.29 27.63 14.97	0.3137 0.5557 0.1415 0.3310 Expone k 0 0.7365 0.4288 0.1617 0.4620 0.4208 0.3754 0.4392 0.5620 0.3764 0.4352	26.93 42.63 13.19 28.18 ntial %Red./yr 52.12 34.87 14.93 37.00 34.35 31.30 35.54 42.99 31.37 35.29 16.72
NRMRL NRMRL NRMRL NRMRL NRMRL Lab Code NRMRL	Bidg 4522, Seymour Johnson AFB, SC	P-8 P-8 P-8 P-8 Fuel Type P-8	12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995	5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP Sample Date	Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene	0.26482 0.16141 0.19042 0.28878 0.64061 Mass Fraction 0.00602 0.07857 0.10468 0.39557 0.53444 0.28695 0.53941 0.14163 0.10825 0.15887	0.9786 1.6496 1.1712 3.7994 C _s - C -0.0060 -0.0786 -0.1047 -0.2756 -0.4648 -0.2869 -0.2694 -0.1416 1.0317 1.6811	0.6727 1.1339 0.8051 2.6116 k -0.026 -0.0346 -0.0460 -0.1212 -0.2044 -0.1262 -0.1185 -0.0623 0.4537 0.7393	59.01 61.62 55.14 58.82 **WRed./yr **DIV/0! **DIV/0! **10.35 **DIV/0! 43.88 **DIV/0! 39.80 40.18	1.3437 1.5592 1.13308 Expon k #DIV/0! #DIV/0! -0.5246 -0.6965 #DIV/0! -0.3043 #DIV/0! 1.03533 1.0772	73.91 78.97 67.17 73.57 ential %Red./yr #DIV/0! #DIV/0! -68.97 -100.67 #DIV/0! -35.57 #DIV/0! 64.49 65.94	0.0933 0.2370 0.0660 0.3963 C _o - C 0.0261 0.1298 0.0465 0.7354 0.9378 0.3869 0.9249 0.3667 0.1465 0.2685	0.0642 0.1629 0.0454 0.2724 Lines k 0.0115 0.0571 0.0205 0.3234 0.4124 0.1701 0.4067 0.1613 0.0644 0.1181	25.19 38.11 12.79 26.27 ar %Red./yr 35.74 27.39 13.53 28.59 27.08 25.25 27.78 31.72 25.29 27.63	0.3137 0.5557 0.1415 0.3310 Expone k 0.7365 0.4288 0.1617 0.4620 0.4208 0.3754 0.4392 0.5620 0.3764 0.4352	26.93 42.63 13.19 28.18 ntial %Red./yr 52.12 34.87 14.93 37.00 34.35 31.30 35.54 42.99 31.37 35.29
NRMRL NRMRL NRMRL NRMRL NRMRL Lab Code NRMRL	Bidg 4522, Seymour Johnson AFB, SC	P-8	12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995	5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP Sample Date Locid 3/10/1998 SJ98-MP2	Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1.2,3-Trimethylbenzene 1.2,4-Trimethylbenzene 1.3,5-Trimethylbenzene Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene	0.26482 0.16141 0.19042 0.28878 0.64061 Mass Fraction 0.00602 0.07857 0.10468 0.39557 0.58484 0.28695 0.53941 0.114163 0.10825 0.15887	0.9786 1.6496 1.1712 3.7994 C _o - C -0.0060 -0.0786 -0.1047 -0.2756 -0.4648 -0.2869 -0.2694 -0.1416 1.0317 1.6811 1.2260	0.6727 1.1339 0.8051 2.6116 Line k -0.0026 -0.0346 -0.0460 -0.1212 -0.1262 -0.1185 -0.0623 0.4537 0.7393 0.5391 1.7322	59.01 61.62 55.14 58.82 ar %Red_/yr #DIV/0! #DIV/0! -100.99 -170.35 #DIV/0! -43.88 #DIV/0! 0.43.89 40.18 36.93 39.01	1.3437 1.5592 1.1139 1.3308 Expon k #DIV/0! #DIV/0! -0.5246 -0.6965 #DIV/0! -0.3043 #DIV/0! 1.0353 1.0772 0.8052 0.9594	73.91 78.97 67.17 73.57 ential %Red./yr #DIV/0! #DIV/0! -68.97 -100.67 #DIV/0! 64.49 65.94 55.30 61.69	0.0933 0.2370 0.0660 0.3963 C _e -C 0.0261 0.1298 0.0465 0.7354 0.9378 0.3867 0.9249 0.3667 0.1268	0.0642 0.1629 0.0454 0.2724 Line: k 0.0115 0.0571 0.0205 0.3234 0.4124 0.1701 0.4067 0.1613 0.0644 0.1181 0.0531 0.2356	25.19 38.11 12.79 26.27 ar %Red./yr 35.74 27.39 13.53 28.59 27.08 25.25 27.78 31.72 25.29 27.63 14.97 22.72	0.3137 0.557 0.1415 0.3310 Expone k 0.7365 0.4288 0.1617 0.4620 0.4208 0.3754 0.4920 0.3764 0.4352 0.3764 0.4352 0.3198	26.93 42.63 13.19 28.18 ntial %Red./yr 52.12 34.87 14.93 37.00 34.35 31.30 35.54 42.99 31.37 35.29 16.72 27.37
NRMRL NRMRL NRMRL NRMRL NRMRL Lab Code NRMRL	Bidg 4522, Seymour Johnson AFB, SC	P-8	12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995	5/15/1997 SJMW1SEP 5/15/1997 SJMW1SEP 5/15/1997 SJMW1SEP 5/15/1997 SJMW1SEP Sample Date Locid 3/10/1998 SJ98-MP2	Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1.2,3-Trimethylbenzene 1.2,4-Trimethylbenzene 1.3,5-Trimethylbenzene Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene	0.26482 0.16141 0.19042 0.28878 0.64061 Mass Fraction 0.00602 0.07857 0.10468 0.39557 0.58484 0.28695 0.53941 0.14163 0.10825 0.15887 0.23399 0.50111	0.9786 1.6496 1.1712 3.7994 C _o - C -0.0060 -0.0786 -0.1047 -0.2756 -0.4648 -0.2869 -0.2694 -0.1416 1.0317 1.6811 1.2260 3.9389	0.6727 1.1339 0.8051 2.6116 Line k -0.0026 -0.0346 -0.1212 -0.2044 -0.1262 -0.1185 -0.0623 0.4537 0.7393 0.5391	59.01 61.62 55.14 58.82 ar %RedJyr #DIV/0! #DIV/0! -100.99 -170.35 #DIV/0! 39.80 40.18 36.93 39.01	1.3437 1.5592 1.1139 1.3308 Expon k #DIV/0! #DIV/0! #DIV/0! -0.5246 -0.6965 #DIV/0! -0.3043 #DIV/0! 1.0353 1.0772 0.8052 0.9594	73.91 78.97 67.17 73.57 ential %Red/yr #DIV/0! #DIV/0! #DIV/0! -68.97 -100.67 #DIV/0! 64.49 65.94 55.30 61.69	0.0933 0.2370 0.0660 0.3963 0.0261 0.1298 0.0465 0.7354 0.9378 0.3867 0.9249 0.3667 0.1465 0.2685 0.1208	0.0642 0.1629 0.0454 0.2724 Line: k 0.0115 0.0571 0.0205 0.3234 0.4124 0.1701 0.4067 0.1613 0.0644 0.1181 0.0531 0.2356	25.19 38.11 12.79 26.27 ar %Red./yr 35.74 27.39 13.53 28.59 27.08 25.25 27.78 31.72 25.29 27.63 14.97 22.72	0.3137 0.557 0.1415 0.3310 Expone k 0.7365 0.4288 0.1617 0.4620 0.4208 0.4208 0.3754 0.4392 0.3764 0.4352 0.1830 0.3198	26,93 42,63 13,19 28,18 ntial //sRed./yr 52,12 34,87 14,93 37,00 34,35 31,30 35,54 42,99 31,37 35,29 16,72 27,37
NRMRL NRMRL NRMRL NRMRL NRMRL Lab Code NRMRL	Bidg 4522, Seymour Johnson AFB, SC	P-8	12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995	5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP Sample Date	Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p. and o) Total BTEX 1.2.3-Trimethylbenzene 1.3.5-Trimethylbenzene Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes	0.26482 0.16141 0.19042 0.28878 0.64061 Mass Fraction 0.00602 0.07857 0.10468 0.39557 0.58484 0.28695 0.53941 0.14163 0.10825 0.15887 0.23399 0.50111	0.9786 1.6496 1.1712 3.7994 C _o - C -0.0060 -0.0786 -0.1047 -0.2756 -0.4648 -0.2869 -0.2694 -0.1416 1.0317 1.6811 1.2260 3.9389	0.6727 1.1339 0.8051 2.6116 Line k -0.0026 -0.0346 -0.0460 -0.1212 -0.2044 -0.1262 -0.0623 0.4537 0.7393 0.5391 1.7322	59.01 61.62 55.14 58.82 #DIV/0! #DIV/0! -100.99 -170.35 #DIV/0! 39.80 40.18 36.93 39.01	1.3437 1.5592 1.1139 1.3308 Expon k #DIV/0! -0.5246 -0.6965 #DIV/0! -0.3043 #DIV/0! 1.0353 1.0772 0.8052 0.9594	73.91 78.97 67.17 73.57 ential %Red/yr #DIV/0! #DIV/0! -68.97 -100.67 #DIV/0! 64.49 65.94 55.30 61.69 ential %Red/yr	0.0933 0.2370 0.0660 0.3963 C _e - C 0.0261 0.1298 0.0465 0.9378 0.3869 0.9249 0.3667 0.1465 0.2685 0.1208 0.5358	0.0642 0.1629 0.0454 0.2724 Line: k 0.0115 0.0571 0.0205 0.3234 0.4124 0.1701 0.4067 0.1613 0.0644 0.1181 0.0531 0.2356	25.19 38.11 12.79 26.27 ar %Red./yr 35.74 27.39 13.53 28.59 27.08 25.25 27.78 31.72 25.29 27.63 14.97 22.72	0.3137 0.557 0.1415 0.3310 Expone k 0.4288 0.4288 0.4208 0.4208 0.3754 0.4208 0.3754 0.4302 0.5620 0.3764 0.4352 0.1830 0.3198	26.93 42.63 13.19 28.18 ntial //8Red./yr 52.12 34.87 14.93 37.00 34.35 31.30 35.54 42.99 31.37 35.29 16.72 27.37
NRMRL NRMRL NRMRL NRMRL NRMRL Lab Code NRMRL	Bidg 4522, Seymour Johnson AFB, SC Site Name Bidg 4522, Seymour Johnson AFB, SC	P-8	12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995 12/1/1995	5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP Sample Date Locid 3/10/1998 SJ98-MP2 5ample Date Locid 3/10/1998 SJ98-MW1S	Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p. and o) Total BTEX 12,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene	0.26482 0.16141 0.19042 0.28878 0.64061 Mass Fraction 0.00602 0.07857 0.10468 0.39557 0.58484 0.28695 0.53941 0.14163 0.10825 0.15887 0.23399 0.50111	0,9786 1.6496 1.1712 3.7994 C _o - C -0.0060 -0.0786 -0.1047 -0.2756 -0.4648 -0.2869 -0.2694 -0.1416 1.0317 1.6811 1.2260 3.9389	0.6727 1.1339 0.8051 2.6116 k -0.0026 -0.0346 -0.0460 -0.1212 -0.2044 -0.1262 -0.1185 -0.0623 0.4537 0.7393 0.5391 1.7322 Line k	59.01 61.62 55.14 58.82 W.Red./yr #DIV/0! #DIV/0! -170.35 #DIV/0! -43.88 #DIV/0! 39.80 40.18 36.93 39.01	1.3437 1.5592 1.1139 1.3308 Expon #DIV/0! #DIV/0! #DIV/0! -0.5246 -0.6965 #DIV/0! 1.0353 1.0353 1.0772 0.8052 0.9594 Expon k #DIV/0!	73.91 78.97 67.17 73.57 ential %kRed/yr #DIV/0! #DIV/0! #DIV/0! -68.94 -55.30 61.69 ential %Red/yr #DIV/0!	0.0933 0.2370 0.0660 0.3963 C _a - C 0.0261 0.1298 0.0465 0.7354 0.9249 0.3869 0.9249 0.3268 0.1208 0.5358	0.0642 0.1629 0.0454 0.2724 Linea k 0.0115 0.0571 0.0205 0.3234 0.4124 0.1701 0.4067 0.1613 0.0644 0.1181 0.0531 0.2356	25.19 38.11 12.79 26.27 ar %Red./yr 35.74 27.39 13.53 28.59 27.08 25.25 27.78 31.72 25.29 27.63 14.97 22.72 ar %Red./yr 36.08	0.3137 0.5557 0.1415 0.3310 Exponer k 0.7365 0.4288 0.1617 0.4620 0.4208 0.3754 0.4392 0.5620 0.3764 0.4352 0.1830 0.3198	26,93 42,63 13,19 28,18 ntial %Red_/yr 52,12 34,87 14,93 37,00 34,35 31,30 35,54 42,99 16,72 27,37
NRMRL NRMRL NRMRL NRMRL NRMRL Lab Code NRMRL	Bidg 4522, Seymour Johnson AFB, SC	P-8	12/1/1995 12/1/1995	5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP Sample Date	Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p. and o) Total BTEX 1,2,3-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene	0.26482 0.16141 0.19042 0.28878 0.64061 Mass Fraction 0.00602 0.07857 0.10468 0.39557 0.58484 0.28695 0.53941 0.14163 0.10825 0.15887 0.23399 0.50111 Mass Fraction 0.00577 0.07359	0.9786 1.6496 1.1712 3.7994 C _o - C -0.0060 -0.0786 -0.1047 -0.2756 -0.4648 -0.2869 -0.2694 -0.1416 1.0317 1.6811 1.2260 3.9389 C _o - C -0.0058 -0.0058	0.6727 1.1339 0.8051 2.6116 Line k -0.0026 -0.0346 -0.0460 -0.1212 -0.2044 -0.1262 -0.1185 -0.0623 0.4537 0.7393 0.5391 1.7322 Line k -0.0025 -0.0324	59.01 61.62 55.14 58.82 ar %Red_/yr #DIV/0! #DIV/0! 100.99 -170.35 #DIV/0! 39.80 40.18 36.93 39.01 ar %Red_/yr #DIV/0!	1.3437 1.5592 1.1139 1.3308 Expon k0 #DIV/0! #DIV/0! -0.5246 -0.6965 #DIV/0! 1.0353 1.0772 0.8052 0.9594 #DIV/0! #DIV/0!	73.91 78.97 67.17 73.57 ential %kRed_/yr #DIV/0! #DIV/0! -68.97 -100.67 #DIV/0! 64.49 455.30 61.69 ential %kRed_/yr #DIV/0!	0.0933 0.2370 0.0660 0.3963 C _e -C 0.0261 0.1298 0.0465 0.3378 0.3869 0.9249 0.3667 0.1465 0.2685 0.1208 0.5358	0.0642 0.1629 0.0454 0.2724 Lines k 0.0115 0.0571 0.0205 0.3234 0.4124 0.1701 0.4067 0.1613 0.0531 0.0531 0.2356 Lines k	25.19 38.11 12.79 26.27 ar %Red./yr 35.74 27.39 13.53 28.59 27.08 25.25 27.78 31.72 25.29 27.63 14.97 22.72 ar %Red./yr 36.08 28.49	0.3137 0.557 0.1415 0.3310 Expone: k 0.7365 0.4288 0.1617 0.4208 0.4208 0.3764 0.4392 0.5620 0.3764 0.4352 0.1830 0.3198 Expone: k	26.93 42.63 13.19 28.18 ntial //wRed./yr 52.12 34.87 14.93 37.00 34.35 31.30 42.99 31.37 35.29 16.72 27.37 ntial //wRed./yr 53.01 36.72
NRMRL NRMRL NRMRL NRMRL NRMRL Lab Code NRMRL	Bidg 4522, Seymour Johnson AFB, SC	P-8	12/1/1995 12/1/1995	\$/15/1997 SJMW1SFP \$/15/1997 SJMW1SFP \$/15/1997 SJMW1SFP \$/15/1997 SJMW1SFP \$/15/1997 SJMW1SFP Sample Date Locid 3/10/1998 SJ98-MP2 3/10/1998 SJ98-MW1S 3/10/1998 SJ98-MW1S 3/10/1998 SJ98-MW1S 3/10/1998 SJ98-MW1S	Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene 1-MethylNaphthalene 1-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene	0.26482 0.16141 0.19042 0.28878 0.64061 Mass Fraction 0.00602 0.07857 0.10468 0.39557 0.58484 0.28695 0.53941 0.14163 0.10825 0.15887 0.23399 0.50111 Mass Fraction 0.00577 0.07359 0.09780	0,9786 1.6496 1.1712 3.7994 C _o - C -0.0060 -0.0786 -0.1047 -0.2756 -0.4648 -0.2869 -0.2694 -0.1416 1.0317 1.6811 1.2260 3.9389 C _o - C -0.0058 -0.0736 -0.0978	0.6727 1.1339 0.8051 2.6116 k -0.0026 -0.0346 -0.0460 -0.1212 -0.2044 -0.1262 -0.1185 -0.0623 0.4537 0.7393 0.4537 1.7322 Line k	59.01 61.62 55.14 58.82 18 "WRed./yr "DIV/0! "DIV/0! "DIV/0! "43.88 "DIV/0! "43.88 "DIV/0! "44.18 39.80 40.18 36.93 39.01 "WRed./yr "DIV/0! "DIV/0! "DIV/0! "DIV/0! "DIV/0! "DIV/0!	1.3437 1.5592 1.1139 1.3308 Expon #DIV/0! #DIV/0! #DIV/0! -0.5246 -0.6965 #DIV/0! -0.3043 #DIV/0! -0.0594 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	73.91 78.97 67.17 73.57 ential %Red./yr #DIV/0! #DIV/0! -68.97 -100.67 #DIV/0! -35.57 #DIV/0! 64.49 65.94 55.30 61.69 ential %Red./yr #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	0.0933 0.2370 0.0660 0.3963 C _u - C 0.0261 0.1298 0.0465 0.7354 0.9249 0.3869 0.9249 0.3665 0.1208 0.1208 0.1208 0.1208 0.1208	0.0642 0.1629 0.0454 0.2724 Liner k 0.0115 0.0571 0.0205 0.3234 0.4124 0.1701 0.4067 0.1613 0.0531 0.0531 0.2356 Liner k	25.19 38.11 12.79 26.27 ar 47 8Red./yr 35.74 27.39 13.53 28.59 27.08 25.25 27.78 31.72 25.29 21.63 14.97 22.72 ar 48Red./yr 36.08 28.44 15.53	0.3137 0.5557 0.1415 0.3310 Exponer k 0.7365 0.4288 0.1617 0.4620 0.4208 0.3754 0.4392 0.5620 0.3764 0.4352 0.1830 0.3198 Exponer k	26,93 42,63 13,19 28,18 attial 52,12 34,87 14,93 37,00 34,35 31,30 35,54 42,99 16,72 27,37 attial 52,01 53,01 53,01 53,01 53,01 54,02 54,02 55,01 56,02 57,01 57,0
NRMRL NRMRL NRMRL NRMRL NRMRL Lab Code NRMRL	Bidg 4522, Seymour Johnson AFB, SC	P-8	12/1/1995 12/1/1995	5/15/1997 SJMW1SFP 5/10/1998 SJ98-MP2 3/10/1998 SJ98-MP2 5/10/1998 SJ98-MP1 5/10/1998 SJ98-MW1S 3/10/1998 SJ98-MW1S 3/10/1998 SJ98-MW1S 3/10/1998 SJ98-MW1S 3/10/1998 SJ98-MW1S 3/10/1998 SJ98-MW1S	Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p. and o) Total BTEX 12,3-Trimethylbenzene 13,5-Trimethylbenzene 13,5-Trimethylbenzene 13,4-Trimethylbapthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o)	0.26482 0.16141 0.19042 0.28878 0.64061 Mass Fraction 0.00602 0.07857 0.10468 0.39557 0.58484 0.28695 0.53941 0.14163 0.10825 0.15887 0.23399 0.50111 Mass Fraction 0.00577 0.07359 0.09780 0.37164	0.9786 1.6496 1.1712 3.7994 C _e - C -0.0060 -0.0786 -0.1047 -0.2756 -0.4648 -0.2869 -0.2694 -0.1416 1.0317 1.6811 1.2260 3.9389 C _e - C -0.0058 -0.0736 -0.0978 -0.2516	0.6727 1.1339 0.8051 2.6116 Line k -0.0026 -0.0346 -0.0460 -0.1262 -0.1185 -0.0623 0.4537 0.7393 0.5391 1.7322 Line k -0.0025 -0.0324 -0.0430 -0.1107	59.01 61.62 55.14 58.82 ar %Red/yr #DIV/0! #DIV/0! -100.99 -170.35 #DIV/0! -43.88 #DIV/0! 39.80 40.18 36.93 39.01 ar %Red/yr #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	1.3437 1.5592 1.1139 1.3308 Expon #DIV/0! #DIV/0! -0.5246 -0.6965 #DIV/0! -0.3043 #DIV/0! 0.0525 0.9594 Expon #DIV/0! #DIV/0! #DIV/0! -0.40471	73.91 78.97 67.17 73.57 ential %kRed_/yr #DIV/0! #DIV/0! #DIV/0! -68.94 55.30 61.69 ential %kRed_/yr #DIV/0! #DIV/0! #DIV/0! 61.69	0.0933 0.2370 0.0660 0.3963 C _q - C 0.0261 0.1298 0.0465 0.7354 0.9249 0.3667 0.1465 0.2685 0.1208 0.5358	0.0642 0.1629 0.0454 0.2724 Line: k 0.0115 0.0571 0.0205 0.3234 0.4124 0.1701 0.4067 0.1613 0.0531 0.2356 Line: k 0.0116 0.0593 0.0334	25.19 38.11 12.79 26.27 ar %Red./yr 35.74 27.39 13.53 28.59 27.08 35.25 27.78 31.72 25.29 27.63 14.97 22.72 ar %Red./yr 36.08 28.44 15.53 29.53	0.3137 0.5557 0.1415 0.3310 Exponer k 0.7365 0.4288 0.1617 0.4620 0.4208 0.3754 0.4392 0.5620 0.3764 0.4352 0.1810 0.3198 Exponer k 0.7553 0.3764 0.4520 0.1916 0.3764 0.4520	26,93 42,63 13,19 28,18 ntial 52,12 34,87 14,93 37,00 34,35 31,30 35,54 42,99 16,72 27,37 ntial 53,01 36,72 17,33 38,70
NRMRL NRMRL NRMRL NRMRL NRMRL Lab Code NRMRL	Bidg 4522, Seymour Johnson AFB, SC	P-8	12/1/1995 12/1/1995	5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP 5/15/1997 SJMW1SFP Sample Date	Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p. and o) Total BTEX 1,2,3-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene 1-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Toluene Ethylbenzene Total Xylenes (m.p. and o) Total BTEX	0.26482 0.16141 0.19042 0.28878 0.64061 Mass Fraction 0.00602 0.07857 0.10468 0.39557 0.58484 0.28695 0.53941 0.14163 0.10825 0.15887 0.23399 0.50111 Mass Fraction 0.00577 0.07359 0.09780 0.37164 0.54880	0.9786 1.6496 1.1712 3.7994 C _o - C -0.0060 -0.0786 -0.1047 -0.2756 -0.4648 -0.2869 -0.2694 -0.1416 1.0317 1.6811 1.2260 3.9389 C _o - C -0.0058 -0.0736 -0.0978 -0.2516 -0.4288	0.6727 1.1339 0.8051 2.6116 Line k -0.0026 -0.0346 -0.0460 -0.1212 -0.2044 -0.1262 -0.1185 -0.0623 0.4537 0.7393 0.5391 1.7322 Line k -0.0025 -0.0324 -0.0430 -0.1107	59.01 61.62 55.14 58.82 ar %Red_/yr #DIV/0! #DIV/0! 100.99 -170.35 #DIV/0! 39.80 40.18 36.93 39.01 ar #DIV/0! #DIV/0! #DIV/0! #DIV/0! 92.22 -157.14	1.3437 1.5592 1.1139 1.3308 Expon k #DIV/0! #DIV/0! -0.6965 #DIV/0! 0.3043 #DIV/0! 1.0553 1.0772 0.8052 0.9594 Expon k #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! -0.4971 -0.6685	73.91 78.97 67.17 73.57 ential %Red/yr #DIV/0! #DIV/0! -68.97 -100.67 #DIV/0! 64.49 65.94 65.94 66.69 ential %Red/yr #DIV/0!	0.0933 0.2370 0.0660 0.3963 C _e -C 0.0261 0.1298 0.0465 0.9378 0.3869 0.9249 0.3667 0.1465 0.2685 0.1208 0.5358	0.0642 0.1629 0.0454 0.2724 Line: k 0.0115 0.0571 0.0205 0.3234 0.4124 0.1701 0.4067 0.1613 0.0531 0.2356 Line: k	25.19 38.11 12.79 26.27 ar %Red./yr 35.74 27.39 13.53 28.59 27.08 25.25 27.78 31.72 25.29 27.63 14.97 22.72 ar %Red./yr 36.08 28.44 15.53 29.53 28.13	0.3137 0.557 0.1415 0.3310 Expone: k 0.4288 0.1617 0.4208 0.3754 0.4208 0.3754 0.4392 0.5620 0.3764 0.4392 0.5620 0.3198 Expone: k 0.7365 0.1830 0.3198	26.93 42.63 13.19 28.18 ntial //wRed./yr 52.12 34.87 14.93 37.00 34.35 31.30 35.54 42.99 31.37 35.29 16.72 27.37 ntial //wRed./yr 53.01 36.72 17.43 38.70 36.16
NRMRL NRMRL NRMRL NRMRL NRMRL Code NRMRL	Bidg 4522, Seymour Johnson AFB, SC	P-8	12/1/1995 12/1/1995	5/15/1997 SJMW1SFP 5/15/1998 SJ98-MP2 3/10/1998 SJ98-MW1S	Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p. and o) Total BTEX 12,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Toluene Tolua Xylenes (m.p. and o) Total BTEX 1,2,3-Trimethylbenzene	0.26482 0.16141 0.19042 0.28878 0.64061 Mass Fraction 0.00602 0.07857 0.10468 0.39557 0.58484 0.28695 0.53941 0.14163 0.10825 0.15887 0.23399 0.50111 Mass Fraction 0.00577 0.07359 0.99780 0.37164 0.54880 0.27384	0,9786 1.6496 1.1712 3.7994 C _o - C -0.0060 -0.0786 -0.1047 -0.2756 -0.4648 -0.2869 -0.2694 -0.1416 1.0317 1.6811 1.2260 3.9389 C _o - C -0.0058 -0.0736 -0.0978 -0.2516 -0.4288 -0.2738	0.6727 1.1339 0.8051 2.6116 Line k -0.0026 -0.0460 -0.1212 -0.2044 -0.1262 -0.1185 -0.0623 0.4537 0.7393 0.4537 1.7322 Line k -0.0025 -0.0324 -0.0430 -0.1107 -0.1886	59.01 61.62 55.14 58.82 br #DIV/0! #DIV/0! #DIV/0! 100.99 -170.35 #DIV/0! -43.88 #DIV/0! 39.80 40.18 36.93 39.01 br #DIV/0! #D	1.3437 1.5592 1.1139 1.3308 Expon #DIV/0! #DIV/0! #DIV/0! -0.5246 -0.6965 #DIV/0! -0.3043 #DIV/0! 1.0353 1.0772 0.8052 0.9594 Expon k #DIV/0!	73.91 78.97 67.17 73.57 ential %Red/yr #DIV/0! #DIV/0! #DIV/0! -68.94 -35.57 #DIV/0! 64.49 -68.94 #DIV/0!	0.0933 0.2370 0.0660 0.3963 C _a - C 0.0261 0.1298 0.0465 0.7354 0.9249 0.3869 0.9249 0.3665 0.1208 0.5358 0.1208 0.5358	0.0642 0.1629 0.0454 0.2724 Liner k 0.0115 0.0571 0.0257 0.3234 0.4124 0.1701 0.4067 0.1618 0.0531 0.2356 Liner k 0.0116 0.0593 0.0333 0.3339 0.4282 0.3339 0.427	25.19 38.11 12.79 26.27 IT %Red./yr 35.74 27.39 13.53 28.59 27.08 25.25 27.78 31.72 25.29 27.63 14.97 22.72 III WRed./yr 36.08 28.44 15.53 29.53 28.13 29.53 28.13 29.53	0.3137 0.557 0.1415 0.3310 Exponer k 0.7365 0.4288 0.1617 0.4620 0.4208 0.3754 0.4392 0.5620 0.3764 0.4352 0.1830 0.3198 Exponer k	26, 93 42, 63 13, 19 28, 18 ttial %Red_/yr 52, 12 34, 87 14, 93 37, 00 34, 35 31, 30 35, 54 42, 99 31, 37 35, 29 16, 72 27, 37 tial %Red_/yr 53, 01 36, 72 17, 43 38, 70 36, 72 17, 43 38, 70 36, 72 17, 43 38, 70 36, 72 36, 72 37, 70 36, 72 36, 72 37, 70 36, 72 37, 70 36, 72 37, 70 36, 72 37, 70 37, 70 38, 70 38
NRMRL NRMRL NRMRL NRMRL NRMRL Lab Code NRMRL	Bidg 4522, Seymour Johnson AFB, SC	P-8	12/1/1995 12/1/1995	5/15/1997 SJMW1SEP 5/15/1997 SJMW1SEP 5/15/1997 SJMW1SEP 5/15/1997 SJMW1SEP 5/15/1997 SJMW1SEP Sample Date Locid 3/10/1998 SJ98-MP2 3/10/1998 SJ98-MP1 3/10/1998 SJ98-MW1S	Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p. and o) Total BTEX 1,2,3-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene 1-MethylNaphthalene 1-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p. and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene	0.26482 0.16141 0.19042 0.28878 0.64061 Mass Fraction 0.00602 0.07857 0.10468 0.39557 0.58484 0.28695 0.53941 0.14163 0.10825 0.15887 0.23399 0.50111 Mass Fraction 0.00577 0.07359 0.09780 0.37164 0.54880 0.27384 0.51222	0.9786 1.6496 1.1712 3.7994 C _o - C -0.0060 -0.0786 -0.1047 -0.2756 -0.4648 -0.2869 -0.2694 -0.1416 1.0317 1.6811 1.2260 3.9389 C _o - C -0.0058 -0.0736 -0.0978 -0.2516 -0.4288 -0.2738 -0.2738	0.6727 1.1339 0.8051 2.6116 Line k -0.0026 -0.0346 -0.0460 -0.1212 -0.2044 -0.1262 -0.1185 -0.0623 0.4537 0.7393 0.5391 1.7322 Line k -0.0025 -0.0324 -0.0430 -0.1107 -0.1886 -0.1204 -0.1886	59.01 61.62 55.14 58.82 ar %Red_/yr #DIV/0! #DIV/0! 100.99 -170.35 #DIV/0! 39.80 40.18 36.93 39.01 ar %Red_/yr #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 39.45 36.93 39.01 ar %Red_/yr #DIV/0! 39.45 36.93 39.01 ar %Red_/yr #DIV/0! 39.25 36.93 39.01 39.45 39.	1.3437 1.5592 1.1139 1.3308 Expon k #DIV/0! #DIV/0! -0.5246 -0.6965 #DIV/0! -0.3043 #DIV/0! 1.0353 1.0772 0.8052 0.9594 Expon k #DIV/0! -0.4971 -0.6685 #DIV/0! -0.4971 -0.6685 #DIV/0!	73.91 78.97 67.17 73.57 ential %ked/yr #DIV/0! #DIV/0! #DIV/0! -68.97 -100.67 #DIV/0! 64.49 65.94 65.94 65.94 61.69 ential %ked/yr #DIV/0! -64.40 -95.14 #DIV/0! -35.57	0.0933 0.2370 0.0660 0.3963 C _n - C 0.0261 0.1298 0.0465 0.7354 0.9378 0.3867 0.1465 0.2685 0.1208 0.5358 C _n - C 0.0264 0.1347 0.0554 0.7593 0.9738 0.9738	0.0642 0.1629 0.0454 0.2724 Liner k 0.0115 0.0571 0.0205 0.3234 0.4124 0.1701 0.4067 0.1613 0.0531 0.2356 Liner k 0.0116 0.0593 0.0233 0.03339 0.0235 0.03339 0.0235 0.03339 0.0236 0.04181	25.19 38.11 12.79 26.27 ar %Red./yr 35.74 27.39 13.53 28.59 27.08 25.25 27.78 31.72 25.29 27.63 14.97 22.72 ar %Red./yr 36.08 28.44 15.53 29.53 28.13 26.10 28.59	0.3137 0.557 0.1415 0.3310 Expone k 0.4288 0.1617 0.4208 0.4208 0.4392 0.5620 0.3764 0.4352 0.1830 0.3198 Expone k	26,93 42,63 13,19 28,18 ntial //sRed./yr 52,12 34,87 14,93 37,00 34,35 31,30 35,54 42,99 31,37 35,29 16,72 27,37 ntial //sRed./yr 53,01 36,72 17,43 38,70 36,16 32,70 36,16 32,70 36,99
NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL Code NRMRL	Bildg 4522, Seymour Johnson AFB, SC	P-8	12/1/1995 12/1/1995	\$/15/1997 SJMW1SFP \$/15/1997 SJMW1SFP \$/15/1997 SJMW1SFP \$/15/1997 SJMW1SFP \$/15/1997 SJMW1SFP \$/15/1997 SJMW1SFP Sample Date Locid 3/10/1998 SJ98-MP2 3/10/1998 SJ98-MP3 3/10/1998 SJ98-MW1S	Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p. and o) Total BTEX 12,3-Trimethylbenzene 13,5-Trimethylbenzene 1-MethylNaphthalene 1-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Toluene Ethylbenzene Toluene Toluene Toluene 1-MethylNaphthalene Total Xylenes (m.p. and o) Total BTEX 12,3-Trimethylbenzene 12,4-Trimethylbenzene 12,4-Trimethylbenzene 12,4-Trimethylbenzene 12,4-Trimethylbenzene	0.26482 0.16141 0.19042 0.28878 0.64061 Mass Fraction 0.00602 0.07857 0.10468 0.39557 0.58484 0.28695 0.53941 0.14163 0.10825 0.15887 0.23399 0.50111 Mass Fraction 0.00577 0.07359 0.09780 0.37164 0.54880 0.27384 0.51222 0.13325	0,9786 1.6496 1.1712 3.7994 C _o - C -0.0060 -0.0786 -0.1047 -0.2756 -0.4648 -0.2869 -0.2694 -0.1416 1.0317 1.6811 1.2260 3.9389 C _o - C -0.0058 -0.0736 -0.0978 -0.2516 -0.4228 -0.2738 -0.2422 -0.1333	0.6727 1.1339 0.8051 2.6116 Line k -0.0026 -0.0460 -0.1212 -0.2044 -0.1262 -0.1185 -0.0623 0.4537 0.7393 0.4537 1.7322 Line k -0.0025 -0.0324 -0.0430 -0.1107 -0.1886 -0.1204 -0.10586	59.01 61.62 55.14 58.82 **MRed./yr **BIV/0! **BIV/0! **43.88 **BIV/0! **39.80 **40.18 **39.90 **40.18 **39.90 **40.18 **39.90 **40.18 **39.90 **10.10	1.3437 1.5592 1.1139 1.3308 Expon #DIV/0! #DIV/0! -0.5246 -0.6965 #DIV/0! -0.3043 #DIV/0! 1.0353 1.0772 0.8052 0.9594 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! -0.4971 -0.6685 #DIV/0! -0.2816	73.91 78.97 67.17 73.57 ential %Red/yr #DIV/0! #DIV/0! -68.97 -100.67 #DIV/0! -35.57 #DIV/0! 435.57 #DIV/0! #DIV/0! #DIV/0! -46.49 65.94 \$53.30 61.69 ential %Red/yr #DIV/0! -64.40 -95.14 #DIV/0! -32.52 #DIV/0!	0.0933 0.2370 0.0660 0.3963 C _u - C 0.0261 0.1298 0.0465 0.7354 0.9249 0.3869 0.9249 0.3669 0.1208 0.1208 0.1208 0.5358 0.1208 0.5358	0.0642 0.1629 0.0454 0.2724 Line: k 0.0115 0.0571 0.0205 0.3234 0.4124 0.1701 0.4067 0.1613 0.0531 0.0531 0.2356 Line: k 0.0116 0.093 0.0235 0.3334 0.4124 0.1181 0.0531 0	25.19 38.11 12.79 26.27 ar **Red./yr 35.74 27.39 13.53 28.59 27.08 25.25 27.78 31.72 25.29 27.63 14.97 22.72 ar **Red./yr 36.08 28.44 15.53 29.53 29.53 20.53 29.53 20.5	0.3137 0.5557 0.1415 0.3310 Exponer k 0.7365 0.4288 0.1617 0.4620 0.4208 0.3754 0.4392 0.5620 0.3764 0.4352 0.1830 0.3198 Exponer k 0.7553 0.4576 0.1916 0.4894 0.4488 0.3960 0.4619 0.56819	26, 93 42, 63 13, 19 28, 18 attial 76Red_/yr 52, 12 34, 87 14, 93 37, 00 34, 35 31, 30 35, 54 42, 99 16, 72 27, 37 attial 76Red_/yr 53, 01 36, 72 17, 43 38, 70 36, 16 32, 70 36, 99 44, 59
NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL Code NRMRL	Bidg 4522, Seymour Johnson AFB, SC	P-8	12/1/1995 12/1/1995	5/15/1997 SJMW1SFP 5/10/1998 SJ98-MP2 3/10/1998 SJ98-MW1S	Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p. and o) Total BTEX 12.3-Trimethylbenzene 1.2,4-Trimethylbenzene 1.3,5-Trimethylbenzene 1.3,5-Trimethylbenzene 1.4-Trimethylbenzene 1.4-Trimethylbenzene 1.4-Trimethylbenzene 1.4-Trimethylbenzene Total Naphthalene Analyte Benzene Toluene Ethylbenzene Tolat Xylenes (m.p. and o) Total BTEX 12,3-Trimethylbenzene 1.2,4-Trimethylbenzene 1.3,5-Trimethylbenzene 1.3,5-Trimethylbenzene 1.3,5-Trimethylbenzene Naphthalene	0.26482 0.16141 0.19042 0.28878 0.64061 Mass Fraction 0.00602 0.07857 0.10468 0.39557 0.58484 0.28695 0.53941 0.14163 0.10825 0.15887 0.23399 0.50111 Mass Fraction 0.00577 0.07359 0.09780 0.37164 0.54880 0.27384 0.51222 0.13325 0.13325	0.9786 1.6496 1.1712 3.7994 C _o - C -0.0060 -0.0786 -0.1047 -0.2756 -0.4648 -0.2869 -0.2694 -0.1416 1.0317 1.6811 1.2260 3.9389 C _o - C -0.0058 -0.0736 -0.0978 -0.216 -0.4288 -0.2738 -0.2422 -0.1333 1.0368	0.6727 1.1339 0.8051 2.6116 Line k -0.0026 -0.0346 -0.0460 -0.1212 -0.2044 -0.1262 -0.1185 -0.0623 0.4537 0.7393 0.5391 1.7322 Line k -0.0025 -0.0324 -0.0430 -0.1107 -0.1886 -0.1204 -0.1265 -0.0586 -0.0586	59.01 61.62 55.14 58.82 WRedJyr #DIV/0! #DIV/0! #DIV/0! -170.35 #DIV/0! -43.88 #DIV/0! -43.88 #DIV/0! #DIV/0! #DIV/0! -39.80 40.18 36.93 39.01 AT #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 43.945 #DIV/0! 43.945	1.3437 1.5592 1.1139 1.3308 Expon k #DIV/0! #DIV/0! -0.5246 -0.6965 #DIV/0! -0.3043 #DIV/0! -0.3043 #DIV/0! -0.4052 0.9594 Expon k #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! -0.4971 -0.6685 #DIV/0! -0.2816 #DIV/0! -1.0564	73.91 78.97 67.17 73.57 ential %kRed_/yr #DIV/0! #DIV/0! #DIV/0! -68.97 -100.67 #DIV/0! 65.94 55.30 61.69 ential #DIV/0! 65.23	0.0933 0.2370 0.0660 0.3963 C _v - C 0.0261 0.1298 0.0465 0.7354 0.9378 0.3869 0.9249 0.3665 0.1208 0.5358 0.1208 0.5358 0.5358	0.0642 0.1629 0.0454 0.2724 Line: k 0.0115 0.0571 0.0205 0.3234 0.4124 0.1701 0.4067 0.1613 0.2356 Line: k 0.0116 0.0593 0.0233 0.0116 0.2356	25.19 38.11 12.79 26.27 **WRed./yr 35.74 27.39 13.53 28.59 27.08 25.25 27.78 31.72 25.29 27.63 31.497 22.72 **WRed./yr 36.08 28.44 15.53 28.13 29.53 28.13 26.10 28.59 32.45	0.3137 0.5557 0.1415 0.3310 Exponer k 0.7365 0.4288 0.1617 0.4620 0.4208 0.3754 0.4392 0.5620 0.3764 0.4352 0.1830 0.3198 Exponer k 0.7553 0.4576 0.1916 0.4894 0.4884 0.4619 0.5894 0.4619 0.5895	26,93 42,63 13,19 28,18 ntial 52,12 34,87 14,93 37,00 34,35 31,30 35,54 42,99 16,72 27,37 ntial 53,01 36,72 17,43 38,70 36,16 32,70 36,99 44,50 32,80
NRMRL NRMRL NRMRL NRMRL NRMRL Lab Code NRMRL	Bidg 4522, Seymour Johnson AFB, SC	P-8	12/1/1995 12/1/1995	5/15/1997 SJMW1SEP 5/15/1997 SJMW1SEP 5/15/1997 SJMW1SEP 5/15/1997 SJMW1SEP 5/15/1997 SJMW1SEP Sample Date Joint Locid 3/10/1998 SJ98-MP2 3/10/1998 SJ98-MP3 3/10/1998 SJ98-MW1S	Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p. and o) Total BTEX 1,2,3-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3-MethylNaphthalene Total Naphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p. and o) Total BTEX 1,2,3-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene	0.26482 0.16141 0.19042 0.28878 0.64061 Mass Fraction 0.00602 0.07857 0.10468 0.39557 0.58484 0.28695 0.53941 0.14163 0.10825 0.15887 0.23399 0.50111 Mass Fraction 0.00577 0.07359 0.09780 0.37164 0.54880 0.27384 0.51222 0.13325 0.10318	0.9786 1.6496 1.1712 3.7994 C _o - C -0.0060 -0.0786 -0.1047 -0.2756 -0.4648 -0.2869 -0.2694 -0.1416 1.0317 1.6811 1.2260 3.9389 C _o - C -0.0058 -0.0736 -0.0978 -0.2516 -0.4288 -0.2738 -0.2738 -0.2133 1.0368 -0.1333 1.0368	0.6727 1.1339 0.8051 2.6116 Line k -0.0026 -0.0346 -0.0460 -0.1212 -0.2044 -0.1262 -0.1185 -0.0623 0.4537 0.7393 0.5391 1.7322 Line k -0.0025 -0.0324 -0.0430 -0.1107 -0.1886 -0.1204 -0.1204 -0.1165 -0.0586 -0.0586 0.0586	59.01 61.62 55.14 58.82 ar %Red_yr #DIV/0! #DIV/0! #DIV/0! 39.80 40.18 36.93 39.01 ar %Red_yr #DIV/0! 39.80 40.18 36.93 39.01 ar #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 40.00 19.09	1.3437 1.5592 1.1139 1.3308 Expon #DIV/0! #DIV/0! #DIV/0! -0.5246 -0.6965 #DIV/0! 1.0353 1.0772 0.8052 0.9594 #DIV/0! #DIV/0! #DIV/0! -0.4971 -0.6685 #DIV/0! -0.4971 -0.6685 #DIV/0! -0.4971 -0.6685 #DIV/0! -0.4971 -0.6685 #DIV/0! -0.10564 #DIV/0! -0.2816 #DIV/0! -0.2816 #DIV/0!	73.91 78.97 67.17 73.57 ential %ked/yr #DIV/0! #DIV/0! -68.97 -100.67 #DIV/0! 64.49 65.94 65.94 61.69 ential %ked/yr #DIV/0! -64.40 -95.14 #DIV/0! -33.57 #DIV/0! 66.523 22.14	0.0933 0.2370 0.0660 0.3963 C _a -C 0.0261 0.1298 0.0465 0.9378 0.3869 0.9249 0.3667 0.14665 0.2685 0.1208 0.5358 C _a -C 0.0264 0.1347 0.0554 0.7793 0.9738 0.4000 0.9738 0.9738 0.9738 0.9738 0.9738 0.9738 0.9738 0.9738	0.0642 0.1629 0.0454 0.2724 Line: k 0.0115 0.0571 0.0205 0.3234 0.4124 0.1701 0.4067 0.1613 0.0541 0.0531 0.2356 Line: k 0.0116 0.0593 0.0235 0.3339 0.0235 0.3339 0.4282 0.1759 0.4187 0.1649 0.0664	25.19 38.11 12.79 26.27 ar %Red./yr 35.74 27.39 13.53 28.59 27.08 25.25 27.78 31.72 25.29 27.63 14.97 22.72 ar %Red./yr 36.08 28.44 15.53 29.53 28.13 26.10 28.59 32.45 26.17 39.39	0.3137 0.5557 0.1415 0.3310 Expone: k 0.7365 0.4288 0.1617 0.4620 0.4208 0.3764 0.4352 0.1830 0.3198 Expone: k 0.7553 0.4576 0.1916 0.4894 0.4488 0.3960 0.4488 0.3960 0.4488 0.3960 0.45888 0.3978	26.93 42.63 13.19 28.18 ntial //wRed./yr 52.12 34.87 14.93 37.00 34.35 31.30 35.54 42.99 31.37 35.29 16.72 27.37 ntial //wRed./yr 53.01 36.76 17.43 38.70 36.16 32.70 36.99 44.50 32.80 62.98
NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL Code NRMRL	Bildg 4522, Seymour Johnson AFB, SC Bildg 4522, Seymour Johnson AF	P-8	12/1/1995 12/1/1995	5/15/1997 SJMW1SFP 5/15/1997 SJMS-MP2 3/10/1998 SJ98-MP2 3/10/1998 SJ98-MW1S	Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p. and o) Total BTEX 12,3-Trimethylbenzene 12,4-Trimethylbenzene 13,5-Trimethylbenzene 1-MethylNaphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Tolal Xylenes (m.p. and o) Total BTEX 12,3-Trimethylbenzene 12,4-Trimethylbenzene 12,4-Trimethylbenzene 12,4-Trimethylbenzene 13,5-Trimethylbenzene 12,4-Trimethylbenzene 1-MethylNaphthalene	0.26482 0.16141 0.19042 0.28878 0.64061 Mass Fraction 0.00602 0.07857 0.10468 0.39557 0.58484 0.28695 0.53941 0.14163 0.10825 0.15887 0.23339 0.50111 Mass Fraction 0.00577 0.07359 0.09780 0.37164 0.54880 0.27384 0.51222 0.13325 0.10318	0,9786 1.6496 1.1712 3.7994 C _o - C -0.0060 -0.0786 -0.1047 -0.2756 -0.4648 -0.2869 -0.2694 -0.1416 1.0317 1.6811 1.2260 3.9389 C _o - C -0.0058 -0.0736 -0.0978 -0.2516 -0.4288 -0.2738 -0.2422 -0.1333 1.0368 0.1172 -0.2237	0.6727 1.1339 0.8051 2.6116 Line k -0.0026 -0.0460 -0.1212 -0.2044 -0.1262 -0.1185 -0.0623 0.4537 0.7393 0.4537 1.7322 Line k -0.0025 -0.0324 -0.0430 -0.1107 -0.1886 -0.1204 -0.1065 -0.1206 -0.0586 0.4560 0.0515	59.01 61.62 55.14 58.82 ar #DIV/0! #DIV/0! 100.99 -170.35 #DIV/0! 39.80 40.18 36.93 39.01 ar #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 100.99 39.01 ar #DIV/0! #DIV/0! #DIV/0! 100.99 22 2 -157.14 #DIV/0! 40.00 19.09 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 99.22 40.00 100.00 #DIV/0!	1.3437 1.5592 1.1139 1.3308 Expon #DIV/0! #DIV/0! #DIV/0! -0.5246 -0.6965 #DIV/0! 1.0353 1.0772 0.8052 0.8052 0.9594 #DIV/0! 1.0564 0.2503 #DIV/0!	73.91 78.97 67.17 73.57 ential %Red/yr #DIV/0! #DIV/0! #DIV/0! -68.97 -100.67 #DIV/0! -35.57 #DIV/0!	0.0933 0.2370 0.0660 0.3963 C _a - C 0.0261 0.1298 0.0465 0.7354 0.9378 0.3869 0.9249 0.3667 0.1465 0.2685 0.1208 0.5358 0.0264 0.1347 0.05534 0.05534 0.07593 0.0759	0.0642 0.1629 0.0454 0.2724 Liner k 0.0115 0.0571 0.0257 0.1701 0.4067 0.1644 0.1181 0.2356 Liner k 0.0116 0.0593 0.235 0.3339 0.4282 0.1799 0.4187 0.1799 0.4187 0.1799 0.4187 0.1649 0.0667 0.1529	25.19 38.11 12.79 26.27 IT %Red./yr 35.74 27.39 13.53 28.59 27.08 25.25 27.78 31.72 25.29 27.63 14.97 22.72 III %Red./yr 36.08 28.44 15.53 29.53 28.13 29.53 28.13 26.10 28.59 32.462	0.3137 0.5557 0.1415 0.3310 Exponer k 0.7365 0.4288 0.1617 0.4620 0.4208 0.3754 0.4392 0.5620 0.3764 0.4352 0.1830 0.3198 Exponer k 0.7553 0.4576 0.1916 0.4894 0.44894 0.44894 0.4619 0.5888 0.3975 0.9938 0.3609	26, 93 42, 63 13, 19 28, 18 **MRed_/yr 52, 12 34, 87 14, 93 37, 00 34, 35 31, 30 35, 54 42, 99 16, 72 27, 37 **MRed_/yr 53, 01 36, 72 17, 43 38, 70 36, 16 32, 70 36, 99 44, 50 32, 80 62, 98 62, 98 30, 30
NRMRL NRMRL NRMRL NRMRL NRMRL Lab Code NRMRL	Bidg 4522, Seymour Johnson AFB, SC	P-8	12/1/1995 12/1/1995	5/15/1997 SJMW1SEP 5/15/1997 SJMW1SEP 5/15/1997 SJMW1SEP 5/15/1997 SJMW1SEP 5/15/1997 SJMW1SEP Sample Date Joint Locid 3/10/1998 SJ98-MP2 3/10/1998 SJ98-MP3 3/10/1998 SJ98-MW1S	Naphthalene 1-MethylNaphthalene 2-MethylNaphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p. and o) Total BTEX 1,2,3-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3-MethylNaphthalene Total Naphthalene Total Naphthalenes Analyte Benzene Toluene Ethylbenzene Total Xylenes (m.p. and o) Total BTEX 1,2,3-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene	0.26482 0.16141 0.19042 0.28878 0.64061 Mass Fraction 0.00602 0.07857 0.10468 0.39557 0.58484 0.28695 0.53941 0.14163 0.10825 0.15887 0.23399 0.50111 Mass Fraction 0.00577 0.07359 0.09780 0.37164 0.54880 0.27384 0.51222 0.13325 0.10318	0.9786 1.6496 1.1712 3.7994 C _o - C -0.0060 -0.0786 -0.1047 -0.2756 -0.4648 -0.2869 -0.2694 -0.1416 1.0317 1.6811 1.2260 3.9389 C _o - C -0.0058 -0.0736 -0.0978 -0.2516 -0.4288 -0.2738 -0.2738 -0.2133 1.0368 -0.1333 1.0368	0.6727 1.1339 0.8051 2.6116 Line k -0.0026 -0.0346 -0.0460 -0.1212 -0.2044 -0.1262 -0.1185 -0.0623 0.4537 0.7393 0.5391 1.7322 Line k -0.0025 -0.0324 -0.0430 -0.1107 -0.1886 -0.1204 -0.1204 -0.1165 -0.0586 -0.0586 0.0586	59.01 61.62 55.14 58.82 ar %Red_yr #DIV/0! #DIV/0! #DIV/0! 39.80 40.18 36.93 39.01 ar %Red_yr #DIV/0! 39.80 40.18 36.93 39.01 ar #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 40.00 19.09	1.3437 1.5592 1.1139 1.3308 Expon #DIV/0! #DIV/0! #DIV/0! -0.5246 -0.6965 #DIV/0! 1.0353 1.0772 0.8052 0.9594 #DIV/0! #DIV/0! #DIV/0! -0.4971 -0.6685 #DIV/0! -0.4971 -0.6685 #DIV/0! -0.4971 -0.6685 #DIV/0! -0.4971 -0.6685 #DIV/0! -0.10564 #DIV/0! -0.2816 #DIV/0! -0.2816 #DIV/0!	73.91 78.97 67.17 73.57 ential %ked/yr #DIV/0! #DIV/0! -68.97 -100.67 #DIV/0! 64.49 65.94 65.94 61.69 ential %ked/yr #DIV/0! -64.40 -95.14 #DIV/0! -33.57 #DIV/0! 66.523 22.14	0.0933 0.2370 0.0660 0.3963 C _a -C 0.0261 0.1298 0.0465 0.9378 0.3869 0.9249 0.3667 0.14665 0.2685 0.1208 0.5358 C _a -C 0.0264 0.1347 0.0554 0.7793 0.9738 0.4000 0.9738 0.9738 0.9738 0.9738 0.9738 0.9738 0.9738 0.9738	0.0642 0.1629 0.0454 0.2724 Line: k 0.0115 0.0571 0.0205 0.3234 0.4124 0.1701 0.4067 0.1613 0.0541 0.0531 0.2356 Line: k 0.0116 0.0593 0.0235 0.3339 0.0235 0.3339 0.4282 0.1759 0.4187 0.1649 0.0664	25.19 38.11 12.79 26.27 ar %Red./yr 35.74 27.39 13.53 28.59 27.08 25.25 27.78 31.72 25.29 27.63 14.97 22.72 ar %Red./yr 36.08 28.44 15.53 29.53 28.13 26.10 28.59 32.45 26.17 39.39	0.3137 0.5557 0.1415 0.3310 Expone: k 0.7365 0.4288 0.1617 0.4620 0.4208 0.3764 0.4352 0.1830 0.3198 Expone: k 0.7553 0.4576 0.1916 0.4894 0.4488 0.3960 0.4488 0.3960 0.4488 0.3960 0.45888 0.3978	26.93 42.63 13.19 28.18 ntial //wRed./yr 52.12 34.87 14.93 37.00 34.35 31.30 35.54 42.99 31.37 35.29 16.72 27.37 ntial //wRed./yr 53.01 36.76 17.43 38.70 36.16 32.70 36.99 44.50 32.80 62.98

Lab		Fuel	Spill	Sample		ſ		Line	ear	Expon	ential		Lin	ear	Expor	nential
Code	Site Name	Type	Date	Date Locid	Analyte	Mass Fraction	Co - C	k	%Red./yr	k	%Red./yr	Co - C	k	%Red./yr	k	%Red./yr
OBG	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	7/24/2001 SJMW (18' from 1)	Benzene	0.04800	-0.0480	-0.0085	#DIV/0!	#DIV/0!	#DIV/0!	-0.0159	-0.0028	-8.73	-0.0710	-7.36
OBG	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	7/24/2001 SJMW (18' from 1)	Toluene	0.04700	-0.0470	-0.0083	#DIV/0!	#DIV/0!	#DIV/0!	0.1613	0.0286	13.71	0.2636	23.17
OBG	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	7/24/2001 SJMW (18' from 1)	Ethylbenzene	0.15000	-0.1500	-0.0266	#DIV/0!	#DIV/0!	#DIV/0!	0.0012	0.0002	0.14	0.0014	0.14
OBG	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	7/24/2001 SJMW (18' from 1)	Total Xylenes (m,p, and o)	0.57000	-0.4500	-0.0797	-66.38	-0.2758	-31.76	0.5610	0.0993	8.78	0.1213	11.42
OBG	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	7/24/2001 SJMW (18' from 1)	Total BTEX	0.81500	-0.6950	-0.1230	-102.52	-0.3391	-40.37	0.7076	0.1253	8.23	0.1106	10.47
OBG	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	7/24/2001 SJMW (18' from 1)	1,2,3-Trimethylbenzene	0.19000	-0.1900	-0.0336	#DIV/0!	#DIV/0!	#DIV/0!	0.4838	0.0856	12.71	0.2241	20.08
OBG	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	7/24/2001 SJMW (18' from 1)	1,2,4-Trimethylbenzene	0.78000	-0.5100	-0.0903	-33.44	-0.1878	-20.66	0.6843	0.1211	8.27	0.1115	10.55
OBG	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	7/24/2001 SJMW (18' from 1)	1,3,5-Trimethylbenzene	0.22000	-0.2200	-0.0389	#DIV/0!	#DIV/0!	#DIV/0!	0.2883	0.0510	10.04	0.1482	13.78
OBG	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/1/1995	7/24/2001 SJMW (18' from 1)	Naphthalene	0.12000	1.0200	0.1806	15.84	0.3985	32.87	0.1348	0.0239	9.36	0.1333	12.48

Linear (Zero Order) Assumption

linear equation

 $C = C_0 - kt$

summary statistics presented as follows

ana	lyte
k	Co
sek	seC_o
r ²	seC
F stat.	df
SS _{regr}	SS _{resid}

k = zero order weathering rate; k = dC/dt or slope

sek = slope standard error value

Co = intercept or initial analyte concentration as calculated by regression analysis

seCo = standard error value for the constant Co

 r^2 = coefficient of determination

seC = standard error value of the estimated concentration C (i.e., a "standard deviation" for the regression line)

F stat. = F statistic or F-observed value

df = degrees of freedom

 ss_{regr} = the regression sum of squares

ss_{resid} = the residual sum of squares

Exponential (1st Order) Assumption

exponential equation $C = C_0 e^{-kt}$

summary statistics presented as follows

an	alyte
m	Co
sek	seC _o
r ²	seC
F stat.	df
SS _{regr}	SS _{resid}
	In C₀

m = coefficient for statistics equation shown; note $m = e^{-kt}$, therefore, ln m = -k

sek = standard error value for the exponential rate constant k

Co = intercept or initial analyte concentration as calculated by regression analysis

seCo = standard error value for the constant Co; compare to In Co

 r^2 = coefficient of determination

seC = standard error value of the estimated concentration C (i.e., a "standard deviation" for the regression line)

F stat. = F statistic or F-observed value

df = degrees of freedom

 ss_{regr} = the regression sum of squares

ss_{resid} = the residual sum of squares

In C_0 = natural log of Co for comparing to seCo

ANALYSIS OF FREE PRODUCT WEATHERING RATES FOR JP-8 SITES WHERE 2 OR MORE SAMPLING EVENTS HAVE BEEN PERFORMED SEYMOUR JOHNSON AFB, BLDG 4522

Evergreen Analytical Data

Sample Location MW-2S	Date 12/1/1995 5/15/1997 3/10/1998	1.45	0.0321 0.0245	0.2083 0.1331	0.1512 0.1499	,	0.55	Total Xylenes 1.1310 0.7817 0.3956	Total BTEX 1.5226 1.0891 0.3956
linear rate con	atest sample date stant (k) (slope) reduction (%)		0.0343 0.0098 0.0108 31.39	0.0818 0.0564	0.0182	0.4091 0.1339 0.1210 29.58	0.1927	0.3137	1.5899 0.5151 0.4727 29.73

linear summary stats

Benz	zene	Tolu	ene	Ethylber	nzene	Total >	Kylenes	Total BTEX	
-0.0108	0.0343	-0.0564	0.2101	-0.0182	0.1578	-0.3137	1.1593	-0.4727	1.5899
0.0045	0.0070	0.0038	0.0060	0.0141	0.0219	0.0600	0.0935	0.1423	0.2218
0.8505	0.0073	0.9954	0.0063	0.6254	0.0229	0.9647	0.0977	0.9169	0.2318
6	1	216	1	2	1	27	1	11	1
0.0003	0.0001	0.0085	0.0000	0.0009	0.0005	0.2611	0.0095	0.5927	0.0537

exponential	Benzene	Toluene	Ethylbenzene	O-xylene	M,P-xylenes	Total Xylenes	Total BTEX
Co	0.0388	0.2171	0.1594	0.4222	0.7891	1.2140	1.7226
exponential rate constant (k)	0.6724	0.4148	0.1436	0.4743	0.4188	0.4378	0.5506
% reduction/year	48.95	33.95	13.38	37.77	34.22	35.45	42.34

[Ben	zene	Tol	uene	Ethylbe	nzene	Tota	l Xylenes	Tota	al BTEX
ſ	0.5105	0.0388	0.6605	0.2171	0.8662	0.1594	0.6455	1.2140	0.5766	1.7226
	0.3968	0.6185	0.0869	0.1355	0.1121	0.1747	0.1498	0.2335	0.2609	0.4067
	0.7417	0.6464	0.9579	0.1416	0.6215	0.1825	0.8952	0.2440	0.8166	0.4250
	3	1	23	1	2	1	9	1	4	1
	1.1995	0.4178	0.4564	0.0200	0.0547	0.0333	0.5084	0.0595	0.8043	0.1806
		-3.2499		-1.5275		-1.8362		0.1939		0.5438

SEYMOUR JOHNSON AFB, BLDG 4522 (continued) NRMRL Data

Sample	•
--------	---

Location	Date	Time (yrs)	Benzene	Toluene	Ethylbenzene	o-Xylene	m,p-xylenes	Total Xylenes	Total BTEX
MW-1S	12/1/1995	0.00	0.0321	0.2083	0.1512	0.4107	0.7202	1.1310	1.1310
	7/12/1996	0.61	0.0310	0.2057	0.1562	0.2917	0.6575	0.9492	1.3421
	5/15/1997	1.45	0.0245	0.1299	0.1475	0.2219	0.5334	0.7554	1.0573
	3/10/1998	2.27	0.0058	0.0736	0.0978	0.1271	0.2445	0.3716	0.5488
	7/24/2001	5.65	0.0480	0.0470	0.1500	0.1500	0.5400	0.5700	0.8150
linear									
Co			0.0357	0.1920	0.1430	0.3180	0.6003	0.9390	1.1384
Predicted C - late	est sample date		0.0098	0.0250	0.1361	0.0983	0.4273	0.4201	0.6872
linear rate consta	int (k) (slope)		0.0114	0.0296	0.0012	0.0389	0.0306	0.0919	0.0799
average yearly re	eduction (%)		31.92	15.40	0.86	12.23	5.10	9.78	7.02

linear

summary stats

Ben:	Benzene Toluene		ene	Ethylber	nzene	Total >	Kylenes	Total BTEX		
0.0029	0.0225	-0.0296	0.1920	-0.0012	0.1430	-0.0919	0.9390	-0.0799	1.1384	
0.0036	0.0102	0.0090	0.0253	0.0062	0.0176	0.0575	0.1619	0.0649	0.1826	
0.1736	0.0160	0.7831	0.0398	0.0127	0.0277	0.4593	0.2548	0.3353	0.2875	
1	3	11	3	0	3	3	3	2	3	
0.0002	0.0008	0.0171	0.0047	0.0000	0.0023	0.1655	0.1948	0.1251	0.2479	

exponential	Benzene	Toluene	Ethylbenzene	m-Xylene o	o-Xylene	p-Xylene	m,p-xylenes	Total Xylenes	Total BTEX
Co	0.0423	0.1986	0.1412	0.3036	0.3036	0.8929	0.5643	0.8929	1.1011
exponential rate constant (k)	0.7204	0.2778	0.0092	0.1628	0.1628	0.1196	0.0540	0.1196	0.0814
% reduction/year	51.34	24.26	0.92	15.02	15.02	11.28	5.26	11.28	7.82

	Benzene	Tol	uene	Ethylbe	enzene	Tota	al Xylenes	Tot	al BTEX
1.062	5 0.0206	0.7574 0.1986		0.9908 0.1412		0.8872	0.8929	0.9218	1.1011
0.209		0.0571	0.1606	0.0508	0.1430	0.0914	0.2570	0.0777	0.2185
0.027		0.8876	0.2528	0.0109	0.2251	0.3638	0.4045	0.2679	0.3439
0	3	24	3	0	3	2	3	1	3
0.072	2.5863	1.5137	0.1917	0.0017	0.1520	0.2807	0.4910	0.1299	0.3548
	-3.8836						-0.1132		0.0963

Code	Site Name	Type	Date	Date Locid	Analyte	Mass Fraction	C _o - C	k	%Red./yr	k	%Red./yr	C _o - C	k	%Red./yr	k	%Red./yr
NRMRL	Tank 349, Offutt AFB, NE	Gasoline	6/1/1990	11/15/1994 MW349-1	Benzene	1.12195	0.3780	0.0848	5.65	0.0651	6.30	1.5780	0.3538	13.10	0.1969	17.87
NRMRL	Tank 349, Offutt AFB, NE	Gasoline		11/15/1994 MW349-1	Toluene	5.56911	0.3309	0.0742	1.26	0.0129	1.29	6.9309	1.5539	12.43	0.1813	16.58
NRMRL	Tank 349, Offutt AFB, NE	Gasoline		11/15/1994 MW349-1	Ethylbenzene	1.39566	-0.0957	-0.0214	-1.65	-0.0159	-1.60	0.3043	0.0682	4.01	0.0442	4.33
NRMRL	Tank 349, Offutt AFB, NE	Gasoline		11/15/1994 MW349-1	Total Xylenes (m,p, and o)	5.70190	0.1981	0.0444	0.75	0.0077	0.76	1.8981	0.4256	2.36	0.0644	6.24
NRMRL	Tank 349, Offutt AFB, NE	Gasoline		11/15/1994 MW349-1	Total BTEX	13.78862	0.8114	0.1819	1.25	0.0128	1.27	10.7114	2.4015	9.80	0.1289	12.09
NRMRL	Tank 349, Offutt AFB, NE	Gasoline		11/15/1994 MW349-1	1,2,3-Trimethylbenzene											
NRMRL	Tank 349, Offutt AFB, NE	Gasoline		11/15/1994 MW349-1	1,2,4-Trimethylbenzene											
NRMRL	Tank 349, Offutt AFB, NE	Gasoline		11/15/1994 MW349-1	1,3,5-Trimethylbenzene											
NRMRL	Tank 349, Offutt AFB, NE	Gasoline	6/1/1990	11/15/1994 MW349-1	Naphthalene	0.25068	0.1893	0.0424	9.65	0.1261	11.85	0.1393	0.0312	8.01	0.0991	9.43
														<i>'</i> =	4000	
								Chas		004		AD.		nge (Potter,		107)
		Fuel	Spill	Sample		Г		Line	semi et al., 1	Expon	ontial	ADL	Line	987), & Sigs	Expor	
		i uei	Opin	Sample				Line	zai	Lxpoii	entiai		Line	zai	Lxpoi	entiai
	Site Name	Type	Date	Date Locid	Analyte	Mass Fraction	C _o - C	k	%Red./yr	k	%Red./yr	Co-C	k	%Red./yr	k	%Red./yr
NRMRL	Tank 349, Offutt AFB, NE	Gasoline		11/15/1994 MW349-7	Benzene	0.76255	0.7374	0.1653	11.02	0.1517	14.07	1.9374	0.4344	16.09	0.2835	24.68
NRMRL	Tank 349, Offutt AFB, NE	Gasoline		11/15/1994 MW349-7	Toluene	3.88060	2.0194	0.4528	7.67	0.0939	8.97	8.6194	1.9325	15.46	0.2623	23.07
NRMRL	Tank 349, Offutt AFB, NE	Gasoline		11/15/1994 MW349-7	Ethylbenzene	1.25645	0.0436	0.0098	0.75	0.0076	0.76	0.4436	0.0994	5.85	0.0678	6.55
NRMRL	Tank 349, Offutt AFB, NE	Gasoline	6/1/1990	11/15/1994 MW349-7	Total Xylenes (m,p, and o)	5.68792	0.2121	0.0475	0.81	0.0082	0.82	1.9121	0.4287	2.38	0.0650	6.29
NRMRL	Tank 349, Offutt AFB, NE	Gasoline	6/1/1990	11/15/1994 MW349-7	Total BTEX	11.58752	3.0125	0.6754	4.63	0.0518	5.05	12.9125	2.8950	11.82	0.1679	15.45
NRMRL	Tank 349, Offutt AFB, NE	Gasoline	6/1/1990	11/15/1994 MW349-7	1,2,3-Trimethylbenzene											
NRMRL	Tank 349, Offutt AFB, NE	Gasoline	6/1/1990	11/15/1994 MW349-7	1,2,4-Trimethylbenzene											
NRMRL	Tank 349, Offutt AFB, NE	Gasoline	6/1/1990	11/15/1994 MW349-7	1,3,5-Trimethylbenzene											
NRMRL	Tank 349, Offutt AFB, NE	Gasoline	6/1/1990	11/15/1994 MW349-7	Naphthalene	0.29444	0.1456	0.0326	7.42	0.0901	8.61	0.0956	0.0214	5.49	0.0630	6.11
														nge (Potter,		
		F1	Daniel acce	0		Г			semi et al., 1			AD L		987), & Sigs		
		Fuel	Previous Sample	Sample				Line	ear	Expon	entiai		Line	ear	Expor	entiai
	Site Name	Type	Date	Date Locid	Analyte	Mass Fraction	C _o - C	k	%Red./yr	k	%Red./yr	C _o - C	k	%Red./yr	k	%Red./yr
NRMRL	Tank 349, Offutt AFB, NE		11/15/1994	6/26/1996 MW349-1	Benzene	1.16298	-0.0410	-0.0254	-2.27	-0.0223	-2.25	-0.0410	-0.0254	-2.27	-0.0223	-2.25
NRMRL	Tank 349, Offutt AFB, NE		11/15/1994	6/26/1996 MW349-1	Toluene	5.02762	0.5415	0.3356	6.03	0.0634	6.14	0.5415	0.3356	6.03	0.0634	6.14
NRMRL	Tank 349, Offutt AFB, NE	Gasoline	11/15/1994	6/26/1996 MW349-1	Ethylbenzene	1.57459	-0.1789	-0.1109	-7.94	-0.0747	-7.76	-0.1789	-0.1109		-0.0747	-7.76
NRMRL NRMRL	Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE		11/15/1994 11/15/1994	6/26/1996 MW349-1 6/26/1996 MW349-1	Ethylbenzene Total Xvlenes (m.p. and o)	1.57459 5.21547	-0.1789 0.4864	-0.1109 0.3014	-7.94 5.29	-0.0747 0.0553	-7.76 5.38	-0.1789 0.4864	-0.1109 0.3014	-7.94	-0.0747 0.0553	-7.76 5.38
NRMRL NRMRL NRMRL	Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE	Gasoline	11/15/1994 11/15/1994 11/15/1994	6/26/1996 MW349-1 6/26/1996 MW349-1 6/26/1996 MW349-1	Ethylbenzene Total Xylenes (m,p, and o) Total BTEX	1.57459 5.21547 12.98066	-0.1789 0.4864 0.8080	-0.1109 0.3014 0.5007	-7.94 5.29 3.63	-0.0747 0.0553 0.0374	-7.76 5.38 3.67	-0.1789 0.4864 0.8080	-0.1109 0.3014 0.5007		-0.0747 0.0553 0.0374	-7.76 5.38 3.67
NRMRL	Tank 349, Offutt AFB, NE	Gasoline	11/15/1994	6/26/1996 MW349-1	Total Xylenes (m,p, and o)	5.21547	0.4864	0.3014	5.29	0.0553	5.38	0.4864	0.3014	-7.94 1.67	0.0553	5.38
NRMRL	Tank 349, Offutt AFB, NE	Gasoline	11/15/1994	6/26/1996 MW349-1	Total Xylenes (m,p, and o)	5.21547	0.4864	0.3014 0.5007	5.29 3.63	0.0553 0.0374	5.38	0.4864 0.8080	0.3014 0.5007 Mid-Ra	-7.94 1.67 3.63 nge (Potter,	0.0553 0.0374 1988) ,	5.38 3.67
NRMRL	Tank 349, Offutt AFB, NE	Gasoline Gasoline	11/15/1994 11/15/1994	6/26/1996 MW349-1 6/26/1996 MW349-1	Total Xylenes (m,p, and o)	5.21547	0.4864	0.3014 0.5007 Ghas	5.29 3.63 semi <i>et al</i> ., 1	0.0553 0.0374 984	5.38 3.67	0.4864 0.8080	0.3014 0.5007 Mid-Ra .ittle, Inc. (1	-7.94 1.67 3.63 nge (Potter, 1987), & Sigs	0.0553 0.0374 1988), by et al. (19	5.38 3.67
NRMRL	Tank 349, Offutt AFB, NE	Gasoline	11/15/1994	6/26/1996 MW349-1	Total Xylenes (m,p, and o)	5.21547	0.4864	0.3014 0.5007	5.29 3.63 semi <i>et al</i> ., 1	0.0553 0.0374	5.38 3.67	0.4864 0.8080	0.3014 0.5007 Mid-Ra	-7.94 1.67 3.63 nge (Potter, 1987), & Sigs	0.0553 0.0374 1988) ,	5.38 3.67
NRMRL	Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE	Gasoline Gasoline Fuel	11/15/1994 11/15/1994 Spill	6/26/1996 MW349-1 6/26/1996 MW349-1 Sample	Total Xylenes (m,p, and o) Total BTEX	5.21547 12.98066	0.4864 0.8080	0.3014 0.5007 Ghas	5.29 3.63 semi et al., 1	0.0553 0.0374 984	5.38 3.67	0.4864 0.8080 AD L	0.3014 0.5007 Mid-Ra .ittle, Inc. (1	-7.94 1.67 3.63 nge (Potter, 1987), & Sigs	0.0553 0.0374 1988), by et al. (19	5.38 3.67 987) ential
NRMRL NRMRL	Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE Site Name	Gasoline Gasoline Fuel Type	11/15/1994 11/15/1994 Spill Date	6/26/1996 MW349-1 6/26/1996 MW349-1 Sample Date Locid	Total Xylenes (m,p, and o) Total BTEX Analyte	5.21547 12.98066 Mass Fraction	0.4864 0.8080 C _o - C	0.3014 0.5007 Ghas Line	5.29 3.63 semi et al., 1 ear %Red./yr	0.0553 0.0374 984 Expon	5.38 3.67 ential %Red./yr	0.4864 0.8080 AD L	0.3014 0.5007 Mid-Ra ittle, Inc. (1 Line	-7.94 1.67 3.63 nge (Potter, 1987), & Sigs ear %Red./yr	0.0553 0.0374 1988), by et al . (19 Expor	5.38 3.67 887) ential %Red./yr
NRMRL NRMRL NRMRL	Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE Site Name Tank 349, Offutt AFB, NE	Gasoline Gasoline Fuel Type Gasoline	11/15/1994 11/15/1994 Spill Date 6/1/1990	6/26/1996 MW349-1 6/26/1996 MW349-1 Sample Date Locid 6/26/1996 MW349-8	Total Xylenes (m,p, and o) Total BTEX Analyte Benzene	5.21547 12.98066 Mass Fraction 0.12871	0.4864 0.8080 C _o - C 1.3713	0.3014 0.5007 Ghas Line k 0.2258	5.29 3.63 semi et al., 1 ear %Red./yr 15.05	0.0553 0.0374 984 Expon k 0.4043	5.38 3.67 ential %Red./yr 33.26	0.4864 0.8080 AD L C _o - C 2.5713	0.3014 0.5007 Mid-Ra ittle, Inc. (1 Line k 0.4233	-7.94 1.67 3.63 nge (Potter, 1987), & Sigs ear %Red./yr 15.68	0.0553 0.0374 1988), by et al. (19 Expor	5.38 3.67 887) ential %Red./yr 39.41
NRMRL NRMRL	Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE Site Name	Gasoline Gasoline Fuel Type	11/15/1994 11/15/1994 Spill Date	6/26/1996 MW349-1 6/26/1996 MW349-1 Sample Date Locid	Total Xylenes (m,p, and o) Total BTEX Analyte	5.21547 12.98066 Mass Fraction	0.4864 0.8080 C _o - C	0.3014 0.5007 Ghas Line	5.29 3.63 semi et al., 1 ear %Red./yr	0.0553 0.0374 984 Expon	5.38 3.67 ential %Red./yr	0.4864 0.8080 AD L	0.3014 0.5007 Mid-Ra ittle, Inc. (1 Line	-7.94 1.67 3.63 nge (Potter, 1987), & Sigs ear %Red./yr	0.0553 0.0374 1988), by et al . (19 Expor	5.38 3.67 887) ential %Red./yr
NRMRL NRMRL NRMRL NRMRL NRMRL	Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE Site Name Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE	Gasoline Gasoline Fuel Type Gasoline Gasoline	11/15/1994 11/15/1994 Spill Date 6/1/1990 6/1/1990	6/26/1996 MW349-1 6/26/1996 MW349-1 Sample Date Locid 6/26/1996 MW349-8 6/26/1996 MW349-8	Total Xylenes (m,p, and o) Total BTEX Analyte Benzene Toluene	5.21547 12.98066 Mass Fraction 0.12871 1.65768	0.4864 0.8080 C _o - C 1.3713 4.2423	0.3014 0.5007 Ghas Line k 0.2258 0.6984	5.29 3.63 semi et al., 1 ear %Red./yr 15.05 11.84	0.0553 0.0374 984 Expon k 0.4043 0.2090	5.38 3.67 ential %Red./yr 33.26 18.86	0.4864 0.8080 AD L C _o - C 2.5713 10.8423	0.3014 0.5007 Mid-Ra ittle, Inc. (1 Line k 0.4233 1.7850	-7.94 1.67 3.63 nge (Potter, 1987), & Sigs ear %Red./yr 15.68 14.28	0.0553 0.0374 1988), by et al. (19 Expor k 0.5011 0.3326	5.38 3.67 887) ential %Red./yr 39.41 28.30
NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE Site Name Tank 349, Offutt AFB, NE	Gasoline Gasoline Fuel Type Gasoline Gasoline Gasoline	11/15/1994 11/15/1994 Spill Date 6/1/1990 6/1/1990 6/1/1990	6/26/1996 MW349-1 6/26/1996 MW349-1 Sample Date Locid 6/26/1996 MW349-8 6/26/1996 MW349-8 6/26/1996 MW349-8	Total Xylenes (m,p, and o) Total BTEX Analyte Benzene Toluene Ethylbenzene	5.21547 12.98066 Mass Fraction 0.12871 1.65768 1.36119	0.4864 0.8080 C _o - C 1.3713 4.2423 -0.0612	0.3014 0.5007 Ghas Line k 0.2258 0.6984 -0.0101	5.29 3.63 semi et al., 1 par %Red./yr 15.05 11.84 -0.77	0.0553 0.0374 984 Expon k 0.4043 0.2090 -0.0076	5.38 3.67 ential %Red./yr 33.26 18.86 -0.76	0.4864 0.8080 AD L C _o - C 2.5713 10.8423 0.3388	0.3014 0.5007 Mid-Ra .ittle, Inc. (1 Line k 0.4233 1.7850 0.0558	-7.94 1.67 3.63 nge (Potter, 987), & Sigs ear %RedJyr 15.68 14.28 3.28	0.0553 0.0374 1988), by et al. (19 Expor k 0.5011 0.3326 0.0366	5.38 3.67 887) ential %Red./yr 39.41 28.30 3.59
NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE Site Name Tank 349, Offutt AFB, NE	Fuel Type Gasoline Gasoline Gasoline Gasoline Gasoline	11/15/1994 11/15/1994 Spill Date 6/1/1990 6/1/1990 6/1/1990 6/1/1990	6/26/1996 MW349-1 6/26/1996 MW349-1 Sample Date Locid 6/26/1996 MW349-8 6/26/1996 MW349-8 6/26/1996 MW349-8 6/26/1996 MW349-8	Total Xylenes (m,p, and o) Total BTEX Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o)	5.21547 12.98066 Mass Fraction 0.12871 1.65768 1.36119 4.39084	0.4864 0.8080 C _o - C 1.3713 4.2423 -0.0612 1.5092	0.3014 0.5007 Ghas Line k 0.2258 0.6984 -0.0101 0.2485	5.29 3.63 semi et al., 1 baar %Red./yr 15.05 11.84 -0.77 4.21	0.0553 0.0374 984 Expon k 0.4043 0.2090 -0.0076 0.0486	5.38 3.67 ential %Red./yr 33.26 18.86 -0.76 4.75	0.4864 0.8080 AD L C _o - C 2.5713 10.8423 0.3388 3.2092	0.3014 0.5007 Mid-Ra .ittle, Inc. (1 Line k 0.4233 1.7850 0.0558 0.5283	-7.94 1.67 3.63 nge (Potter, 987), & Sigs sar %Red./yr 15.68 14.28 3.28 2.94	0.0553 0.0374 1988), by et al. (19 Expor k 0.5011 0.3326 0.0366 0.0903	5.38 3.67 887) ential %Red./yr 39.41 28.30 3.59 8.64
NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE Site Name Tank 349, Offutt AFB, NE	Fuel Type Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline	11/15/1994 11/15/1994 Spill Date 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990	6/26/1996 MW349-1 6/26/1996 MW349-1 Sample Date 6/26/1996 MW349-8 6/26/1996 MW349-8 6/26/1996 MW349-8 6/26/1996 MW349-8	Total Xylenes (m,p, and o) Total BTEX Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX	5.21547 12.98066 Mass Fraction 0.12871 1.65768 1.36119 4.39084	0.4864 0.8080 C _o - C 1.3713 4.2423 -0.0612 1.5092	0.3014 0.5007 Ghas Line k 0.2258 0.6984 -0.0101 0.2485	5.29 3.63 semi et al., 1 baar %Red./yr 15.05 11.84 -0.77 4.21	0.0553 0.0374 984 Expon k 0.4043 0.2090 -0.0076 0.0486	5.38 3.67 ential %Red./yr 33.26 18.86 -0.76 4.75	0.4864 0.8080 AD L C _o - C 2.5713 10.8423 0.3388 3.2092	0.3014 0.5007 Mid-Ra .ittle, Inc. (1 Line k 0.4233 1.7850 0.0558 0.5283	-7.94 1.67 3.63 nge (Potter, 987), & Sigs sar %Red./yr 15.68 14.28 3.28 2.94	0.0553 0.0374 1988), by et al. (19 Expor k 0.5011 0.3326 0.0366 0.0903	5.38 3.67 887) ential %Red./yr 39.41 28.30 3.59 8.64
NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE Site Name Tank 349, Offutt AFB, NE	Gasoline Gasoline Fuel Type Gasoline	11/15/1994 11/15/1994 Spill Date 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990	6/26/1996 MW349-1 6/26/1996 MW349-1 Sample Date 6/26/1996 MW349-8	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene	5.21547 12.98066 Mass Fraction 0.12871 1.65768 1.36119 4.39084	0.4864 0.8080 C _o - C 1.3713 4.2423 -0.0612 1.5092	0.3014 0.5007 Ghas Line k 0.2258 0.6984 -0.0101 0.2485	5.29 3.63 semi et al., 1 baar %Red./yr 15.05 11.84 -0.77 4.21	0.0553 0.0374 984 Expon k 0.4043 0.2090 -0.0076 0.0486	5.38 3.67 ential %Red./yr 33.26 18.86 -0.76 4.75	0.4864 0.8080 AD L C _o - C 2.5713 10.8423 0.3388 3.2092	0.3014 0.5007 Mid-Ra .ittle, Inc. (1 Line k 0.4233 1.7850 0.0558 0.5283	-7.94 1.67 3.63 nge (Potter, 987), & Sigs sar %Red./yr 15.68 14.28 3.28 2.94	0.0553 0.0374 1988), by et al. (19 Expor k 0.5011 0.3326 0.0366 0.0903	5.38 3.67 887) ential %Red./yr 39.41 28.30 3.59 8.64
NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE Site Name Tank 349, Offutt AFB, NE	Fuel Type Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline	11/15/1994 11/15/1994 Spill Date 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990	6/26/1996 MW349-1 6/26/1996 MW349-1 Sample Date 6/26/1996 MW349-8	Total Xylenes (m,p, and o) Total BTEX Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene	5.21547 12.98066 Mass Fraction 0.12871 1.65768 1.36119 4.39084	0.4864 0.8080 C _o - C 1.3713 4.2423 -0.0612 1.5092	0.3014 0.5007 Ghas Line k 0.2258 0.6984 -0.0101 0.2485	5.29 3.63 semi et al., 1 baar %Red./yr 15.05 11.84 -0.77 4.21	0.0553 0.0374 984 Expon k 0.4043 0.2090 -0.0076 0.0486	5.38 3.67 ential %Red./yr 33.26 18.86 -0.76 4.75	0.4864 0.8080 AD L C _o - C 2.5713 10.8423 0.3388 3.2092	0.3014 0.5007 Mid-Ra .ittle, Inc. (1 Line k 0.4233 1.7850 0.0558 0.5283	-7.94 1.67 3.63 nge (Potter, 987), & Sigs sar %Red./yr 15.68 14.28 3.28 2.94	0.0553 0.0374 1988), by et al. (19 Expor k 0.5011 0.3326 0.0366 0.0903	5.38 3.67 887) ential %Red./yr 39.41 28.30 3.59 8.64
NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE Site Name Tank 349, Offutt AFB, NE	Gasoline Gasoline Fuel Type Gasoline	11/15/1994 11/15/1994 Spill Date 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990	6/26/1996 MW349-1 6/26/1996 MW349-1 Sample Date 6/26/1996 MW349-8	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene	5.21547 12.98066 Mass Fraction 0.12871 1.65768 1.36119 4.39084	0.4864 0.8080 C _o - C 1.3713 4.2423 -0.0612 1.5092	0.3014 0.5007 Ghas Line k 0.2258 0.6984 -0.0101 0.2485	5.29 3.63 semi et al., 1 baar %Red./yr 15.05 11.84 -0.77 4.21	0.0553 0.0374 984 Expon k 0.4043 0.2090 -0.0076 0.0486	5.38 3.67 ential %Red./yr 33.26 18.86 -0.76 4.75	0.4864 0.8080 AD L C _o - C 2.5713 10.8423 0.3388 3.2092	0.3014 0.5007 Mid-Ra ittle, Inc. (1 Line 8 0.4233 1.7850 0.0558 0.5283 2.7925	-7,94 1.67 3.63 ngg (Potter, 987), & Sigs ear 15.68 14.28 3.28 2.94 11.40	0.0553 0.0374 1988), by et al. (15 Expor k 0.5011 0.3326 0.0366 0.0903 0.1941	5.38 3.67 887) ential %Red./yr 39.41 28.30 3.59 8.64
NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE Site Name Tank 349, Offutt AFB, NE	Gasoline Gasoline Fuel Type Gasoline	11/15/1994 11/15/1994 Spill Date 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990	6/26/1996 MW349-1 6/26/1996 MW349-1 Sample Date 6/26/1996 MW349-8	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene	5.21547 12.98066 Mass Fraction 0.12871 1.65768 1.36119 4.39084	0.4864 0.8080 C _o - C 1.3713 4.2423 -0.0612 1.5092	0.3014 0.5007 Ghas Line k 0.2258 0.6984 -0.0101 0.2485 1.1626	5.29 3.63 semi et al., 1 haar 15.05 11.84 -0.77 4.21 7.96	0.0553 0.0374 984 Expon k 0.4043 0.2090 -0.0076 0.0486 0.1088	5.38 3.67 ential %Red./yr 33.26 18.86 -0.76 4.75	0.4864 0.8080 AD L C _o - C 2.5713 10.8423 0.3388 3.2092 16.9616	0.3014 0.5007 Mid-Ra ittle, Inc. (1 Line k 0.4233 1.7850 0.0558 0.5283 2.7925	-7.94 1.67 3.63 ange (Potter, 987), & Sigs ear **Red.lyr 15.68 14.28 2.94 11.40	0.0553 0.0374 1988), by et al. (15 Expor k 0.5011 0.3326 0.0366 0.0903 0.1941	5.38 3.67 **Red.Jyr 39.41 28.30 3.59 8.64 17.64
NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE Site Name Tank 349, Offutt AFB, NE	Fuel Type Gasoline	11/15/1994 Spill Date 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990	6/26/1996 MW349-1 6/26/1996 MW349-1 Sample Date Locid 6/26/1996 MW349-8 6/26/1996 MW349-8 6/26/1996 MW349-8 6/26/1996 MW349-8 6/26/1996 MW349-8 6/26/1996 MW349-8 6/26/1996 MW349-8 6/26/1996 MW349-8 6/26/1996 MW349-8	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene	5.21547 12.98066 Mass Fraction 0.12871 1.65768 1.36119 4.39084	0.4864 0.8080 C _o - C 1.3713 4.2423 -0.0612 1.5092	0.3014 0.5007 Ghas Line k 0.2258 0.6984 -0.0101 0.2485 1.1626	5.29 3.63 semi et al., 1 sar %Red.lyr 15.05 11.84 -0.77 4.21 7.96	0.0553 0.0374 984 Expon k 0.4043 0.2090 -0.0076 0.0486 0.1088	5.38 3.67 ential %Red./yr 33.26 18.86 -0.76 4.75 10.31	0.4864 0.8080 AD L C _o - C 2.5713 10.8423 0.3388 3.2092 16.9616	0.3014 0.5007 Mid-Ra ittle, Inc. (1 Line k 0.4233 1.7850 0.0558 0.5283 2.7925	-7,94 1.67 3.63 ange (Potter, 987), & Sigs ear "**Red.Jyr 15.68 14.28 3.28 2.94 11.40	0.0553 0.0374 1988), by et al. (19 Expor k 0.0316 0.0366 0.0903 0.1941	5.38 3.67 **Red./yr 39.41 28.30 3.59 8.64 17.64
NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE Site Name Tank 349, Offutt AFB, NE	Gasoline Gasoline Fuel Type Gasoline	11/15/1994 11/15/1994 Spill Date 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990	6/26/1996 MW349-1 6/26/1996 MW349-1 Sample Date 6/26/1996 MW349-8	Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene	5.21547 12.98066 Mass Fraction 0.12871 1.65768 1.36119 4.39084	0.4864 0.8080 C _o - C 1.3713 4.2423 -0.0612 1.5092	0.3014 0.5007 Ghas Line k 0.2258 0.6984 -0.0101 0.2485 1.1626	5.29 3.63 semi et al., 1 sar %Red.lyr 15.05 11.84 -0.77 4.21 7.96	0.0553 0.0374 984 Expon k 0.4043 0.2090 -0.0076 0.0486 0.1088	5.38 3.67 ential %Red./yr 33.26 18.86 -0.76 4.75 10.31	0.4864 0.8080 AD L C _o - C 2.5713 10.8423 0.3388 3.2092 16.9616	0.3014 0.5007 Mid-Ra ittle, Inc. (1 Line k 0.4233 1.7850 0.0558 0.5283 2.7925	-7,94 1.67 3.63 ange (Potter, 987), & Sigs ear "**Red.Jyr 15.68 14.28 3.28 2.94 11.40	0.0553 0.0374 1988), by et al. (15 Expor k 0.5011 0.3326 0.0366 0.0903 0.1941	5.38 3.67 **Red./yr 39.41 28.30 3.59 8.64 17.64
NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE Site Name Tank 349, Offutt AFB, NE	Gasoline Gasoline Type Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline Fuel	11/15/1994 Spill Date 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990	6/26/1996 MW349-1 6/26/1996 MW349-1 Sample Date C/26/1996 MW349-8 6/26/1996 MW349-8	Total Xylenes (m,p, and o) Total BTEX Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene Naphthalene	5 21547 12.98066 Mass Fraction 0.12871 1.65768 1.36119 4.39084 7.53841	0.4864 0.8080 C _o - C 1.3713 4.2423 -0.0612 1.5092 7.0616	0.3014 0.5007 Ghas Line k 0.2258 0.6984 -0.0101 0.2485 1.1626	5.29 3.63 semi et al., 1 semi et al., 1 15.05 11.84 -0.77 4.21 7.96	0.0553 0.0374 984 Expon k 0.4043 0.2090 -0.0076 0.0486 0.1088	5.38 3.67 ential %Red.Jyr 33.26 18.86 -0.76 4.75 10.31	0.4864 0.8080 AD L C _o - C 2.5713 10.8423 0.3388 3.2092 16.9616	0.3014 0.5007 Mid-Ra ittle, Inc. (1 Line 8 0.4233 1.7850 0.0558 0.5283 2.7925 Mid-Ra Line Mid-Ra	-7.94 1.67 3.63 nge (Potter, 987), & Sigs ear **Red.lyr 15.68 14.28 2.94 11.40 nge (Potter, 1987), & Sigs	0.0553 0.0374 1988), by et al. (15 Expor k 0.0306 0.0303 0.1941 1988), by et al. (15 Expor	5.38 3.67 **Red./yr 39.41 28.30 3.59 8.64 17.64
NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE Site Name Tank 349, Offutt AFB, NE	Fuel Type Gasoline Fuel Type	11/15/1994 Spill Date 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 Previous Sample Date	6/26/1996 MW349-1 6/26/1996 MW349-1 Sample Date Locid 6/26/1996 MW349-8	Total Xylenes (m,p, and o) Total BTEX Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene Naphthalene Analyte	5.21547 12.98066 Mass Fraction 0.12871 1.65768 1.36119 4.39084 7.53841	0.4864 0.8080 C _o - C 1.3713 4.2423 -0.0612 1.5092 7.0616	0.3014 0.5007 Ghas Line k 0.2258 0.6984 -0.0101 0.2485 1.1626 Ghas Line k	5.29 3.63 semi et al., 1 sar %Red.lyr 15.05 11.84 -0.77 4.21 7.96	0.0553 0.0374 984 Expon k 0.4043 0.2090 -0.0076 0.1088 0.1088	5.38 3.67 ential %Red./yr 33.26 18.86 -0.76 4.75 10.31	0.4864 0.8080 AD L C _o - C 2.5713 10.8423 0.3388 3.2092 16.9616	0.3014 0.5007 Mid-Ra ittle, Inc. (1 Line k 0.4233 1.7850 0.0558 0.5283 2.7925 Mid-Ra Line k	-7,94 1.67 3.63 ange (Potter, 987), & Sigs ear "**Red.Jyr 15.68 14.28 3.28 2.94 11.40 nge (Potter, 987), & Sigs ear	0.0553 0.0374 1988), by et al. (15 Expor k 0.5011 0.3326 0.0336 0.0903 0.1941 1988), by et al. (15 Expor	5.38 3.67 887) lential %Red./yr 39.41 28.30 3.59 8.64 17.64
NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	Tank 349, Offutt AFB, NE	Fuel Type Gasoline Fuel Type Gasoline	11/15/1994 11/15/1994 Spill Date 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990	6/26/1996 MW349-1 6/26/1996 MW349-1 Date Locid 6/26/1996 MW349-8 6/26/1996 MW349-1	Total Xylenes (m,p, and o) Total BTEX Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Analyte Benzene	5.21547 12.98066 Mass Fraction 0.12871 1.85768 1.36119 4.39084 7.53841 Mass Fraction 1.15417	0.4864 0.8080 C _o - C 1.3713 4.2423 -0.0612 7.0616	0.3014 0.5007 Ghas Line k 0.2258 0.6984 -0.0101 0.2485 1.1626 Ghas Line k	5.29 3.63 semi et al., 1 sar %Red.lyr 15.05 11.84 -0.77 4.21 7.96 semi et al., 1 sar %Red.lyr 0.76	0.0553 0.0374 984 Expon k 0.4043 0.2090 -0.0076 0.1088 984 Expon k 0.0077	5.38 3.67 ential %Red.lyr 33.26 18.86 -0.76 4.75 10.31	0.4864 0.8080 AD L C _o -C 2.5713 10.8423 0.3388 3.2092 16.9616	0.3014 0.5007 Mid-Ra ittle, Inc. (1 Line k 0.4233 1.7850 0.0558 0.5283 2.7925 Mid-Ra ittle, Inc. (1 Line k	-7.94 1.67 3.63 nge (Potter, 987), & Sigs sar %Red./yr 15.68 14.28 2.94 11.40 nge (Potter, 987), & Sigs sar	0.0553 0.0374 1988), by et al. (15 Expor k 0.5011 0.3326 0.0366 0.0903 0.1941 1988), by et al. (15 Expor k	5.38 3.67 lential %Red./yr 39.41 28.30 3.59 8.64 17.64 17.64
NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	Tank 349, Offutt AFB, NE	Fuel Type Gasoline	11/15/1994 Spill Date 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990	6/26/1996 MW349-1 6/26/1996 MW349-1 Sample Date Locid 6/26/1996 MW349-8 6/26/1997 MW349-8 Sample Date Locid 6/23/1997 MW-349-1FP 6/23/1997 MW-349-1FP	Total Xylenes (m,p, and o) Total BTEX Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene Naphthalene Analyte Benzene Toluene	5.21547 12.98066 Mass Fraction 0.12871 1.65768 1.36119 4.39084 7.53841 Mass Fraction 1.15417 5.55556	0.4864 0.8080 C _o - C 1.3713 4.2423 7.0612 1.5092 7.0616	0.3014 0.5007 Ghas Line k 0.2258 0.6984 -0.0101 0.2485 1.1626 Ghas Line k 0.0089 -0.5323	5,29 3,63 semi et al., 1 har 15,05 11,84 -0,77 4,21 7,96 semi et al., 1 har %Red./yr 0,76 -10,59	0.0553 0.0374 984 Expon k 0.4043 0.2090 0.0076 0.0486 0.1088 984 Expon k 0.0077 -0.1007	5.38 3.67 ential %RedJyr 33.26 18.86 -0.76 4.75 10.31 ential %RedJyr 0.76 0.76	0.4864 0.8080 AD L C _o - C 2.5713 10.8423 0.3388 3.2092 16.9616 AD L C _o - C 0.0088 -0.5279	0.3014 0.5007 Mid-Ra ittle, Inc. (1 Line k 0.4233 1.7850 0.5283 2.7925 Mid-Ra ittle, Inc. (1 Line k 0.0089 -0.5323	-7.94 1.67 3.63 3.63 ange (Potter, 987), & Sigs aar %Red.Jyr 15.68 14.28 2.94 11.40 nge (Potter, 987), & Sigs aar %Red.Jyr 0.76 -10.59	0.0553 0.0374 1988), by et al. (15 Expor k 0.5011 0.3326 0.0903 0.1941 1988), by et al. (15 Expor k 0.0077 -0.1007	5.38 3.67 **Red./yr 39.41 28.30 3.59 8.64 17.64 **Red./yr ential **Red./yr 0.76 -10.59
NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	Tank 349, Offutt AFB, NE	Fuel Type Gasoline	11/15/1994 11/15/1994 Spill Date 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 Previous Sample Date 6/26/1996 6/26/1996 6/26/1996	6/26/1996 MW349-1 6/26/1996 MW349-1 Sample Date Locid 6/26/1996 MW349-8 Sample Date Locid 6/23/1997 MW-349-1FP 6/23/1997 MW-349-1FP 6/23/1997 MW-349-1FP	Total Xylenes (m,p, and o) Total BTEX Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1.2.3-Trimethylbenzene 1.2.4-Trimethylbenzene Naphthalene Analyte Benzene Toluene Ethylbenzene	5.21547 12.98066 Mass Fraction 0.12871 1.65768 1.36119 4.39084 7.53841 Mass Fraction 1.15417 5.55556 1.54167	C _o - C 1.3713 4.2423 -0.0612 1.5092 7.0616 C _o - C 0.0088 -0.5279 0.0329	0.3014 0.5007 Ghas Line k 0.2258 0.6984 -0.0101 0.2485 1.1626 Ghas Line k 0.0089 -0.5323 0.0332	5.29 3.63 semi et al., 1 sar %Red.lyr 15.05 11.84 -0.77 4.21 7.96 semi et al., 1 bar %Red.lyr 0.76 -10.59 2.11	0.0553 0.0374 984 Expon k 0.4043 0.2090 -0.0076 0.0486 0.1088 Expon k 0.0077 -0.1007 -0.1007 -0.1007	5.38 3.67 ential %Red.lyr 33.26 18.86 -0.76 4.75 10.31 ential %Red.lyr 0.76 -0.59 2.11	0.4864 0.8080 AD L C _o - C 2.5713 10.8423 0.3388 3.2092 16.9616 AD L C _o - C 0.0088 -0.5279 0.0329	0.3014 0.5007 Mid-Ra ittle, Inc. (1 Line k 0.4233 1.7850 0.0558 0.5283 2.7925 Mid-Ra Line k 0.0089 -0.5323 0.0038	-7,94 1.67 3.63 ange (Potter, 987), & Sigs ear **Red.Jyr 15.68 14.28 3.28 2.94 11.40 nge (Potter, 987), & Sigs ear **Red.Jyr 0.76 -10.59 2.11	0.0553 0.0374 1988), by et al. (15 Expor k 0.5011 0.3326 0.0366 0.0366 0.0366 0.1941 1988), by et al. (15 Expor k 0.0077 -0.1007	5.38 3.67 **Red./yr 39.41 28.30 3.59 8.64 17.64 **Red./yr 0.76 -10.59 2.11
NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	Tank 349, Offutt AFB, NE	Fuel Type Gasoline	11/15/1994 Spill Date 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990	6/26/1996 MW349-1 6/26/1996 MW349-1 Sample Date Locid 6/26/1996 MW349-8 6/26/1997 MW349-8 Sample Date Locid 6/23/1997 MW-349-1FP 6/23/1997 MW-349-1FP	Total Xylenes (m,p, and o) Total BTEX Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene Naphthalene Analyte Benzene Toluene	5.21547 12.98066 Mass Fraction 0.12871 1.85768 1.36119 4.39084 7.53841 Mass Fraction 1.15417 5.55556 1.54167 5.96389	C _o - C 1.3713 4.2423 -0.0612 1.5092 7.0616 C _o - C 0.0088 -0.5279 0.0329 -0.7484	0.3014 0.5007 Ghas Line k 0.2258 0.6984 -0.0101 0.2485 1.1626 Ghas Line k 0.0089 -0.5323	5,29 3,63 semi et al., 1 har 15,05 11,84 -0,77 4,21 7,96 semi et al., 1 har %Red./yr 0,76 -10,59	0.0553 0.0374 984 Expon k 0.4043 0.2090 0.0076 0.0486 0.1088 984 Expon k 0.0077 -0.1007	5.38 3.67 ential %RedJyr 33.26 18.86 -0.76 4.75 10.31 ential %RedJyr 0.76 0.76	0.4864 0.8080 AD L C _o - C 2.5713 10.8423 0.3388 3.2092 16.9616 AD L C _o - C 0.0088 -0.5279	0.3014 0.5007 Mid-Ra ittle, Inc. (1 Line k 0.4233 1.7850 0.5283 2.7925 Mid-Ra ittle, Inc. (1 Line k 0.0089 -0.5323	-7.94 1.67 3.63 3.63 ange (Potter, 987), & Sigs aar %Red.Jyr 15.68 14.28 2.94 11.40 nge (Potter, 987), & Sigs aar %Red.Jyr 0.76 -10.59	0.0553 0.0374 1988), by et al. (15 Expor k 0.5011 0.3326 0.0903 0.1941 1988), by et al. (15 Expor k 0.0077 -0.1007	5.38 3.67 **Red./yr 39.41 28.30 3.59 8.64 17.64 **Red./yr ential **Red./yr 0.76 -10.59
NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	Tank 349, Offutt AFB, NE	Fuel Type Gasoline	11/15/1994 11/15/1994 Spill Date 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/26/1996 6/26/1996 6/26/1996	6/26/1996 MW349-1 6/26/1996 MW349-1 Date Locid 6/26/1996 MW349-8 6/26/1996 MW349-1 6/26/1997 MW349-1 Date Locid 6/23/1997 MW-349-1 6/23/1997 MW-349-1 6/23/1997 MW-349-1 6/23/1997 MW-349-1 6/23/1997 MW-349-1	Total Xylenes (m,p, and o) Total BTEX Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o)	5.21547 12.98066 Mass Fraction 0.12871 1.65768 1.36119 4.39084 7.53841 Mass Fraction 1.15417 5.55556 1.54167	C _o - C 1.3713 4.2423 -0.0612 1.5092 7.0616 C _o - C 0.0088 -0.5279 0.0329	0.3014 0.5007 Ghas Line k 0.2258 0.6984 -0.0101 0.2485 1.1626 Ghas Line k 0.0089 -0.5323 0.0332 -0.7546	5.29 3.63 semi et al., 1 sar 15.05 11.84 -0.77 4.21 7.96 semi et al., 1 sar %Red.lyr 0.76 -10.59 2.11 -14.47	0.0553 0.0374 984 Expon k 0.4043 0.2090 -0.0076 0.0486 0.1088 984 Expon k 0.0077 -0.1007 -0.1007 0.0213	5.38 3.67 ential %Red.lyr 33.26 18.86 -0.76 10.31 ential %Red.lyr 0.76 -10.59 2.11 -14.48	0.4864 0.8080 AD L C _o -C 2.5713 10.8423 0.3388 3.2092 16.9616 AD L C _o -C 0.0088 -0.5279 0.0329 -0.7484	0.3014 0.5007 Mid-Ra ittle, Inc. (1 k 0.4233 1.7850 0.0558 0.5283 2.7925 Mid-Ra ittle, Inc. (1 Line k 0.0089 -0.5323 0.0332 -0.7546	-7.94 1.67 3.63 ange (Potter, 987), & Sigs aar %Red.lyr 15.68 14.28 3.28 2.94 11.40 nge (Potter, 987), & Sigs aar %Red.lyr 0.76 -10.59 2.11 -4.19	0.0553 0.0374 1988), by et al. (15 Expor k 0.5011 0.3326 0.0366 0.0903 0.1941 1988), by et al. (15 Expor k 0.0077 -0.1007 0.0213 -0.1352	5.38 3.67 **Red./yr 39.41 28.30 3.59 8.64 17.64 ***Red./yr 0.76 -10.59 2.11 -14.48
NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	Tank 349, Offutt AFB, NE	Fuel Type Gasoline	11/15/1994 Spill Date 6/1/1990 6/26/1996 6/26/1996	6/26/1996 MW349-1 6/26/1996 MW349-1 Sample Date Locid 6/26/1996 MW349-8 6/26/1997 MW349-1P 6/23/1997 MW-349-1FP 6/23/1997 MW-349-1FP 6/23/1997 MW-349-1FP 6/23/1997 MW-349-1FP 6/23/1997 MW-349-1FP	Total Xylenes (m,p, and o) Total BTEX Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX Analyte 1,2,3-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX	5.21547 12.98066 Mass Fraction 0.12871 1.65768 1.36119 4.39084 7.53841 Mass Fraction 1.15417 5.55556 1.54167 5.96389 14.21528	C _o - C 1.3713 4.2423 -0.0612 1.5092 7.0616 C _o - C 0.0088 -0.5279 0.0329 -0.7484 -1.2346	0.3014 0.5007 Ghas Line k 0.2258 0.6984 -0.0101 0.2485 1.1626 Ghas Line k 0.0089 -0.5323 0.0332 -0.7546 -1.2448	5,29 3,63 semi et al., 1 semi et al., 1 15,05 11,84 -0,77 4,21 7,96 semi et al., 1 semi et al., 1 0,76 -1,0,59 2,11 -1,4,47 -9,59	0.0553 0.0374 984 Expon k 0.4043 0.2090 -0.0076 0.0486 0.1088 984 Expon k 0.0077 -0.1007 0.0213 -0.1352 -0.0916	5.38 3.67 ential %Red./yr 33.26 18.86 -0.76 4.75 10.31 ential %Red./yr 0.76 -10.59 2.11 -14.48 -9.59	0.4864 0.8080 AD L C _o - C 2.5713 10.8423 0.3388 3.2092 16.9616 AD L C _o - C 0.0088 -0.5279 0.0329 -0.7484 -1.2346	0.3014 0.5007 Mid-Ra ittle, Inc. (1 Line k 0.4233 1.7850 0.5283 2.7925 Mid-Ra ittle, Inc. (1 Line k 0.0089 -0.5323 0.0332 -0.7546 -1.2448	-7.94 1.67 3.63 3.63 ange (Potter, 1987), & Sigsalar %Red.Jyr 15.68 14.28 2.94 11.40 nge (Potter, 1987), & Sigsalar 0.75 -10.59 2.11 -4.19 -9.59	0.0553 0.0374 1988), by et al. (15 Expor k 0.5011 0.3326 0.0306 0.0903 0.1941 1988), by et al. (15 Expor k 0.0077 -0.1007 0.0213 -0.1352 -0.0916	5.38 3.67 **RedJyr 39.41 28.30 3.59 8.64 17.64 **RedJyr 0.76 -10.59 2.11 -14.48 -9.59
NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	Tank 349, Offutt AFB, NE	Fuel Type Gasoline	11/15/1994 11/15/1994 Spill Date 6/1/1990	6/26/1996 MW349-1 6/26/1996 MW349-1 Sample Date Locid 6/26/1996 MW349-8 6/26/1997 MW349-1P 6/23/1997 MW-349-1FP	Total Xylenes (m,p, and o) Total BTEX Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene Naphthalene Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene Total Tylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene	5.21547 12.98066 Mass Fraction 0.12871 1.65768 1.36119 4.39084 7.53841 Mass Fraction 1.15417 5.55556 1.54167 5.96389 14.21528 0.47917	C _o - C 1.3713 4.2423 -0.0612 1.5092 7.0616 C _o - C 0.0088 -0.5279 0.0329 -0.7484 -1.2346 -0.4792	0.3014 0.5007 Ghas Line k 0.2258 0.6984 -0.0101 0.2485 1.1626 Ghas Line k 0.0089 -0.5323 0.0332 -0.7546 -1.2448	5.29 3.63 semi et al., 1 sar %Red.lyr 15.05 11.84 -0.77 4.21 7.96 semi et al., 1 bar %Red.lyr 0.76 -10.59 2.11 -14.47 -14.47 -9.59 ###################################	0.0553 0.0374 Expon k 0.4043 0.2090 -0.0076 0.0486 0.1088 Expon k 0.0077 -0.1007 -0.1007 -0.10213 -0.1352 -0.0916 #DIV/0!	5.38 3.67 ential %Red.lyr 33.26 18.86 -0.76 10.31 ential %Red.lyr 0.76 -10.59 2.11 14.48 -9.59 #DIV/0!	0.4864 0.8080 AD L C _o - C 2.5713 10.8423 0.3388 3.2092 16.9616 AD L C _o - C 0.0088 -0.5279 0.0329 -0.7484 -1.2346 -0.4792	0.3014 0.5007 Mid-Ra ittle, Inc. (1 Line k 0.4233 1.7850 0.0558 0.5283 2.7925 Mid-Ra ittle, Inc. (1 Line k 0.0089 -0.5323 0.0332 -0.7546 -1.2448	-7,94 1.67 3.63 ange (Potter, 1987), & Sigs 14.28 3.28 2.94 11.40 ange (Potter, 1987), & Sigs 1987 ar "Red.Jyr 0.76 -10.59 2.11 -4.19 -9.59 #DIV/0!	0.0553 0.0374 1988), by et al. (15 Expor k 0.5011 0.3326 0.0366 0.0366 0.0363 0.1941 1988), by et al. (15 Expor k 0.0077 -0.1007 -0.0213 -0.1352 -0.0916 #DIV/0!	5.38 3.67 **Red./yr 39.41 28.30 3.59 8.64 17.64 **Red./yr 0.76 -10.59 2.11 -14.48 -9.59 #DIV/0!
NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL NRMRL	Tank 349, Offutt AFB, NE	Fuel Type Gasoline	11/15/1994 11/15/1994 Spill Date 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/1/1990 6/26/1996 6/26/1996 6/26/1996 6/26/1996 6/26/1996 6/26/1996	6/26/1996 MW349-1 6/26/1996 MW349-1 Date Locid 6/26/1996 MW349-8 6/26/1996 MW349-1 6/26/1996 MW349-1 6/23/1997 MW-349-1	Total Xylenes (m,p, and o) Total BTEX Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,3,5-Trimethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene	5.21547 12.98066 Mass Fraction 0.12871 1.85768 1.36119 4.39084 7.53841 Mass Fraction 1.15417 5.55556 1.54167 5.96389 14.21528 0.47917 2.05556	C _o - C 1.3713 4.2423 -0.0612 1.5092 7.0616 C _o - C 0.0088 -0.5279 0.0329 -0.7484 -1.2346 -0.4792 -2.0556	0.3014 0.5007 Ghas Line k 0.2258 0.6984 -0.0101 0.2485 1.1626 Ghas Line k 0.0089 -0.5323 0.0332 -0.7546 -1.2448 -1.2448 -1.2448	5.29 3.63 semi et al., 1 sar 15.05 11.84 -0.77 4.21 7.96 semi et al., 1 sar %Red.lyr 0.76 -10.59 2.11 -14.47 9.59 #DIV/0! #DIV/0!	0.0553 0.0374 984 Expon k 0.4043 0.2090 -0.0076 0.0486 0.1088 984 Expon k 0.0077 -0.1007 0.0213 -0.1352 -0.0916 #DIV/0!	ential %Red.lyr 33.26 18.86 -0.76 4.75 10.31 ential %Red.lyr 0.76 -10.59 2.11 -14.48 #DIV/0! #DIV/0! #DIV/0!	0.4864 0.8080 AD L C _o - C 2.5713 10.8423 0.3388 3.2092 16.9616 AD L C _o - C 0.0088 -0.5279 0.0329 0.7484 -1.2346 -0.4792 -2.0556	0.3014 0.5007 Mid-Ra ittle, Inc. (1 k 0.4233 1.7850 0.0558 0.5283 2.7925 Mid-Ra ittle, Inc. (1 Line k 0.0089 -0.5323 0.0332 -0.7546 -1.2448 -0.4831 -0.4831	-7.94 1.67 3.63 ange (Potter, 987), & Sigs par **Red.lyr 15.68 14.28 3.28 2.94 11.40 nge (Potter, 987), & Sigs par **Red.lyr 0.76 -10.59 2.11 -4.19 -9.59 #DIV/0! #DIV/0!	0.0553 0.0374 1988), by et al. (15 Expor k 0.5011 0.3326 0.0366 0.0903 0.1941 1988), by et al. (15 Expor k 0.0077 -0.1007 0.0213 -0.1352 -0.0916 #DIV/0!	5.38 3.67 **Red./yr 39.41 28.30 3.59 8.64 17.64 ***Total Properties of the control of the cont

Mid-Range	(Potter,	1988)
-----------	----------	-------

														nge (Potter,		
		Fuel	Spill	Commis		Г		Gnas Line	semi <i>et al</i> ., 1		amétal .	AD L	ittle, Inc. (1. Line	987), & Sigs		
		Fuei	Spili	Sample				Line	ar	Expon	entiai		Line	ar	Expon	entiai
	Site Name	Type	Date	Date Locid	Analyte	Mass Fraction	C _o - C	k	%Red./yr	k	%Red./yr	C _o - C	k	%Red./vr	k	%Red./yr
NRMRL	Tank 349, Offutt AFB, NE	Gasoline	6/1/1990	6/23/1997 MW-349-6FP	Benzene	1.30886	0.1911	0.0271	1.80	0.0193	1.91	1.3911	0.1969	7.29	0.1025	9.74
NRMRL	Tank 349, Offutt AFB, NE	Gasoline	6/1/1990	6/23/1997 MW-349-6FP	Toluene	5.62327	0.2767	0.0392	0.66	0.0068	0.68	6.8767	0.9732	7.79	0.1131	10.69
NRMRL	Tank 349, Offutt AFB, NE	Gasoline	6/1/1990	6/23/1997 MW-349-6FP	Ethylbenzene	1.84211	-0.5421	-0.0767	-5.90	-0.0493	-5.06	-0.1421	-0.0201	-1.18	-0.0114	-1.14
NRMRL	Tank 349, Offutt AFB, NE	Gasoline	6/1/1990	6/23/1997 MW-349-6FP	Total Xylenes (m,p, and o)	6.05402	-0.1540	-0.0218	-0.37	-0.0036	-0.37	1.5460	0.2188	1.22	0.0322	3.17
NRMRL	Tank 349, Offutt AFB, NE	Gasoline	6/1/1990	6/23/1997 MW-349-6FP	Total BTEX	14.82825	-0.2283	-0.0323	-0.22	-0.0022	-0.22	9.6717	1.3688	5.59	0.0711	6.86
NRMRL	Tank 349, Offutt AFB, NE	Gasoline	6/1/1990	6/23/1997 MW-349-6FP	1,2,3-Trimethylbenzene	0.53601	-0.5360	-0.0759	#DIV/0!	#DIV/0!	#DIV/0!	-0.5360	-0.0759	#DIV/0!	#DIV/0!	#DIV/0!
NRMRL	Tank 349, Offutt AFB, NE	Gasoline	6/1/1990	6/23/1997 MW-349-6FP	1,2,4-Trimethylbenzene	2.17452	-2.1745	-0.3078	#DIV/0!	#DIV/0!	#DIV/0!	-2.1745	-0.3078	#DIV/0!	#DIV/0!	#DIV/0!
NRMRL	Tank 349, Offutt AFB, NE	Gasoline	6/1/1990	6/23/1997 MW-349-6FP	1,3,5-Trimethylbenzene	0.63158	-0.6316	-0.0894	#DIV/0!	#DIV/0!	#DIV/0!	-0.6316	-0.0894	#DIV/0!	#DIV/0!	#DIV/0!
NRMRL	Tank 349, Offutt AFB, NE	Gasoline	6/1/1990	6/23/1997 MW-349-6FP	Naphthalene	0.28809	0.1519	0.0215	4.89	0.0599	5.82	0.1019	0.0144	3.70	0.0429	4.20
														nge (Potter,		
						F			semi <i>et al</i> ., 1			AD L		987), & Sigs		
		Fuel	Previous Sample	Sample				Line	ar	Expon	ential		Line	ar	Expon	ential
	Site Name	Type	Date	Date Locid	Analyte	Mass Fraction	C _o - C	k	%Red./yr	k	%Red./yr	C _o - C	k	%Red./yr	k	%Red./yr
OBG	Tank 349, Offutt AFB, NE	Gasoline	6/23/1997	1/16/2002 MW-349-1FP	Benzene	0.58000	0.5742	0.1256	10.89	0.1506	13.98	0.5742	0.1256	10.89	0.1506	13.98
OBG	Tank 349, Offutt AFB, NE	Gasoline	6/23/1997	1/16/2002 MW-349-1FP	Toluene	5.80000	-0.2444	-0.0535	-0.96	-0.0094	-0.95	-0.2444	-0.0535	-0.96	-0.0094	-0.95
OBG	Tank 349, Offutt AFB, NE	Gasoline	6/23/1997	1/16/2002 MW-349-1FP	Ethylbenzene	1.70000	-0.1583	-0.0346	-2.25	-0.0214	-2.16	-0.1583	-0.0346	-2.25	-0.0214	-2.16
OBG	Tank 349, Offutt AFB, NE	Gasoline	6/23/1997	1/16/2002 MW-349-1FP	Total Xylenes (m,p, and o)	8.30000	-2.3361	-0.5112	-8.57	-0.0723	-7.50	-2.3361	-0.5112	-2.84	-0.0723	-7.50
OBG	Tank 349, Offutt AFB, NE	Gasoline	6/23/1997	1/16/2002 MW-349-1FP	Total BTEX	16.38000	-2.1647	-0.4737	-3.33	-0.0310	-3.15	-2.1647	-0.4737	-3.33	-0.0310	-3.15
OBG	Tank 349, Offutt AFB, NE	Gasoline	6/23/1997	1/16/2002 MW-349-1FP	1,2,3-Trimethylbenzene	0.65000	-0.1708	-0.0374	-7.80	-0.0667	-6.90	-0.1708	-0.0374	-7.80	-0.0667	-6.90
OBG	Tank 349, Offutt AFB, NE	Gasoline	6/23/1997	1/16/2002 MW-349-1FP	1,2,4-Trimethylbenzene	2.80000	-0.7444	-0.1629	-7.93	-0.0676	-7.00	-0.7444	-0.1629	-7.93	-0.0676	-7.00
OBG	Tank 349, Offutt AFB, NE	Gasoline	6/23/1997	1/16/2002 MW-349-1FP	1,3,5-Trimethylbenzene	0.73000	-0.1272	-0.0278	-4.62	-0.0419	-4.28	-0.1272	-0.0278	-4.62	-0.0419	-4.28
OBG	Tank 349, Offutt AFB, NE	Gasoline	6/23/1997	1/16/2002 MW-349-1FP	Naphthalene	0.37000	-0.0686	-0.0150	-4.98	-0.0449	-4.59	-0.0686	-0.0150	-4.98	-0.0449	-4.59
					•											
														nge (Potter,		
		F1	Description	0		F			semi et al., 1			AD L	ittle, Inc. (1	987), & Sigs	by et al . (19	
		Fuel	Previous Sample	Sample		Γ		Ghas Line		1984 Expon	ential	AD L		987), & Sigs		
	Site Name		Previous Sample Date		Analyte	Mass Fraction	C ₀ - C		ar				ittle, Inc. (1	987), & Sigs ear	by et al . (19	ential
OBG		Туре	Sample Date	Date Locid	Analyte Benzene	Mass Fraction	C _o - C	Line k	%Red./yr	Expone k	%Red./yr	C _o - C	ittle, Inc. (1 Line k	987), & Sigs ear %Red./yr	by et al. (19 Expon	ential %Red./yr
OBG OBG	Tank 349, Offutt AFB, NE		Sample Date 6/23/1997		Analyte Benzene Toluene	0.60000	0.7089		%Red./yr 10.69	k 0.1539	%Red./yr 14.26	C_o - C 0.7089	ittle, Inc. (1	987), & Sigs ear %Red./yr 10.69	k 0.1539	%Red./yr
OBG		Type Gasoline Gasoline	Sample Date 6/23/1997 6/23/1997	Date Locid 7/17/2002 MW-349-6FP	Benzene Toluene	0.60000 4.90000	0.7089 0.7233	k 0.1399 0.1427	%Red./yr	k 0.1539 0.0272	%Red./yr	C _o - C 0.7089 0.7233	k 0.1399 0.1427	987), & Sigs ear %Red./yr	k 0.1539 0.0272	ential %Red./yr
	Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE	Type Gasoline	Sample Date 6/23/1997	Date Locid 7/17/2002 MW-349-6FP 7/17/2002 MW-349-6FP	Benzene Toluene Ethylbenzene	0.60000	0.7089	k 0.1399	%Red./yr 10.69 2.54	k 0.1539	%Red./yr 14.26 2.68	C_o - C 0.7089	k 0.1399	987), & Sigs ear %Red./yr 10.69 2.54	k 0.1539	%Red./yr 14.26 2.68
OBG OBG	Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE	Type Gasoline Gasoline Gasoline	Sample Date 6/23/1997 6/23/1997	Date Locid 7/17/2002 MW-349-6FP 7/17/2002 MW-349-6FP 7/17/2002 MW-349-6FP	Benzene Toluene	0.60000 4.90000 1.80000	0.7089 0.7233 0.0421	k 0.1399 0.1427 0.0083	%Red./yr 10.69 2.54 0.45	k 0.1539 0.0272 0.0046	%Red./yr 14.26 2.68 0.46	C _o -C 0.7089 0.7233 0.0421	k 0.1399 0.1427 0.0083	987), & Sigs ear %Red./yr 10.69 2.54 0.45	k 0.1539 0.0272 0.0046	%Red./yr 14.26 2.68 0.46
OBG OBG OBG	Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE	Type Gasoline Gasoline Gasoline Gasoline	Sample Date 6/23/1997 6/23/1997 6/23/1997	Date Locid 7/17/2002 MW-349-6FP 7/17/2002 MW-349-6FP 7/17/2002 MW-349-6FP 7/17/2002 MW-349-6FP	Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o)	0.60000 4.90000 1.80000 7.20000	0.7089 0.7233 0.0421 -1.1460	k 0.1399 0.1427 0.0083 -0.2261	%Red./yr 10.69 2.54 0.45 -3.73	k 0.1539 0.0272 0.0046 -0.0342	%Red./yr 14.26 2.68 0.46 -3.48	C _o - C 0.7089 0.7233 0.0421 -1.1460	k 0.1399 0.1427 0.0083 -0.2261	987), & Sigs ear %Red./yr 10.69 2.54 0.45 -1.26	k 0.1539 0.0272 0.0046 -0.0342	%Red./yr 14.26 2.68 0.46 -3.48
OBG OBG OBG OBG	Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE	Type Gasoline Gasoline Gasoline Gasoline Gasoline	Sample Date 6/23/1997 6/23/1997 6/23/1997 6/23/1997	Date Locid 7/17/2002 MW-349-6FP 7/17/2002 MW-349-6FP 7/17/2002 MW-349-6FP 7/17/2002 MW-349-6FP 7/17/2002 MW-349-6FP	Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX	0.60000 4.90000 1.80000 7.20000 14.50000	0.7089 0.7233 0.0421 -1.1460 0.3283	k 0.1399 0.1427 0.0083 -0.2261 0.0648	%Red./yr 10.69 2.54 0.45 -3.73 0.44	k 0.1539 0.0272 0.0046 -0.0342 0.0044	%Red./yr 14.26 2.68 0.46 -3.48 0.44	C _o - C 0.7089 0.7233 0.0421 -1.1460 0.3283	k 0.1399 0.1427 0.0083 -0.2261 0.0648	987), & Sigs ear %Red./yr 10.69 2.54 0.45 -1.26 0.44	k 0.1539 0.0272 0.0046 -0.0342 0.0044	%Red./yr 14.26 2.68 0.46 -3.48 0.44
OBG OBG OBG OBG	Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE	Type Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline	Sample Date 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997	Date Locid 7/17/2002 MW-349-6FP 7/17/2002 MW-349-6FP 7/17/2002 MW-349-6FP 7/17/2002 MW-349-6FP 7/17/2002 MW-349-6FP 7/17/2002 MW-349-6FP	Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene	0.60000 4.90000 1.80000 7.20000 14.50000 0.58000	0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440	k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087	%Red./yr 10.69 2.54 0.45 -3.73 0.44 -1.62	k 0.1539 0.0272 0.0046 -0.0342 0.0044 -0.0156	%Red./yr 14.26 2.68 0.46 -3.48 0.44 -1.57	C _o - C 0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440	k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087	987), & Sigs ear %Red./yr 10.69 2.54 0.45 -1.26 0.44 -1.62	k 0.1539 0.0272 0.0046 -0.0342 0.0044 -0.0156	%Red./yr 14.26 2.68 0.46 -3.48 0.44 -1.57
OBG OBG OBG OBG OBG	Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE	Type Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline	Sample Date 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997	Date Locid 7/17/2002 MW-349-6FP 7/17/2002 MW-349-6FP 7/17/2002 MW-349-6FP 7/17/2002 MW-349-6FP 7/17/2002 MW-349-6FP 7/17/2002 MW-349-6FP 7/17/2002 MW-349-6FP	Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene	0.60000 4.90000 1.80000 7.20000 14.50000 0.58000 2.90000	0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440 -0.7255	k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087 -0.1431	%Red.Jyr 10.69 2.54 0.45 -3.73 0.44 -1.62 -6.58	k 0.1539 0.0272 0.0046 -0.0342 0.0044 -0.0156 -0.0568	%Red./yr 14.26 2.68 0.46 -3.48 0.44 -1.57 -5.84	C _o - C 0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440 -0.7255	k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087 -0.1431	987), & Sigs ear 10.69 2.54 0.45 -1.26 0.44 -1.62 -6.58	k 0.1539 0.0272 0.0046 -0.0342 0.0044 -0.0156 -0.0568	%Red./yr 14.26 2.68 0.46 -3.48 0.44 -1.57 -5.84
OBG OBG OBG OBG OBG OBG	Tank 349, Offutt AFB, NE	Type Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline	Sample Date 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997	Date Locid 7/17/2002 MW-349-6FP	Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	0.60000 4.90000 1.80000 7.20000 14.50000 0.58000 2.90000 0.61000	0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440 -0.7255 0.0216	k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087 -0.1431 0.0043	%Red./yr 10.69 2.54 0.45 -3.73 0.44 -1.62 -6.58 0.67	k 0.1539 0.0272 0.0046 -0.0342 0.0044 -0.0156 -0.0568 0.0069	%Red.Jyr 14.26 2.68 0.46 -3.48 0.44 -1.57 -5.84 0.68	C _o - C 0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440 -0.7255 0.0216	k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087 -0.1431 0.0043 0.0213	987), & Sigs ar %Red./yr 10.69 2.54 0.45 -1.26 0.44 -1.62 -6.58 0.67 7.40	k 0.1539 0.0272 0.0046 -0.0342 0.0044 -0.0156 -0.0568 0.0069 0.0928	%Red./yr 14.26 2.68 0.46 -3.48 0.44 -1.57 -5.84 0.68
OBG OBG OBG OBG OBG OBG	Tank 349, Offutt AFB, NE	Type Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline	Sample Date 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997	Date Locid 7/17/2002 MW-349-6FP	Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	0.60000 4.90000 1.80000 7.20000 14.50000 0.58000 2.90000 0.61000	0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440 -0.7255 0.0216	k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087 -0.1431 0.0043 0.0213	%Red./yr 10.69 2.54 0.45 -3.73 0.44 -1.62 -6.58 0.67 7.40	k 0.1539 0.0272 0.0046 -0.0342 0.0044 -0.0156 -0.0568 0.0069 0.0928	%Red.Jyr 14.26 2.68 0.46 -3.48 0.44 -1.57 -5.84 0.68	C _o - C 0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440 -0.7255 0.0216 0.1081	k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087 -0.1431 0.0043 0.0213	987), & Sigs har 10.69 2.54 0.45 -1.26 0.44 -1.62 -6.58 0.67 7.40 nge (Potter,	k 0.1539 0.0272 0.0046 -0.0342 0.0044 -0.0156 -0.0568 0.0069 0.0928	%Red./yr 14.26 2.68 0.46 -3.48 0.44 -1.57 -5.84 0.68 8.86
OBG OBG OBG OBG OBG OBG	Tank 349, Offutt AFB, NE	Type Gasoline	Sample Date 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997	Date Locid 7/17/2002 MW-349-6FP	Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	0.60000 4.90000 1.80000 7.20000 14.50000 0.58000 2.90000 0.61000	0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440 -0.7255 0.0216	k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087 -0.1431 0.0043 0.0213	%Red./yr 10.69 2.54 0.45 -3.73 0.44 -1.62 -6.58 0.67 7.40	k 0.1539 0.0272 0.0046 -0.0342 0.0044 -0.0156 -0.0568 0.0069 0.0928	%Red./yr 14.26 2.68 0.46 -3.48 0.44 -1.57 -5.84 0.68 8.86	C _o - C 0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440 -0.7255 0.0216 0.1081	k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087 -0.1431 0.0043 0.0213 Mid-Rai,ittle, Inc. (1	987), & Sigs ear "Red./yr 10.69 2.54 0.45 -1.26 0.44 -1.62 -6.58 0.67 7.40 nge (Potter, 987), & Sigs	k 0.1539 0.0272 0.0046 -0.0342 0.0044 -0.0156 -0.0568 0.0069 0.0928	%Red./yr 14.26 2.68 0.46 -3.48 0.44 -1.57 -5.84 0.68 8.86
OBG OBG OBG OBG OBG OBG	Tank 349, Offutt AFB, NE	Type Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline	Sample Date 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997	Date Locid 7/17/2002 MW-349-6FP	Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	0.60000 4.90000 1.80000 7.20000 14.50000 0.58000 2.90000 0.61000	0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440 -0.7255 0.0216	k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087 -0.1431 0.0043 0.0213	%Red./yr 10.69 2.54 0.45 -3.73 0.44 -1.62 -6.58 0.67 7.40	k 0.1539 0.0272 0.0046 -0.0342 0.0044 -0.0156 -0.0568 0.0069 0.0928	%Red./yr 14.26 2.68 0.46 -3.48 0.44 -1.57 -5.84 0.68 8.86	C _o - C 0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440 -0.7255 0.0216 0.1081	k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087 -0.1431 0.0043 0.0213	987), & Sigs ear "Red./yr 10.69 2.54 0.45 -1.26 0.44 -1.62 -6.58 0.67 7.40 nge (Potter, 987), & Sigs	k 0.1539 0.0272 0.0046 -0.0342 0.0044 -0.0156 -0.0568 0.0069 0.0928	%Red./yr 14.26 2.68 0.46 -3.48 0.44 -1.57 -5.84 0.68 8.86
OBG OBG OBG OBG OBG OBG	Tank 349, Offutt AFB, NE	Type Gasoline	Sample Date 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997	Date Locid 7/17/2002 MW-349-6FP	Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	0.60000 4.90000 1.80000 7.20000 14.50000 0.58000 2.90000 0.61000	0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440 -0.7255 0.0216	k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087 -0.1431 0.0043 0.0213	%Red./yr 10.69 2.54 0.45 -3.73 0.44 -1.62 -6.58 0.67 7.40	k 0.1539 0.0272 0.0046 -0.0342 0.0044 -0.0156 -0.0568 0.0069 0.0928	%Red./yr 14.26 2.68 0.46 -3.48 0.44 -1.57 -5.84 0.68 8.86	C _o - C 0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440 -0.7255 0.0216 0.1081	k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087 -0.1431 0.0043 0.0213 Mid-Rai,ittle, Inc. (1	987), & Sigs ear "Red./yr 10.69 2.54 0.45 -1.26 0.44 -1.62 -6.58 0.67 7.40 nge (Potter, 987), & Sigs	k 0.1539 0.0272 0.0046 -0.0342 0.0044 -0.0156 -0.0568 0.0069 0.0928	%Red./yr 14.26 2.68 0.46 -3.48 0.44 -1.57 -5.84 0.68 8.86
OBG OBG OBG OBG OBG OBG	Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE	Type Gasoline Fuel	Sample Date 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997	Date Locid 7/17/2002 MW-349-6FP	Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene	0.60000 4.90000 1.80000 7.20000 14.50000 0.58000 0.61000 0.18000	0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440 -0.7255 0.0216 0.1081	k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087 -0.1431 0.0043 0.0213	%Red./yr 10.69 2.54 0.45 -3.73 0.44 -1.62 -6.58 0.67 7.40	k 0.1539 0.0272 0.0046 -0.0342 0.0044 -0.0156 0.00568 0.0069 0.0928	%Red./yr 14.26 2.68 0.46 -3.48 0.44 -1.57 -5.84 0.68 8.86	C _o - C 0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440 -0.7255 0.0216 0.1081	k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087 -0.1431 0.0043 0.0213 Mid-Rai	987), & Sigs har 10.69 2.54 0.45 -1.26 0.44 -1.62 -6.58 0.67 7.40 has e (Potter, 987), & Sigs	by et al. (19 Expon k 0.1539 0.0272 0.0046 -0.0342 0.0044 -0.0156 -0.0568 0.0069 0.0928 1988), by et al. (19 Expon	%Red.lyr 14.26 2.68 0.46 -3.48 0.44 -1.57 -5.84 0.68 8.86
OBG OBG OBG OBG OBG OBG OBG	Tank 349, Offutt AFB, NE	Type Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline Fuel Type	Sample	Date Locid 7/17/2002 MW-349-6FP Sample Date Locid	Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Analyte	0.60000 4.90000 1.80000 7.20000 14.50000 0.58000 2.90000 0.181000 0.18000	0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440 -0.7255 0.0216 0.1081	Line k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087 -0.1431 0.0043 0.0213 Ghas Line	%Red.lyr 10.69 2.54 0.45 -3.73 0.44 -1.62 -6.58 0.67 7.40 seemi et al., 1	k 0.1539 0.0272 0.0046 -0.0342 0.0044 -0.0156 -0.0568 0.0069 0.0928	%RedJyr 14.26 2.68 0.46 -3.48 0.44 -1.57 -5.84 0.68 8.86 ential %RedJyr	C _o - C 0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440 -0.7255 0.0216 0.1081 AD L	k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087 -0.1431 0.0043 0.0213 Mid-Rai	987), & Sigs aar %Red./yr 10.69 2.54 0.45 -1.26 0.44 -1.62 -6.58 0.67 0.7,40 nge (Potter, 987), & Sigs aar %Red./yr	by et al. (19 Expon k 0.1539 0.0272 0.0046 -0.0342 0.0044 -0.0156 -0.0568 0.0069 0.0928 1988), by et al. (19 Expon	%Red./yr 14.26 2.68 0.46 -3.48 0.44 -1.57 -5.84 0.68 8.86 887) ential %Red./yr
OBG OBG OBG OBG OBG OBG OBG OBG	Tank 349, Offutt AFB, NE	Type Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline Gasoline Type Gasoline	Sample Date 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997	Date Locid 7/17/2002 MW-349-6FP	Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Analyte Benzene	0.60000 4.90000 7.20000 1.80000 7.20000 0.58000 0.58000 0.18000 0.18000 0.18000	0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440 -0.7255 0.0216 0.1081	Line k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087 -0.1431 0.0043 0.0213 Ghas Line k -0.0052	%Red.Jyr 10.69 2.54 0.45 -3.73 0.44 -1.62 -6.58 0.67 7.40 semi et al., 1 ar %Red.Jyr -4.01	k 0.1539 0.0272 0.0046 -0.0342 0.0044 -0.0156 0.0069 0.0928 Expon: k -0.0359	%Red.Jyr 14.26 2.68 0.46 -3.48 0.44 -1.57 -5.84 0.68 8.86 ential %Red.Jyr -3.66	C _o - C 0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440 -0.7255 0.0216 0.1081 AD L C _o - C -0.0313	ittle, Inc. (1 Line k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087 -0.1431 0.0043 0.0213 Mid-Raittle, Inc. (1) Line k -0.0052	987), & Sigs ar 10.69 2.54 0.45 -1.26 0.44 -1.62 -6.58 0.67 7.40 nge (Potter, 987), & Sigs ar "RedJyr -4.01	by et al. (19 Expon k 0.1539 0.0272 0.0046 -0.03542 0.0044 -0.0156 0.0069 0.0928 1988), by et al. (19 Expon k -0.0359	%Red./yr 14.26 2.68 0.46 -3.48 0.44 -1.57 -5.84 0.68 8.86 887) ential %Red./yr -3.66
OBG	Tank 349, Offutt AFB, NE	Type Gasoline	Sample Date (3/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/26/1996 6/26/1996 6/26/1996	Date Locid 7/17/2002 MW-349-6FP Sample Date Locid 7/17/2002 MW349-8 7/17/2002 MW349-8	Benzene Toluene Ethylbenzene Total Xylenes (m.p. and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Analyte Benzene Toluene	0.60000 4.90000 7.20000 1.80000 7.20000 0.58000 0.58000 0.18000 0.18000 0.18000	0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440 -0.7255 0.0216 0.1081	Line k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087 -0.1431 0.0043 0.0213 Ghas Line k -0.0052 -0.1390	%Red.Jyr 10.69 2.54 0.45 -3.73 0.44 -1.62 -6.58 0.657 7.40 seemi et al., 1 ar -4.01 -8.38	k 0.1539 0.0272 0.0046 -0.0342 0.0044 -0.0156 -0.0568 0.0069 0.0928	%Red.Jyr 14.26 2.68 0.46 -3.48 0.44 -1.57 -5.84 0.68 8.86 ential %Red.Jyr -3.66 -7.01	C _o - C 0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440 -0.7255 0.0216 0.1081 AD L C _o - C -0.0313 -0.8423	ittle, Inc. (1 Line k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087 -0.1431 0.0043 0.0213 Mid-Rai ittle, Inc. (1 Line k -0.0052 -0.1390	987), & Sigs aar %Red./yr 10.69 2.54 0.45 -1.26 0.44 -1.62 -6.58 0.67 7.40 nge (Potter, 987), & Sigs aar -4.01 -8.38	by et al. (19 Expon k 0.1539 0.0272 0.0046 -0.0342 -0.0156 -0.0568 0.0069 0.0928 1988), by et al. (19 Expon k -0.0359 -0.0678	%Red.Jyr 14.26 2.68 0.46 -3.48 0.44 -1.57 -5.84 0.68 8.86 887) ential %Red.Jyr -3.66 -7.01
OBG	Tank 349, Offutt AFB, NE	Type Gasoline	Sample Date (7/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1996 6/26/1996 6/26/1996	Date Locid 7/17/2002 MW-349-6FP Date Locid 7/17/2002 MW349-8 7/17/2002 MW349-8 7/17/2002 MW349-8 7/17/2002 MW349-8	Benzene Toluene Ethylbenzene Total Xylenes (m.p., and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Analyte Benzene Toluene Ethylbenzene	0.60000 4.90000 1.80000 7.20000 14.50000 0.58000 2.90000 0.18000 0.18000 0.16000 2.50000 1.70000	0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440 -0.7255 0.0216 0.1081 C _o - C	Line k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087 -0.1431 0.0043 0.0213 Ghas Line k -0.0052 -0.1390 -0.0559	%Red.lyr 10.69 2.54 0.45 -3.73 0.44 -1.62 -6.58 0.67 7.40 semi et al., 1 ar %Red.lyr -4.01 -8.38 -4.11	Expon- k 0.1539 0.0272 0.0046 -0.0342 0.0044 -0.0568 0.0069 0.0928 Expon- k -0.0359 -0.0678 -0.0678 -0.0678 -0.0678 -0.0676 -0.0676 -0.0678 -0	%Red.lyr 14.26 2.68 0.46 -3.48 0.44 -1.57 -5.84 0.68 8.86 ential %Red.lyr -3.66 -7.01 -3.74	C _o - C 0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440 -0.7255 0.0216 0.1081 AD L C _o - C -0.0313 -0.8423 -0.3388	ittle, Inc. (1 Line k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087 -0.1431 0.0043 0.0213 Mid-Rai ittle, Inc. (1 Line k -0.0052 -0.1399	987), & Sigs aar %Red./yr 10.69 2.54 0.45 -1.26 0.44 -1.62 -6.58 0.7 7.40 age (Potter, 987), & Sigs aar %Red./yr -4.01 -8.38 -4.11	by et al. (19 Expon k 0.1539 0.0272 0.0046 -0.03542 0.0044 -0.01568 0.0069 0.0928 1988), by et al. (19 Expon k -0.0359 -0.0678	%Red.lyr 14.26 2.68 0.46 -3.48 0.44 -1.57 -5.84 0.68 8.86 887) ential %Red.lyr -3.66 -7.01 -3.74
OBG OBG OBG OBG OBG OBG OBG OBG OBG	Tank 349, Offutt AFB, NE	Type Gasoline	Sample Date (A)23/1997 (6/23/1997 (6/23/1997 (6/23/1997 (6/23/1997 (6/23/1997 (6/23/1997 (6/23/1997 (6/23/1997 (6/26/1996 (6/26/1996 (6/26/1996	Date Locid 7/17/2002 MW-349-6FP Date Locid 7/17/2002 MW349-8 7/17/2002 MW349-8 7/17/2002 MW349-8 7/17/2002 MW349-8 7/17/2002 MW349-8 7/17/2002 MW349-8	Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o)	0.60000 4.90000 7.20000 1.80000 7.20000 0.58000 0.58000 0.18000 0.18000 0.18000 0.170000 0.170000 0.760000	0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440 -0.7255 0.0216 0.1081 C _o - C -0.0313 -0.8423 -0.3388 -3.2092	Line k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087 -0.1431 0.0043 0.0213 Ghas Line k -0.0052 -0.1390 -0.0559 -0.5595	%Red.Jyr 10.69 2.54 0.45 -3.73 0.44 -1.62 -6.58 0.67 7.40 semi et al., 1 ar %Red.Jyr -4.01 -8.38 -4.11	k 0.1539 0.0272 0.0046 -0.0342 0.0044 -0.0156 0.0069 0.0928 Expon: k -0.0359 -0.0678 -0.0367	%Red.lyr 14.26 2.68 0.46 -3.48 0.44 -1.57 -5.84 0.68 8.86 ential %Red.lyr -3.66 -7.01 -3.74 -9.48	C _o - C 0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440 -0.7255 0.0216 0.1081 AD L C _o - C -0.0313 -0.8423 -0.3388 -3.2092	ittle, Inc. (1 Line k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087 -0.1431 0.0043 0.0213 Mid-Rai, Inc. (1 Line k -0.0052 -0.1390 -0.05295	987), & Sigs ar 10.69 2.54 0.45 -1.26 0.44 -1.62 -6.58 0.67 7.40 age (Potter, 987), & Sigs ar -4.01 -8.38 -4.11 -2.94	by et al. (19 Expon k 0.1539 0.0272 0.0046 -0.0342 0.0044 -0.0156 -0.0568 0.0069 0.0928 1988), by et al. (19 Expon k -0.0359 -0.0678 -0.0367	%Red.lyr 14.26 2.68 0.46 -3.48 0.44 -1.57 -5.84 0.68 8.86 887) ential %Red.lyr -3.66 -7.01 -3.74 -9.48
OBG	Tank 349, Offutt AFB, NE	Type Gasoline	Sample Date 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/23/1997 6/26/1996 6/26/1996 6/26/1996 6/26/1996 6/26/1996	Date Locid 7/17/2002 MW-349-6FP Date Locid 7/17/2002 MW349-8 7/17/2002 MW349-8 7/17/2002 MW349-8 7/17/2002 MW349-8 7/17/2002 MW349-8 7/17/2002 MW349-8	Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX	0.60000 4.90000 1.80000 7.20000 14.50000 0.58000 2.90000 0.18000 0.18000 0.18000 1.70000 7.60000 11.96000	0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440 -0.7255 0.0216 0.1081 C _o - C -0.0313 -0.8423 -0.3388 3.2092 -4.4216	k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087 -0.1431 0.0043 0.0213 Ghas Line k -0.0052 -0.1390 -0.0559 -0.5296	%Red.lyr 10.69 2.54 0.45 -3.73 0.44 -1.62 -6.58 0.67 7.40 semi et al., 1 ar %Red.lyr -4.01 -8.38 -4.11 -12.06 -9.68	k 0.1539 0.0272 0.0046 -0.0342 0.0046 -0.01568 0.0069 0.0928 Expon: k -0.0359 -0.0678 -0.0367 -0.0905 -0.09678	%Red.Jyr 14.26 2.68 0.46 -3.48 0.44 -1.57 -5.84 0.68 8.86 ential %Red.Jyr -3.66 -7.01 -3.74 -9.48 -7.91	C _o - C 0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440 -0.7255 0.0216 0.1081 AD L C _o - C -0.0313 -0.8423 -0.3388 -3.2092 -4.4216	ittle, Inc. (1 Line k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087 -0.1431 0.0043 0.0213 Mid-Rai ittle, Inc. (1 Line k -0.0052 -0.1390 -0.0559 -0.5295 -0.7296	987), & Sigs aar %Red./yr 10.69 2.54 0.45 -1.26 0.44 -1.62 -6.58 0.67 7.40 nge (Potter, 987), & Sigs aar -4.01 -8.38 -4.11 -2.944	by et al. (19 Expon k 0.1539 0.0272 0.0046 -0.0342 0.0044 -0.0156 -0.0568 0.0069 0.0928 1988), by et al. (19 Expon k -0.0359 -0.0678 -0.0367 -0.0905 -0.0762	%Red./yr 14.26 2.68 0.46 -3.48 0.44 -1.57 -5.84 0.68 8.86 887) ential %Red./yr -3.66 -7.01 -3.74 -9.48 -7.91
OBG	Tank 349, Offutt AFB, NE	Type Gasoline	Sample Date (A23/1997 (A23/1996 (A26/1996 (A26/1996 (A26/1996 (A26/1996 (A26/1996 (A26/1996	Date Locid 7/17/2002 MW-349-6FP Sample Date Locid 7/17/2002 MW349-8	Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene	0.60000 4.90000 1.80000 7.20000 14.50000 0.58000 2.90000 0.161000 0.18000 Mass Fraction 0.16000 2.50000 1.70000 7.60000 1.96000 0.770000	0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440 -0.7255 0.0216 0.1081 C _o - C -0.0313 -0.8423 -0.3388 -3.2092 -4.4216 -0.7700	k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087 -0.1431 0.0043 0.0213 Ghas Line k -0.0052 -0.1390 -0.0559 -0.5295 -0.7296	%Red.lyr 10.69 2.54 0.45 -3.73 0.44 -1.62 -6.58 0.67 7.40 semi et al., 1 ar %Red.lyr -4.01 -8.38 -4.11 -12.06 #DIV/0!	k 0.1539 0.0272 0.0044 -0.0342 0.0056 -0.0568 0.0069 0.0928 Expone k -0.0359 -0.0678 -0.0367 -0.0905 -0.0762 #DIV/0!	%Red.lyr 14.26 2.68 0.46 -3.48 0.44 -1.57 -5.84 0.68 8.86 ential %Red.lyr -3.66 -7.01 -3.74 -9.48 -7.91 #DIV/0!	C _o - C 0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440 -0.7255 0.0216 0.1081 AD L C _o - C -0.0313 -0.8423 -0.3388 -3.2092 -4.4216 -0.7700	ittle, Inc. (1 Line k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087 -0.1431 0.0043 0.0213 Mid-Rai ittle, Inc. (1 Line k -0.0052 -0.1390 -0.5295 -0.5295	987), & Sigs ar 10.69 2.54 0.45 -1.26 0.44 -1.62 -6.58 0.67 7.40 nge (Potter, 987), & Sigs ar %Red.Jyr -4.01 -8.38 -4.11 -2.94 #DIV/06	by et al. (19 Expon k 0.1539 0.0272 0.0046 -0.03542 0.0044 -0.01568 0.0069 0.0928 1988), by et al. (19 Expon k -0.0359 -0.0678 -0.09678 -0.0905 -0.0762 #DIV/0!	%Red.lyr 14.26 2.68 0.46 -3.48 0.44 -1.57 -5.84 0.68 8.86 887) ential %Red.lyr -3.66 -7.01 -3.74 -9.48 -7.91 #DIV/0!
OBG	Tank 349, Offutt AFB, NE	Type Gasoline	Sample Date (A)23/1997 (A)23/1996 (A)26/1996	Date Locid 7/17/2002 MW-349-6FP Date Locid 7/17/2002 MW349-8	Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Analyte Benzene Toluene Ethylbenzene Total Xylenes (m,p, and o) Total BTEX 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene	0.60000 4.90000 7.20000 1.80000 7.20000 0.58000 0.58000 0.18000 0.18000 0.18000 0.18000 1.70000 1.70000 0.77000 0.77000 0.310000	0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440 -0.7255 0.0216 0.1081 C _o - C -0.0313 -0.8423 -0.3388 -3.2092 -4.4216 -0.7700 -3.1000	k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087 -0.1431 0.0043 0.0213 Ghas Line k -0.0052 -0.1390 -0.0559 -0.7296 -0.1271 -0.5115	%Red.Jyr 10.69 2.54 0.45 -3.73 0.44 -1.62 -6.58 0.67 7.40 semi et al., 1 ar %Red.Jyr -4.01 -8.38 -4.11 -12.06 #DIV/0! #DIV/0!	k 0.1539 0.0272 0.0046 -0.0342 0.0044 -0.0156 -0.0568 0.0069 0.0928 Expon: k -0.0359 -0.0678 -0.0367 -0.0905 -0.0762 #DIV/0!	%Red.lyr 14.26 2.68 0.46 -3.48 0.44 -1.57 -5.84 0.68 8.86 ential %Red.lyr -3.66 -7.01 -3.74 -9.48 #DIV/0! #DIV/0!	C _o - C 0.7089 0.7233 0.0421 -1.1460 0.3283 -0.0440 -0.7255 0.0216 0.1081 AD L C _o - C -0.0313 -0.8423 -0.3388 -3.2092 -4.4216 -0.7700 -3.1000	ittle, Inc. (1 Line k 0.1399 0.1427 0.0083 -0.2261 0.0648 -0.0087 -0.1431 0.0043 0.0213 Mid-Raittle, Inc. (1 Line k -0.052 -0.1390 -0.0559 -0.7296 -0.1271 -0.5115	987), & Sigs ar 10.69 2.54 0.45 -1.26 0.44 -1.62 -6.58 6.68 7.40 age (Potter, 987), & Sigs ar 4.01 -8.38 -4.11 -2.94 #DIV/0! #DIV/0!	by et al. (19 Expon k 0.1539 0.0272 0.0046 -0.0342 0.0044 -0.0156 -0.0568 0.0099 Expon k -0.0359 -0.0678 -0.0367 -0.0968 -0.0762 #DIV/0!	%Red.lyr 14.26 2.68 0.46 -3.48 -1.57 -5.84 0.68 8.86 887) wential %Red.lyr -3.66 -7.01 -3.74 -9.48 -7.91 #DIV/0!

Offutt AFB, Tank 349 OBG DATA

Sample	3
--------	---

Location	Date	Time (yrs)	Benzene	Toluene	Ethylbenzene	m-Xvlene	o-Xylene	p-Xylene	m,p-xylenes T	otal Xvlen T	otal BTFX
MW349-1	6/1/1990	(3)			•	Aylono	o Aylono	p /tylono	m,p xylonoc i	0.0000	14.6000
	11/15/1994	4.46	1.1220	5.5691	1.3957					5.7019	13.7886
	6/26/1996	6.07	1.1630	5.0276	1.5746					5.2155	12.9807
	6/23/1997	7.07	1.1542	5.5556	1.5417					5.9639	14.2153
	1/16/2002	11.64	0.5800	5.8000	1.7000					8.3000	16.3800
linear											
Co			1.5393	5.6311	1.2937	#VALUE!	#VALUE!	#VALUE!	#VALUE!	1.0436	13.5225
Predicted C - lat	est sample date)	0.6727	5.5105	1.7090	#VALUE!	#VALUE!	#VALUE!	#VALUE!	8.9889	15.2546
linear rate const	ant (k) (slope)		0.0745	0.0104	-0.0357	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	-0.6828	-0.1489
average yearly r	eduction (%)		4.84	0.18	-2.76	#VALUE!	#VALUE!	#VALUE!	#VALUE!	-65.43	-1.10

linear summary stats

	Benzene		Toluene		Ethylbe	nzene	Total X	(ylenes	Total BTEX		
Г	-0.0745	1.5393	-0.0104	5.6311	0.0357	1.2937	0.6828	1.0436	0.1489	13.5225	
	0.0142	0.0989	0.0458	0.3190	0.0059	0.0413	0.1398	0.9730	0.1500	1.0441	
	0.9016	0.1198	0.0168	0.3867	0.9234	0.0501	0.8883	1.1795	0.2471	1.2657	
	27	3	0	3	36	3	24	3	1	3	
	0.3946	0.0431	0.0076	0.4485	0.0906	0.0075	33.1776	4.1740	1.5769	4.8057	

exponential	Benzene	Toluene	Ethylbenzene	m-Xylene	o-Xylene	p-Xylene	m,p-xylenes	Total Xylen	Total BTEX
Co	1.6552	5.6210	1.3002	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#NUM!	13.5633
exponential rate constant (k)	0.0769	0.0018	-0.0240	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#NUM!	-0.0096
% reduction/year	7.41	0.18	-2.43	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#NUM!	-0.97

	Benzene Toluene		uene	Ethylbe	enzene	Total	Xylenes	Total BTEX		
ſ	0.9259	1.6552	0.9982	5.6210	1.0243	1.3002	#NUM!	#NUM!	1.0097	13.5633
	0.0196	0.1363	0.0084	0.0587	0.0041	0.0283	#NUM!	#NUM!	0.0104	0.0721
	0.8372	0.1653	0.0150	0.0712	0.9207	0.0343	#NUM!	#NUM!	0.2239	0.0874
	15	3	0	3	35	3	#NUM!	#NUM!	1	3
	0.4212	0.0819	0.0002	0.0152	0.0409	0.0035	#NUM!	#NUM!	0.0066	0.0229
		0.5039		1.7265		0.2625		#NUM!		2.6074

Offutt AFB, Tank 349 OBG DATA

Location	Date	Time (yrs)	Benzene	Toluene	Ethylbenzene	m-Xylene	o-Xylene	p-Xylene	m,p-xylenes T	otal Xylen T	otal BTEX
MW349-6	6/1/1990	0.00	1.5000	5.9000	1.3000					5.9000	14.6000
	6/23/1997	7.07	1.3089	5.6233	1.8421					6.0540	14.8283
	7/17/2002	12.13	0.6000	4.9000	1.8000					4.9000	14.5000
linear											
Co			1.5919	5.9843	1.3693	#VALUE!	#VALUE!	#VALUE!	#VALUE!	6.1032	14.6791
Predicted C - la	itest sample date	:	0.7281	5.0176	1.8965	#VALUE!	#VALUE!	#VALUE!	#VALUE!	5.1833	14.6102
linear rate cons	tant (k) (slope)		0.0712	0.0797	-0.0435	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	0.0758	0.0057
average yearly	reduction (%)		4.47	1.33	-3.17	#VALUE!	#VALUE!	#VALUE!	#VALUE!	1.24	0.04

linear summary stats

Benzene		Toluene		Ethylbe	nzene	Total X	(ylenes	Total	BTEX
-0.0712	1.5919	-0.0797	5.9843	0.0435	1.3693	-0.0758	6.1032	-0.0057	14.6791
0.0314	0.2545	0.0288	0.2336	0.0237	0.1919	0.0694	0.5630	0.0270	0.2190
0.8371	0.2706	0.8843	0.2484	0.7712	0.2040	0.5438	0.5985	0.0422	0.2329
5	1	8	1	3	1	1	1	0	1
0.3764	0.0732	0.4715	0.0617	0.1403	0.0416	0.4270	0.3582	0.0024	0.0542

exponential	Benzene	Toluene	Ethylbenzene	m-Xylene	o-Xylene	p-Xylene	m,p-xylenes	Total Xylen T	Total BTEX
Co	1.6738	5.9987	1.3583	#VALUE!	#VALUE!	#VALUE!	#VALUE!	6.1221	14.6788
exponential rate constant (k)	0.0720	0.0148	-0.0282	#VALUE!	#VALUE!	#VALUE!	#VALUE!	0.0141	0.0004
% reduction/year	6.94	1.47	-2.86	#VALUE!	#VALUE!	#VALUE!	#VALUE!	1.40	0.04

Benzene		Tol	uene	Ethylb	enzene	Total	Xylenes	Tota	IBTEX
0.9306	1.6738	0.9853	5.9987	1.0286	1.3583	0.9860	6.1221	0.9996	14.6788
0.0375	0.3037	0.0057	0.0460	0.0150	0.1216	0.0126	0.1024	0.0018	0.0149
0.7867	0.3229	0.8716	0.0489	0.7800	0.1293	0.5550	0.1088	0.0433	0.0159
4	1	7	1	4	1	1	1	0	1
0.3846	0.1043	0.0162	0.0024	0.0593	0.0167	0.0148	0.0118	0.0000	0.0003
	0.5151		1.7915		0.3063		1.8119		2.6864

Offutt AFB, Tank 349 OBG DATA

Sample	
--------	--

Location	Date	Time (yrs)	Benzene	Toluene	Ethylbenzene	m-Xylene	o-Xylene	p-Xylene	m,p-xylenes	Total Xylen T	Total BTEX
MW349-8	6/1/1990	0.00	1.5000	5.9000	1.3000					5.9000	14.6000
	6/26/1996	6.07	0.1287	1.6577	1.3612					4.3908	7.5384
	7/17/2002	12.13	0.1600	2.5000	1.7000					7.6000	11.9600
linear											
Co			1.3369	5.2756	1.2526	#VALUE!	#VALUE!	#VALUE!	#VALUE!	5.2103	13.0754
Predicted C -	latest sample date	;	-0.0674	1.6296	1.6339	#VALUE!	#VALUE!	#VALUE!	#VALUE!	6.6385	9.8347
linear rate cor	stant (k) (slope)		0.1157	0.3005	-0.0314	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	-0.1177	0.2671
average yearl	y reduction (%)		8.66	5.70	-2.51	#VALUE!	#VALUE!	#VALUE!	#VALUE!	-2.26	2.04

linear summary stats

Benz	ene	Toluene		Ethylbe	nzene	Total >	(ylenes	Total	BTEX
-0.1105	1.2668	-0.2804	5.0542	0.0330	1.2537	0.1400	5.1142	-0.2179	12.6888
0.0667	0.5223	0.2417	1.8939	0.0132	0.1037	0.2246	1.7595	0.5462	4.2794
0.7331	0.5720	0.5736	2.0742	0.8612	0.1135	0.2797	1.9270	0.1373	4.6868
3	1	1	1	6	1	0	1	0	1
0.8985	0.3272	5.7865	4.3024	0.0800	0.0129	1.4420	3.7135	3.4962	21.9658

exponential	Benzene	Toluene	Ethylbenzene	m-Xylene	o-Xylene	p-Xylene	m,p-xylenes	Total Xylen T	Total BTEX
Co	1.0913	4.7711	1.2611	#VALUE!	#VALUE!	#VALUE!	#VALUE!	5.2212	12.5617
exponential rate constant (k)	0.1948	0.0777	-0.0211	#VALUE!	#VALUE!	#VALUE!	#VALUE!	-0.0169	0.0213
% reduction/year	17.70	7.47	' -2.13	#VALUE!	#VALUE!	#VALUE!	#VALUE!	-1.70	2.11

	Benzene		To	luene	Ethylb	enzene	Total	Xylenes	Total BTEX		
Γ	0.8315	0.9616	0.9316	4.4610	1.0223	1.2623	1.0211	5.1263	0.9837	12.1117	
	0.1271	0.9956	0.0799	0.6260	0.0084	0.0658	0.0402	0.3147	0.0534	0.4184	
	0.6783	1.0904	0.4399	0.6856	0.8737	0.0721	0.2120	0.3447	0.0869	0.4582	
	2	1	1	1	7	1	0	1	0	1	
	2.5067	1.1889	0.3692	0.4701	0.0360	0.0052	0.0320	0.1188	0.0200	0.2099	
		-0.0392		1.4954		0.2330		1.6344		2.4942	

APPENDIX C-2 $\mathbf{K}_{\mathrm{fw}} \ \mathbf{CALCULATIONS}$

Event	Lab Code	Site Name	Fuel Type	Spill Date	Date	FPLocid	Analyte	Kfw	GW Results	GW UNITS	FP Results	Units
	EAL	Tank 349, Offutt AFB, NE	Gasoline			MW-349-6FP	Benzene	280	50000		14000000	
	EAL	Tank 349, Offutt AFB, NE	Gasoline			OFMW349-6	Benzene	341	8800	ug/L	3000000	
	OBG	Tank 349, Offutt AFB, NE	Gasoline			MW-349-1	Benzene	431	13000		5600000	
	OBG	Tank 349, Offutt AFB, NE	Gasoline			MW-349-6	Benzene	481	16000		7700000	
3	OBG	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	07/17/02	MW-349-8	Benzene	42	4500	ug/L	190000	ug/L
							Analyte avg kfw	383				
	EAL	Tank 349, Offutt AFB, NE	Gasoline			MW-349-6FP	Toluene	788	66000		52000000	
	EAL	Tank 349, Offutt AFB, NE	Gasoline			OFMW349-6	Toluene	1,500	20000		30000000	
	OBG	Tank 349, Offutt AFB, NE	Gasoline			MW-349-1	Toluene	2,100	30000		63000000	
	OBG	Tank 349, Offutt AFB, NE	Gasoline			MW-349-6	Toluene	1,571	35000		55000000	
3	OBG	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	07/17/02	MW-349-8	Toluene	1,316	19000	ug/L	25000000	ug/L
-							Analyte avg kfw	1,455				
1	EAL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	06/23/97	MW-349-6FP	Ethylbenzene	1,200	10000	ug/l	12000000	ua/l
	EAL	Tank 349, Offutt AFB, NE	Gasoline			OFMW349-6	Ethylbenzene	6,667	1800		12000000	
	OBG	Tank 349, Offutt AFB, NE	Gasoline			MW-349-1	Ethylbenzene	10,476	2100		22000000	
	OBG	Tank 349, Offutt AFB, NE	Gasoline			MW-349-6	Ethylbenzene	5,000	3400		17000000	
	OBG	Tank 349, Offutt AFB, NE	Gasoline			MW-349-8	Ethylbenzene	4,412	3400		15000000	
	ОВО	Tank 549, Ondit Al B, NE	Gasoniie	00/01/90	01/11/02	10100-349-0	Analyte avg kfw	5,551	3400	ug/L	13000000	ug/L
							Allalyte avg kiw	3,331				
1	EAL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	06/23/97	MW-349-6FP	Total Xylenes (m,p, and o)	1,267	45000	ug/L	57000000	ua/L
	OBG	Tank 349, Offutt AFB, NE	Gasoline			MW-349-1	Total Xylenes (m,p, and o)	8,333	12000		10000000	
	OBG	Tank 349, Offutt AFB, NE	Gasoline			MW-349-6	Total Xylenes (m,p, and o)	4,813	16000		77000000	
	OBG	Tank 349, Offutt AFB, NE	Gasoline			MW-349-8	Total Xylenes (m,p, and o)	4,063	16000		65000000	
							Analyte avg kfw	4,619		-9		3
							, ,	,				
1	EAL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	10/27/98	OFMW349-6	o-Xylene	4,857	3500	ug/L	17000000	ug/L
3	OBG	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	01/16/02	MW-349-1	o-Xylene	6,857	3500		24000000	ug/L
3	OBG	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	07/17/02	MW-349-6	o-Xylene	4,043	4700	ug/L	19000000	ug/L
3	OBG	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	07/17/02	MW-349-8	o-Xylene	3,696	4600	ug/L	17000000	ug/L
							Analyte avg kfw	4,863				
	EAL	Tank 349, Offutt AFB, NE	Gasoline			OFMW349-6	m,p-Xylene	6,727	5500		37000000	
	OBG	Tank 349, Offutt AFB, NE	Gasoline			MW-349-1	m,p-Xylene	9,048	8400		76000000	
	OBG	Tank 349, Offutt AFB, NE	Gasoline			MW-349-6	m,p-Xylene	5,182	11000		57000000	
3	OBG	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	07/17/02	MW-349-8	m,p-Xylene	4,364	11000	ug/L	48000000	ug/L
							Analyte avg kfw	6,330				
L	ODC	Table 240, Office AED NE	Casalina	00/04/00	04/40/00	MM/ 240 4	a a a la tha la a a	10.000	2000		20000000	//
	OBG OBG	Tank 349, Offutt AFB, NE Tank 349, Offutt AFB, NE	Gasoline			MW-349-1 MW-349-6	naphthalene	10,000	2000		20000000	
	OBG	Tank 349, Offutt AFB, NE	Gasoline			MW-349-8	naphthalene	4,796 5,745		ug/L	4700000 5400000	ug/L
3	OBG	Tank 349, Offull AFB, NE	Gasoline	06/01/90	07/17/02	IVIVV-349-8	naphthalene Analyte avg kfw	6,847	940	ug/L	5400000	ug/L
							Analyte avg kiw	0,047				-
2	EAL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	03/11/98	SH98-1610-2	Benzene	217	6000	ug/l	1300000	ua/l
	EAL	Bldg 1610, Shaw AFB, SC	JP-4			SHMW1610-2	Benzene	265	10000		2650000	
	OBG	Bldg 1610, Shaw AFB, SC	JP-4			SHMW1610-1	Benzene	409	2300		940000	ug/L
	OBG	Bldg 1610, Shaw AFB, SC	JP-4			SHMW1610-2	Benzene	265	3700		980000	
	OBG	Bldg 1610, Shaw AFB, SC	JP-4			SHMW1610-3	Benzene	192	5000		960000	
	OBG	Bldg 1610, Shaw AFB, SC	JP-4			SHMW1610-22	Benzene	230	4300		990000	
			J. 1	00.01.07	3 10/0Z		Analyte avg kfw	263	1000	-3	000000	3
							- , , J	_50				1
2	EAL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	03/11/98	SH98-1610-2	Toluene	789	3800	ug/L	3000000	ug/L
	EAL	Bldg 1610, Shaw AFB, SC	JP-4			SHMW1610-2	Toluene	946	6070	ug/L	5740000	ug/L
	OBG	Bldg 1610, Shaw AFB, SC	JP-4			SHMW1610-1	Toluene	1,133	3000	ug/L	3400000	ug/L
3	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	07/18/02	SHMW1610-2	Toluene	967	3000	ug/L	2900000	ug/L

	Lab Code		Fuel Type	Spill Date	Date	FPLocid	Analyte	Kfw	GW Results				Units
	OBG	Bldg 1610, Shaw AFB, SC	JP-4			SHMW1610-3	Toluene	1,000	2900	ug/L		2900000	
3	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	07/18/02	SHMW1610-22	Toluene	721	4300	ug/L	3	3100000	ug/L
							Analyte avg kfw	926					
	EAL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/04	02/11/09	SH98-1610-2	Ethylbenzene	3,415	410	ua/I		1400000	/!
	EAL	Bldg 1610, Shaw AFB, SC	JP-4 JP-4			SHMW1610-2	Ethylbenzene	4,060		ug/L ug/L		1770000	
	OBG	Bldg 1610, Shaw AFB, SC	JP-4 JP-4			SHMW1610-2 SHMW1610-1	Ethylbenzene	4,060		ug/L ug/L		1500000	
	OBG	Bldg 1610, Shaw AFB, SC	JP-4 JP-4			SHMW1610-1	Ethylbenzene	3,421		ug/L ug/L		1300000	
3	OBG	Bldg 1610, Shaw AFB, SC	JP-4			SHMW1610-3	Ethylbenzene	4,000		ug/L ug/L		1400000	ug/L
3	OBG	Bldg 1610, Shaw AFB, SC	JP-4			SHMW1610-22	Ethylbenzene	1,806		ug/L		1300000	ug/L
	ОВО	Bldg 1010, Shaw Al B, 30	31 -4	00/01/34	01/10/02	311111111111111111111111111111111111111	Analyte avg kfw	3,565	720	ug/L		1300000	ug/L
							raidiyis arg ian	0,000					
2	EAL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	03/11/98	SH98-1610-2	o-Xylene	2,583	1200	ug/L	3	3100000	ug/L
1	EAL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	03/06/97	SHMW1610-2	o-Xylene	2,837	1230	ug/L	3	3490000	ug/L
3	OBG	Bldg 1610, Shaw AFB, SC	JP-4			SHMW1610-1	o-Xylene	1,000	1300			1300000	ug/L
3	OBG	Bldg 1610, Shaw AFB, SC	JP-4			SHMW1610-2	o-Xylene	769	1300			1000000	ua/L
	OBG	Bldg 1610, Shaw AFB, SC	JP-4			SHMW1610-3	o-Xylene	1,000	1200			1200000	
	OBG	Bldg 1610, Shaw AFB, SC	JP-4			SHMW1610-22	o-Xylene	542		ug/L		1300000	
							Analyte avg kfw	1,455					
	EAL	Bldg 1610, Shaw AFB, SC	JP-4			SH98-1610-2	m,p-Xylene	3,105	1900			5900000	
	EAL	Bldg 1610, Shaw AFB, SC	JP-4			SHMW1610-2	m,p-Xylene	3,436	2180			7490000	
	OBG	Bldg 1610, Shaw AFB, SC	JP-4			SHMW1610-1	m,p-Xylene	4,053	1900			7700000	
	OBG	Bldg 1610, Shaw AFB, SC	JP-4			SHMW1610-2	m,p-Xylene	3,571	2100			7500000	
	OBG	Bldg 1610, Shaw AFB, SC	JP-4			SHMW1610-3	m,p-Xylene	3,444	1800	ug/L		5200000	
3	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	07/18/02	SHMW1610-22	m,p-Xylene	1,667	3900	ug/L	6	5500000	ug/L
							Analyte avg kfw	3,213					
	EAL	Bldg 1610, Shaw AFB, SC	JP-4			SH98-1610-2	Total Xylenes (m,p, and o)	2,903	3100			9000000	
	EAL	Bldg 1610, Shaw AFB, SC	JP-4			SHMW1610-2	Total Xylenes (m,p, and o)	3,220	3410		10	0980000	ug/L
	OBG	Bldg 1610, Shaw AFB, SC	JP-4			SHMW1610-1	Total Xylenes (m,p, and o)	2,813	3200			9000000	
	OBG	Bldg 1610, Shaw AFB, SC	JP-4			SHMW1610-2	Total Xylenes (m,p, and o)	2,500	3400			3500000	
	OBG	Bldg 1610, Shaw AFB, SC	JP-4			SHMW1610-3	Total Xylenes (m,p, and o)	2,467	3000			7400000	
3	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	07/18/02	SHMW1610-22	Total Xylenes (m,p, and o)	1,238	6300	ug/L		7800000	ug/L
							Analyte avg kfw	2,523					
4	EAL	Dinalina I and Cita Minuta Danah AED Co	ID 4	04/04/04	03/04/97	NADNAVA/OL	Danner	203	1010	//		244000	
	OBG	Pipeline Leak Site, Myrtle Beach AFB, So Pipeline Leak Site, Myrtle Beach AFB, So			03/04/97		Benzene Benzene	908	1040	ug/L ug/L		211000 890000	ug/L
	OBG	Pipeline Leak Site, Myrtle Beach AFB, St.				MBMW24	Benzene	821		ug/L ug/L		320000	
	OBG	Fipeline Leak Site, Myrtie Beach AFB, St	JF- 4	01/01/61	07/25/01	IVIDIVIVVZ4	Analyte avg kfw	644	390	ug/L		320000	ug/L
							Analyte avg kiw	044					
1	EAL	Pipeline Leak Site, Myrtle Beach AFB, So	IP_4	01/01/81	03/04/97	MRMW8I	Toluene	1,508	5	ug/L		7540	ua/l
	OBG	Pipeline Leak Site, Myrtle Beach AFB, So			07/25/01		Toluene	56.000		ug/L	U	1400000	ug/L
	OBG	Pipeline Leak Site, Myrtle Beach AFB, So				MBMW24	Toluene	187,500		ug/L		1500000	
	ОВО	Tipeline Leak Oile, Myrtie Beach Al B, Ok	01 -4	01/01/01	01123/01	IVIDIVIVVZ-T	Analyte avg kfw	1,508	0	ug/L	0	1000000	ug/L
							raidiyis arg ian	1,000					
	EAL	Pipeline Leak Site, Myrtle Beach AFB, So			03/04/97		Ethylbenzene	3,553		ug/L		1830000	
	OBG	Pipeline Leak Site, Myrtle Beach AFB, So	JP-4		07/25/01		Ethylbenzene	3,818	550	ug/L		2100000	
	OBG	Pipeline Leak Site, Myrtle Beach AFB, So	JP-4	01/01/81	07/25/01	MBMW24	Ethylbenzene	6,667	240	ug/L		1600000	ug/L
							Analyte avg kfw	4,679				-	
1	EAL	Pipeline Leak Site, Myrtle Beach AFB, So			03/04/97		o-Xylene	13,909		ug/L		153000	
	OBG	Pipeline Leak Site, Myrtle Beach AFB, So			07/25/01		o-Xylene	2,680		ug/L	U	67000	
	OBG	Pipeline Leak Site, Myrtle Beach AFB, St	JP-4	01/01/81	07/25/01	MBMW24	o-Xylene	16,333	6	ug/L	J	98000	ug/L
							Analyte avg kfw	10,974					<u> </u>

Event	Lab Code	Site Name	Fuel Type	Spill Date	Date	FPLocid	Analyte	Kfw	GW Results	GW UNITS	FP Results	Units
1	EAL	Pipeline Leak Site, Myrtle Beach AFB, So	JP-4	01/01/81	03/04/97	MBMW8I	m,p-Xylene	3,569	1740		6210000	0 ug/L
	OBG	Pipeline Leak Site, Myrtle Beach AFB, So	JP-4	01/01/81	07/25/01	MBMW8I	m,p-Xylene	3,125	480	ug/L	1500000	0 ug/L
	OBG	Pipeline Leak Site, Myrtle Beach AFB, So	JP-4	01/01/81	07/25/01	MBMW24	m,p-Xylene	6,667	75	ug/L	500000	
							Analyte avg kfw	4,454				
1	EAL	Pipeline Leak Site, Myrtle Beach AFB, St			03/04/97		Total Xylenes (m,p, and o)	3,663	1782		6528000	
	OBG	Pipeline Leak Site, Myrtle Beach AFB, St			07/25/01		Total Xylenes (m,p, and o)	3,333		ug/L	1600000	
	OBG	Pipeline Leak Site, Myrtle Beach AFB, St	JP-4	01/01/81	07/25/01	MBMW24	Total Xylenes (m,p, and o)	7,531	81	ug/L	610000	0 ug/L
							Analyte avg kfw	4,842				
	OBG	Pipeline Leak Site, Myrtle Beach AFB, So			07/25/01		naphthalene	1,366		ug/L	560000	
	OBG	Pipeline Leak Site, Myrtle Beach AFB, So	JP-4	01/01/81	07/25/01	MBMW24	naphthalene	3,415	410	ug/L	1400000	0 ug/L
							Analyte avg kfw	2,390				
	EAL	DFSP-Charleston, Tank 1 Area, Hanaha			05/17/97		Benzene	11		ug/L		5 ug/L
3	EAL	DFSP-Charleston, Tank 1 Area, Hanaha				CH-MW-103	Benzene	5		ug/L		5 ug/L
	OBG	DFSP-Charleston, Tank 1 Area, Hanahar				CH-MW-103	Benzene	6,500	100	ug/L	U 650000	
	OBG	DFSP-Charleston, Tank 1 Area, Hanaha				CH-MW-108	Benzene	7,600		- 3	U 190000	
	OBG	DFSP-Charleston, Tank 1 Area, Hanaha	JP-4	10/01/75	02/07/02	CH-EW-6	Benzene	12,000	20	ug/L	U 240000	0 ug/L
							Analyte avg kfw					
		DECD 01 1 1 T 1 1 1 1	ID 4	10/01/75	05/43/03	011 5140	T.	4.050			105	
	EAL	DFSP-Charleston, Tank 1 Area, Hanahai			05/17/97		Toluene	1,350		ug/L		0 ug/L
3	EAL	DFSP-Charleston, Tank 1 Area, Hanahar				CH-MW-103	Toluene	1,020		ug/L	204000	
	OBG	DFSP-Charleston, Tank 1 Area, Hanahar				CH-MW-103	Toluene	828	2900		2400000	
	OBG	DFSP-Charleston, Tank 1 Area, Hanaha				CH-MW-108	Toluene	7,600		ug/L	U 190000	
	OBG	DFSP-Charleston, Tank 1 Area, Hanaha	JP-4	10/01/75	02/07/02	CH-EW-6	Toluene	12,000	20	ug/L	U 240000) ug/L
							Analyte avg kfw	1,066				
	E 4.1	DEOD Objects Test 4 Asset Health	ID 4	40/04/75	05/47/07	OLI EMO	Eth. III.	4.005	40		0400	2
	EAL EAL	DFSP-Charleston, Tank 1 Area, Hanahai DFSP-Charleston, Tank 1 Area, Hanahai			05/17/97	CH-EVV6 CH-MW-103	Ethylbenzene Ethylbenzene	4,805 3,692		ug/L ug/L	91300 960000	
3							,				2200000	
	OBG	DFSP-Charleston, Tank 1 Area, Hanahai				CH-MW-103	Ethylbenzene	3,729		ug/L		
	OBG	DFSP-Charleston, Tank 1 Area, Hanahai				CH-MW-108	Ethylbenzene	4,444		ug/L	200000	
	OBG	DFSP-Charleston, Tank 1 Area, Hanaha	JP-4	10/01/75	02/07/02	CH-EW-6	Ethylbenzene	3,846 4,103	130	ug/L	500000	J ug/L
							Analyte avg kfw	4,103				
	OBG	DFSP-Charleston, Tank 1 Area, Hanaha	ID 4	10/01/75	02/07/02	CH-MW-103	o-Xylenes	2,556	000	ug/L	230000)a/l
	OBG	DFSP-Charleston, Tank 1 Area, Hanaha				CH-MW-108	o-Xylenes	3,455	900	ug/L ug/L	190000	
	OBG	DFSP-Charleston, Tank 1 Area, Hanahai				CH-EW-6	o-Xylenes	12,000			U 240000	
	OBG	DESE-Chanesion, Tank T Area, Hariana	JP-4	10/01/75	02/07/02	CH-EW-0	Analyte avg kfw	3,005	20	ug/L	240000	J ug/L
							Allalyte avg kiw	3,005				
	OBG	DFSP-Charleston, Tank 1 Area, Hanaha	ID 4	10/01/75	02/07/02	CH-MW-103	m,p-Xylenes	3,615	2600	ug/l	940000) ua/l
	OBG	DFSP-Charleston, Tank 1 Area, Hanaha				CH-MW-108	m,p-Xylenes	6,500		ug/L ug/L	260000	
	OBG	DFSP-Charleston, Tank 1 Area, Hanahai				CH-EW-6	m,p-Xylenes	3,636		ug/L	1600000	
	OBO	Di Gi -Gilaneston, Tank i Area, Flanana	01 -4	10/01/13	02/01/02	OII-LW-0	Analyte avg kfw	4,584	770	ug/L	1000000	J ug/L
							Analyte avg kiw	4,504				
3	EAL	DFSP-Charleston, Tank 1 Area, Hanaha	JP-4	10/01/75	05/17/97	CH-EW6	Total Xylenes (m,p, and o)	24,706	85	ug/L	2100000) ua/l
	EAL	DFSP-Charleston, Tank 1 Area, Hanahai				CH-MW-103	Total Xylenes (m,p, and o)	3,600	1500		540000	
	OBG	DFSP-Charleston, Tank 1 Area, Hanahai				CH-MW-103	Total Xylenes (m,p, and o)	3,429	3500		12000000	
	OBG	DFSP-Charleston, Tank 1 Area, Hanahai				CH-MW-108	Total Xylenes (m,p, and o)	2,737		ug/L	260000) ug/L
	OBG	DFSP-Charleston, Tank 1 Area, Hanahar				CH-EW-6	Total Xylenes (m,p, and o)	3,636		ug/L	1600000	
	050	Di Gi Gilanoston, Fank i Arca, Hanana	UI -7	10/01/13	52/01/02	O11 LVV-0	Analyte avg kfw	7,622	440	ug/L	1000000	J ug/L
							, and the dvg kill	7,022				
	OBG	DFSP-Charleston, Tank 1 Area, Hanaha	JP-4	10/01/75	02/07/02	CH-MW-103	naphthalene	10,741	270	ug/L	2900000) ua/l
	OBG	DFSP-Charleston, Tank 1 Area, Hanahai				CH-MW-108	naphthalene	917	480	ug/L	44000	
	OBG	DFSP-Charleston, Tank 1 Area, Hanahai				CH-EW-6	naphthalene	2,476	210	ug/L	520000	
		2. C. Charlotton, rank 1740a, Halland	U. 1	10/01/10	32/0//02	J L	Analyte avg kfw	4,711	210	~g/ L	320000	- 49, L

Event	Lab Code	Site Name	Fuel Type	Spill Date	Date	FPLocid	Analyte	Kfw	GW Results	GW UNITS		FP Results	Units
1	EAL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	08/27/97	EAKMW316-FP	Benzene	385	5200	ug/L		2000000	ua/l
- '	OBG	Spill Site No. 2, Eaker AFB, AR	JP-4			EAKMW306	Benzene	600		ug/L	U	60000	
	OBG	Spill Site No. 2, Eaker AFB, AR	JP-4			EAKMW316	Benzene	122		ug/L		730000	
	OBO	opin one rec. 2, Editor rii B, rii c	01 1	10/01/10	10/10/01	L) II III II II	Analyte avg kfw	253		ugit		700000	ugiL
1	EAL	Spill Site No. 2, Eaker AFB, AR	JP-4			EAKMW316-FP	Toluene	40,000		ug/L		1000000	
	OBG	Spill Site No. 2, Eaker AFB, AR	JP-4			EAKMW306	Toluene	4,200		ug/L	U	420000	ug/L
	OBG	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	10/10/01	EAKMW316	Toluene	12,391	46	ug/L	J	570000	ug/L
							Analyte avg kfw						
1	EAL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/72	00/27/07	EAKMW316-FP	Ethylbenzene	5,500	1000	ug/L		5500000	/!
- '	OBG	Spill Site No. 2, Eaker AFB, AR	JP-4 JP-4			EAKMW306	Ethylbenzene	1,481		ug/L		1200000	
	OBG	Spill Site No. 2, Eaker AFB, AR	JP-4			EAKMW316	Ethylbenzene	1,856		ug/L		1800000	ug/L
	ODO	Opin Oile No. 2, Laker Ar B, Art	01 -4	10/01/13	10/10/01	LARWIVOTO	Analyte avg kfw	2,946		ug/L		1000000	ug/L
							Analyte avg Kiw	2,540					
1	EAL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	08/27/97	EAKMW316-FP	o-Xylene	4,300	1000	ug/L		4300000	ug/L
	OBG	Spill Site No. 2, Eaker AFB, AR	JP-4			EAKMW306	o-Xylene	1,417		ug/L		170000	ug/L
	OBG	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	10/10/01	EAKMW316	o-Xylene	2,100	100	ug/L	U	210000	ug/L
							Analyte avg kfw	2,606					
1	EAL	Spill Site No. 2, Eaker AFB, AR	JP-4			EAKMW316-FP	m,p-Xylene	4,783				22000000	
	OBG	Spill Site No. 2, Eaker AFB, AR	JP-4			EAKMW306	m,p-Xylene	1,231		ug/L		1600000	
	OBG	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	10/10/01	EAKMW316	m,p-Xylene	1,257	3500	ug/L		4400000	ug/L
							Analyte avg kfw	2,424					
1	EAL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	08/27/97	EAKMW316-FP	Total Xylenes (m,p, and o)	4,696	5600	ua/I		26300000	ua/l
	OBG	Spill Site No. 2, Eaker AFB, AR	JP-4			EAKMW306	Total Xylenes (m,p, and o)	1,200				1800000	
	OBG	Spill Site No. 2, Eaker AFB, AR	JP-4			EAKMW316	Total Xylenes (m,p, and o)	1,278				4600000	
							Analyte avg kfw	2,391		Ĭ			
	OBG	Chill Cita No. O. Falsas AFD. AD.	JP-4	40/04/70	40/40/04	EAKMANAOO		4 007	200	//		550000	/1
	OBG	Spill Site No. 2, Eaker AFB, AR Spill Site No. 2, Eaker AFB, AR	JP-4 JP-4			EAKMW306 EAKMW316	naphthalene naphthalene	1,897 1,352		ug/L ug/L		550000 730000	
	UBG	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	10/10/01	EAKIVIVVS10	Analyte avg kfw	1,624		ug/L		730000	ug/L
							Analyte avg kiw	1,024					
	OBG	AGE Area, Seymour Johnson AFB, SC	JP-4		07/24/01	SJ-AGE-MW4	Benzene	1,700	100	ug/L		170000	ua/L
	OBG	AGE Area, Seymour Johnson AFB, SC	JP-4			SJ-AGE-MW13	Benzene	263		ug/L		420000	
							Analyte avg kfw	981		Ŭ			Ü
	OBG	AGE Area, Seymour Johnson AFB, SC	JP-4			SJ-AGE-MW4	Toluene	2,514		ug/L		880000	
	OBG	AGE Area, Seymour Johnson AFB, SC	JP-4		07/24/01	SJ-AGE-MW13	Toluene	762		ug/L		3200000	ug/L
							Analyte avg kfw	1,638					
	OBG	AGE Area, Seymour Johnson AFB, SC	JP-4		07/24/01	SJ-AGE-MW4	Ethylbenzene	2,785	790	ug/L		2200000	ua/L
	OBG	AGE Area, Seymour Johnson AFB, SC	JP-4			SJ-AGE-MW13	Ethylbenzene	3,684		ug/L		1400000	
							Analyte avg kfw	3,235					Ü
	OBG	AGE Area, Seymour Johnson AFB, SC	JP-4			SJ-AGE-MW4	o-Xylene	1,667	1800	ug/L		3000000	
	OBG	AGE Area, Seymour Johnson AFB, SC	JP-4		07/24/01	SJ-AGE-MW13	o-Xylene	1,800		ug/L		2700000	ug/L
							Analyte avg kfw	1,733					
	OBG	AGE Area, Seymour Johnson AFB, SC	JP-4		07/24/01	SJ-AGE-MW4	m,p-Xylene	2,116	4300	ug/L		9100000	ug/L
	OBG	AGE Area, Seymour Johnson AFB, SC	JP-4			SJ-AGE-MW13	m,p-Xylene	2,258		ug/L		7000000	
							Analyte avg kfw	2,187					
	OBG	AGE Area, Seymour Johnson AFB, SC	JP-4	1	07/24/01	SJ-AGE-MW4	Total Xylenes (m,p, and o)	1,967	6100	ug/L		12000000	ug/L

Event Lab Code	e Site Name	Fuel Type	Spill Date	Date	FPLocid	Analyte	Kfw	GW Results	GW UNITS	FP Results Unit
OBG	AGE Area, Seymour Johnson AFB, SC	JP-4	- p u.u.		SJ-AGE-MW13	Total Xylenes (m,p, and o)	2,156			9700000 ug/L
						Analyte avg kfw	2,061		Ĭ	
						, ,	•			
OBG	AGE Area, Seymour Johnson AFB, SC	JP-4		07/24/01	SJ-AGE-MW4	naphthalene	1,732	410	ug/L	710000 ug/L
OBG	AGE Area, Seymour Johnson AFB, SC	JP-4		07/24/01	SJ-AGE-MW13	naphthalene	3,077	390	ug/L	1200000 ug/L
						Analyte avg kfw	2,404			
1 EAL	Facility 293, Cecil Field NAS, FL	JP-5			CEF-293-9FP	Benzene	253		ug/L	23500 ug/L
OBG	Facility 293, Cecil Field NAS, FL	JP-5	06/01/81	02/08/02	CEF-VW-1	Benzene	12,800	25	ug/L U	320000 ug/L
						Analyte avg kfw	253			
1 EAL	Facility 293, Cecil Field NAS, FL	JP-5	00/04/04	05/00/07	CEF-293-9FP	Talana	4 470	00		122000 ug/L
OBG	Facility 293, Cecil Field NAS, FL Facility 293, Cecil Field NAS, FL	JP-5 JP-5			CEF-293-9FP	Toluene Toluene	1,470 12,800		ug/L U	
OBG	Facility 293, Cecil Field NAS, FL	JP-5	06/01/61	02/06/02	CEF-VVV-I	Analyte avg kfw	1,470	25	ug/L U	320000 ug/L
		-				Analyte avg kiw	1,470			
1 EAL	Facility 293, Cecil Field NAS, FL	JP-5	06/01/81	05/20/97	CEF-293-9FP	Ethylbenzene	5,818	550	ug/L	3200000 ug/L
OBG	Facility 293, Cecil Field NAS, FL	JP-5	06/01/81		CEF-VW-1	Ethylbenzene	10,000		ug/L	320000 ug/L
020	Tubility 200, Cool Ficial Wite, 12	0. 0	00/01/01	02/00/02	OLI VIII I	Analyte avg kfw	5,818		ug, L	020000 dg/2
						. ,	2,2.0			
OBG	Facility 293, Cecil Field NAS, FL	JP-5	06/01/81	02/08/02	CEF-VW-1	o-Xylene	4,384	73	ug/L	320000 ug/L
							•		Ŭ	
OBG	Facility 293, Cecil Field NAS, FL	JP-5	06/01/81	02/08/02	CEF-VW-1	m,p-Xylene	5,308	130	ug/L	690000 ug/L
1 EAL	Facility 293, Cecil Field NAS, FL	JP-5			CEF-293-9FP	Total Xylenes (m,p, and o)	6,636	1100		7300000 ug/L
OBG	Facility 293, Cecil Field NAS, FL	JP-5	06/01/81	02/08/02	CEF-VW-1	Total Xylenes (m,p, and o)	3,450		ug/L	690000 ug/L
						Analyte avg kfw	5,043			
OBG	Facility 293, Cecil Field NAS, FL	JP-5	06/01/81	02/08/02	CEF-VW-1	naphthalene	9,700	100	ug/L	970000 ug/L
1 EAL	Tank Farm C, Beaufort MCAS, SC	JP-5	00/04/00	00/40/07	BFT-401-3	Benzene	558	4		2230 ug/L
1 EAL	Tank Farm C, Beaufort MCAS, SC Tank Farm C, Beaufort MCAS, SC	JP-5 JP-5			BFT-401-3	Toluene	1,250		ug/L ug/L	2230 ug/L 20000 ug/L
1 EAL	Tank Farm C, Beaufort MCAS, SC	JP-5 JP-5			BFT-401-3	Ethylbenzene	4,571		ug/L ug/L	160000 ug/L
1 EAL	Tank Farm C, Beaufort MCAS, SC	JP-5			BFT-401-3	o-Xylene	2,538		ug/L	330000 lg/L
1 EAL	Tank Farm C, Beaufort MCAS, SC	JP-5			BFT-401-3	m,p-Xylene	4,857		ug/L	680000 ug/L
1 EAL	Tank Farm C, Beaufort MCAS, SC	JP-5			BFT-401-3	Total Xylenes (m,p, and o)	3,741		ug/L	1010000 ug/L
	rameram s, Beadier, merte, es	0. 0	00/01/00	00/12/01	2	7 otal 7 (7 otal 7 otal	0,	2.0	ug/ L	10.0000 49.2
1 EAL	Tank Farm C, Beaufort MCAS, SC	JP-5	06/01/90	05/19/97	Fresh JP-5	Benzene	455	3.3	ug/L	1500 ug/L
1 EAL	Tank Farm C, Beaufort MCAS, SC	JP-5	06/01/90	05/19/97	Fresh JP-5	Toluene	1,500		ug/L	36000 ug/L
1 EAL	Tank Farm C, Beaufort MCAS, SC	JP-5	06/01/90	05/19/97	Fresh JP-5	Ethylbenzene	4,568	81	ug/L	370000 ug/L
1 EAL	Tank Farm C, Beaufort MCAS, SC	JP-5	06/01/90	05/19/97	Fresh JP-5	Total Xylenes (m,p, and o)	4,815	540	ug/L	2600000 ug/L
3 EAL	Bldg 4522, Seymour Johnson AFB, SC	JP-8			SJMW1SFP	Benzene	208		ug/L	150000 ug/L
3 EAL	Bldg 4522, Seymour Johnson AFB, SC	JP-8			SJMW2SFP	Benzene	272		ug/L	220000 ug/L
4 EAL	Bldg 4522, Seymour Johnson AFB, SC	JP-8			SJ98-MW1S	Benzene	278		ug/L	50000 ug/L
OBG	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95	07/24/01	SJMW (18' from 1)		233	2100	ug/L	490000 ug/L
						Analyte avg kfw	240			
3 EAL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/05	05/15/07	SJMW1SFP	Toluene	1,010	000	ug/L	1000000 ug/L
3 EAL	Bldg 4522, Seymour Johnson AFB, SC	JP-8 JP-8			SJMW1SFP SJMW2SFP	Toluene	1,010	1100		1100000 ug/L
4 EAL	Bldg 4522, Seymour Johnson AFB, SC	JP-8			SJ98-MW1S	Toluene	797		ug/L ug/L	630000 ug/L
OBG	Bldg 4522, Seymour Johnson AFB, SC	JP-8			SJMW (18' from 1		1,289		ug/L	580000 ug/L
		1	.2.5.700		22 (10	Analyte avg kfw	1,005	100	-3-	55550 ug/L
							.,000			
3 EAL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95	05/15/97	SJMW1SFP	Ethylbenzene	2,724	290	ug/L	790000 ug/L
3 EAL	Bldg 4522, Seymour Johnson AFB, SC	JP-8			SJMW2SFP	Ethylbenzene	3,529		ug/L	1200000 ug/L
4 EAL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95	03/10/98	SJ98-MW1S	Ethylbenzene	3,548	310	ug/L	1100000 ug/L

Event	Lab Code	Site Name	Fuel Type	Spill Date	Date	FPLocid	Analyte	Kfw	GW Results	GW UNITS	FP Results	Units
	OBG	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95	07/24/01	SJMW (18' from 1)	Ethylbenzene	3,400	500	ug/L	1700000	ug/L
							Analyte avg kfw	3,127				
3	EAL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95	05/15/97	SJMW1SFP	Total Xylenes (m,p, and o)	2,889	1800	ug/L	5200000	ug/L
3						SJMW2SFP	Total Xylenes (m,p, and o)	3,286	2100	ug/L	6900000	ug/L
4	EAL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95	03/10/98	SJ98-MW1S	Total Xylenes (m,p, and o)	3,409	1320	ug/L	4500000	ug/L
	OBG	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95	07/24/01	SJMW (18' from 1)	Total Xylenes (m,p, and o)	2,944	1800	ug/L	5300000	ug/L
							Analyte avg kfw	3,087				
4	EAL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95	03/10/98	SJ98-MW1S	m,p-Xylene	3,827	810	ug/L	3100000	ug/L
	OBG	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95	07/24/01	SJMW (18' from 1)	m,p-Xylene	2,941	1700	ug/L	5000000	ug/L
							Analyte avg kfw	3,384				
4	EAL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95	03/10/98	SJ98-MW1S	o-Xylene	2,745	510	ug/L	1400000	ug/L

Event	Lab Code	Site Name	Fuel Type	Spill Date	Date	FPLocid	Analyte	Kfw	GW Results	GW UNITS	Flag	FP Results	Units
	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW349-1	Benzene	244	34000			8280000	
	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW349-1	Benzene	263	32000			8420000	
	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW-349-1FP	Benzene	237	35000			8310000	
	OBG	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW349-1	Benzene	630	9200			5800000	
	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW-349-6FP	Benzene	246	38440			9450000	
	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW349-8	Benzene	100	9560			955000	ug/L
_		rame oro, onate it b, ite	0.00010	00/01/00	00/20/00		Analyte avg kfw	287	0000	ug/ L			ug/ =
							raidific dry init	201					
1	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	11/15/94	MW349-1	Toluene	1151	35700	ug/L		41100000	ug/L
	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW349-1	Toluene	917	39700			36400000	
	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW-349-1FP	Toluene	943	42400			40000000	
	OBG	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW349-1	Toluene	2071	28000			58000000	
3	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW-349-6FP	Toluene	926	43860			40600000	ug/L
	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW349-8	Toluene	513	24000			12300000	
_		rame oro, onate it b, ite	0.00010	00/01/00	00/20/00		Analyte avg kfw	1087	2.000	ug/ L		1200000	ug/ =
							7 and year and min						
1	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	11/15/94	MW349-1	Ethylbenzene	2877	3580	ug/L		10300000	ua/L
	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW349-1	Ethylbenzene	2714	4200	ug/L		11400000	ug/L
	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW-349-1FP	Ethylbenzene	2440	4550			11100000	ug/L
	OBG	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW349-1	Ethylbenzene	3617	4700			17000000	ug/ka
	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW-349-6FP	Ethylbenzene	3333	3990			13300000	
	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW349-8	Ethylbenzene	2544	3970			10100000	
	TATKIVITKE	Tank 040, Onati Ai B, NE	Gasoniic	00/01/30	00/20/00	101000-0	Analyte avg kfw	2921	3370	ug/L		10100000	ug/L
							Allaryte avg kiw	2921					
1	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	11/15/04	MW349-1	o-Xylene	2457	4640	ug/l		11400000	ua/l
	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW349-1	o-Xylene	2383	4490			10700000	
	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW-349-1FP	o-Xylene	1860	5700			10600000	
	OBG	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW349-1	o-Xylene	339	62000			21000000	
	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW-349-6FP	o-Xylene	2366	4650			11000000	
	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW349-8	o-Xylene	2189	4180			9150000	
	TATKIVITKE	Tank 040, Onat Al B, NE	Gasoniic	00/01/30	00/20/30	10100-10-0	Analyte avg kfw	1932	7100	ug/L		3100000	ug/L
							Analyte avg kiw	1332					
3	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	06/23/07	MW-349-1FP	m-Xylene	2817	8270	ug/l		23300000	ua/l
	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW-349-6FP	m-Xylene	3466	6780			23500000	
	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW349-1	m-Xylene	3168	6850			21700000	
	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW349-1	m-Xylene	2573	6880			17700000	
	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW349-8	m-Xylene	2476	6220			15400000	
	INITIVITL	Talik 349, Olluli AFB, NE	Gasonile	00/01/90	00/20/90	10100349-0	Analyte avg kfw	2900	0220	ug/L		15400000	ug/L
							Analyte avg kiw	2900					
2	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	06/22/07	MW-349-1FP	p-Xylene	2561	3530	ug/l		9040000	ua/l
	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW-349-6FP	p-Xylene p-Xylene	3209	2870	ug/L		9210000	
	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW349-1	p-Xylene p-Xylene	3219	2790			8980000	
	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW349-1	p-Xylene	3184	2940			9360000	
	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW349-8	p-Xylene p-Xylene	3065	2620			8030000	
	INKIVIKL	Tank 349, Onull AFB, NE	Gasonne	06/01/90	00/20/90	10100349-0	Analyte avg kfw	3047	2020	ug/L		8030000	ug/L
							Arialyte avg kiw	3047					
4	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	11/15/04	MW349-1	m&p-Xylene	3183	9640	ug/l		30680000	ua/l
	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW349-1	m&p-Xylene m&p-Xylene	2756	9820			27060000	
	NRMRL	Tank 349, Offutt AFB, NE		06/01/90		MW-349-1FP		2750				32340000	ug/L
			Gasoline				m&p-Xylene		11800			62000000	ug/L
	OBG NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW349-1	m&p-Xylene	3647 3466	17000			02000000	ug/kg
	NRMRL NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW-349-6FP	m&p-Xylene		6780			23500000	
2	INKIVIKL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	00/26/96	MW349-8	m&p-Xylene	2476	6220	ug/L		15400000	ug/L
						1	Analyte avg kfw	3045					<u> </u>
_	NDMDi	Took 240, Offsett AED, NE	Coorline	06/04/00	11/45/04	MM240 4	Total Vulares	20.17	4.4000	ug/l		40000000	//
	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW349-1	Total-Xylenes	2947	14280			42080000	
2	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	06/26/96	MW349-1	Total-Xylenes	2639	14310	ug/L		37760000	ug/L

Event	Lab Code	Site Name	Fuel Type	Spill Date	Date	FPLocid	Analyte	Kfw	GW Results	GW UNITS	Flag	FP Results	Units
3	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	06/23/97	MW-349-1FP	Total-Xylenes	2454	17500	ug/L		42940000	ug/L
4	OBG	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	01/16/02	MW349-1	Total-Xylenes	1051	79000			83000000	
3	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	06/23/97	MW-349-6FP	Total-Xylenes	3018	11430	ug/L		34500000	ug/L
2	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	06/26/96	MW349-8	Total-Xylenes	2361	10400			24550000	ug/L
							Analyte avg kfw	2411					Ĭ
3	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	06/23/97	MW-349-1FP	1,2,3-Trimethylbenzene	4049	852	ug/L		3450000	ug/L
4	OBG	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	01/16/02	MW349-1	1,2,3-Trimethylbenzene	5000	1300	ug/L		6500000	
3	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	06/23/97	MW-349-6FP	1,2,3-Trimethylbenzene	7648	506	ug/L		3870000	ug/L
							Analyte avg kfw	5566					
3	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	06/23/97	MW-349-1FP	1,2,4-Trimethylbenzene	4582	3230	ug/L		14800000	ug/L
4	OBG	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	01/16/02	MW349-1	1,2,4-Trimethylbenzene	4444	6300	ug/L		28000000	ug/kg
3	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	06/23/97	MW-349-6FP	1,2,4-Trimethylbenzene	8533	1840	ug/L		15700000	ug/L
							Analyte avg kfw	5853					
3	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	06/23/97	MW-349-1FP	1,3,5-Trimethylbenzene	5136	845	ug/L		4340000	ug/L
4	OBG	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	01/16/02	MW349-1	1,3,5-Trimethylbenzene	4867		ug/L		7300000	
	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW-349-6FP	1,3,5-Trimethylbenzene	10340		ug/L		4560000	
		,					Analyte avg kfw	6781		Ü			
							7 3						
3	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	06/23/97	MW-349-1FP	Naphthalene	3001	723	ug/L		2170000	ua/L
4	OBG	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW349-1	Naphthalene	3978		ug/L		3700000	ua/ka
	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW-349-6FP	Naphthalene	4633		ug/L		2080000	
							Analyte avg kfw	3871		-3-			3
							7 thatyte avg kiw	0071					
3	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	06/23/97	MW-349-1FP	1-MethylNaphthalene	7483	147	ug/L		1100000	ua/l
	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW-349-6FP	1-MethylNaphthalene	6618		ug/L		900000	
•	T COUNT CE	Tank 010, Onak 71 B, 112	Casonine	00/01/00	00/20/01	11111 0 10 01 1	Analyte avg kfw	7050	100	ugiL			ug/L
							Analyte avg kiw	7000					
3	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90	06/23/97	MW-349-1FP	2-MethylNaphthalene	14430	158	ug/L		2280000	ua/l
	NRMRL	Tank 349, Offutt AFB, NE	Gasoline	06/01/90		MW-349-6FP	2-MethylNaphthalene	12740		ug/L		1860000	
- 0	TATAMIAL	Tank 040, Onak Al B, NE	Gasoniic	00/01/30	00/20/01	WW-043-011	Analyte avg kfw	13585	140	ug/L		1000000	ug/L
							Analyte avg kiw	10000					
2	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	03/11/08	SH98-1610-2	Benzene	803	1557	ug/L		1250000	ua/l
		Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SH98-1610-3	Benzene	1158		ug/L		1650000	
		Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-2	Benzene	266	8473			2250000	
		Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-3	Benzene	334	4126			1380000	
	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-1	Benzene	477		ug/L ug/L		620000	
	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-2	Benzene	407	2700			1100000	
	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-3	Benzene	343	3500			1200000	
	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-22	Benzene	385	2600			1000000	
3	000	Diag 1010, Ollaw Al'D, 30	J1 -4	00/01/94	01/10/02	O1 11V1V 10 10-22	Analyte avg kfw	522	2000	ug/L		1000000	ug/L
							Analyte avg Niw	322					
2	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	03/11/00	SH98-1610-2	Toluene	1044	2712	ug/l		2830000	ua/l
		Bldg 1610, Shaw AFB, SC	JP-4 JP-4	06/01/94		SH98-1610-3	Toluene	2810	1171	ug/L		3290000	
		Bldg 1610, Shaw AFB, SC	JP-4 JP-4	06/01/94		SHMW1610-2	Toluene	554	8820			4890000	
		Bldg 1610, Shaw AFB, SC	JP-4 JP-4	06/01/94		SHMW1610-2	Toluene	1499	1675			2510000	
	OBG	Bldg 1610, Shaw AFB, SC	JP-4 JP-4	06/01/94		SHMW1610-3	Toluene	1273	2200			2800000	
	OBG	Bldg 1610, Shaw AFB, SC	JP-4 JP-4	06/01/94		SHMW1610-1	Toluene	1706	1700			2900000	ug/L
	OBG	Bldg 1610, Shaw AFB, SC	JP-4 JP-4	06/01/94		SHMW1610-2	Toluene	1238	2100			2600000	ug/L
	OBG	Bldg 1610, Shaw AFB, SC	JP-4 JP-4	06/01/94		SHMW1610-3		1647				2800000	
3	ODG	DIUG 1010, SHAW AFB, SC	JF-4	06/01/94	07/18/02	3171VIVV 10 1U-22	Toluene	1647	1700	ug/L		2800000	ug/L
							Analyte avg kfw	14/1		-			
	NDMDi	Plda 1610, Show AED, CO	ID 4	06/04/04	02/44/02	CH00 1640 0	Ethylhonzon	2010	244.0	/!		4040000	/!
		Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SH98-1610-2	Ethylbenzene	3042		ug/L		1040000	
2	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	03/11/98	SH98-1610-3	Ethylbenzene	4123	259.5	ug/L		1070000	ug/L

Event	Lab Code	Site Name	Fuel Type	Spill Date	Date	FPLocid	Analyte	Kfw	GW Results	GW UNITS	Flag	FP Results	Units
1	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	03/06/97	SHMW1610-2	Ethylbenzene	1138	1177		Ŭ	1340000	ug/L
1	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-3	Ethylbenzene	2877	325	ug/L		935000	ug/L
3	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-1	Ethylbenzene	4286		ug/L		1200000	
3	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	07/18/02	SHMW1610-2	Ethylbenzene	6316		ug/L		1200000	
	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-3	Ethylbenzene	4444		ug/L		1200000	
	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-22	Ethylbenzene	5000		ug/L		1200000	
		, , , , , , , , , , , , , , , , , , , ,					Analyte avg kfw	3903		- 3			- 0
							,,,,,,						
2	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	03/11/98	SH98-1610-2	o-Xylene	2310	1052	ug/L		2430000	ug/L
	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SH98-1610-3	o-Xylene	3098	790.9			2450000	
	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-2	o-Xylene	971	3039			2950000	
	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-3	o-Xylene	2526		ug/L		2390000	
	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-1	o-Xylene	#DIV/0!		ug/L			ug/L
	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-2	o-Xylene	#DIV/0!		ug/L			ug/L
	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-3	o-Xylene	#DIV/0!		ug/L			ug/L
	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-22	o-Xylene	#DIV/0!		ug/L			ug/L
	020	2.cg 10.0, 0a 2, 00	ŭ	00/01/01	01710702	0	Analyte avg kfw	2226		ug. L			ug/L
							7 maryte avg kiv	ZZZO					
2	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	03/11/98	SH98-1610-2	m-Xylene	2646	1300	ua/l		3440000	ua/l
	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SH98-1610-3	m-Xylene	3589	966.8			3470000	
	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-2	m-Xylene	1041	3976			4140000	
	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-3	m-Xylene	3217	1007			3240000	
	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-1	m-Xylene	#DIV/0!	1007	ug/L		0240000	ug/L
	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-2	m-Xylene	#DIV/0!		ug/L			ug/L
	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-3	m-Xylene	#DIV/0!		ug/L ug/L			ug/L ug/L
	OBG	Bldg 1610, Shaw AFB, SC	JP-4 JP-4	06/01/94		SHMW1610-3	m-Xylene	#DIV/0!		ug/L ug/L			ug/L ug/L
3	OBG	blug 1010, Silaw AFB, SC	JP-4	06/01/94	07/10/02	SHIVIVV 10 10-22		#DIV/0! 2624		ug/L			ug/L
							Analyte avg kfw	2024					
2	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	03/11/98	SH98-1610-2	p-Xylene	3069	426.8	ua/l		1310000	ua/l
	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SH98-1610-3	p-Xylene	4131	312.3			1290000	
	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-2	p-Xylene	1093	1318			1440000	
	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-3	p-Xylene	2924		ug/L		1190000	
	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-1	p-Xylene	#DIV/0!	407	ug/L		1130000	ug/L
	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-2	p-Xylene p-Xylene	#DIV/0!		ug/L			ug/L
	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-3	p-Xylene p-Xylene	#DIV/0!		ug/L			ug/L
	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-22	p-Xylene p-Xylene	#DIV/0!		ug/L			ug/L
	ODG	blug 1010, Shaw Al B, SC	JI - 4	00/01/34	01/10/02	31 IIVIVV 10 10-22	Analyte avg kfw	2804		ug/L			ug/L
							Analyte avg kiw	2004					
2	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	03/11/08	SH98-1610-2	m&p-Xylene	2751	1726.8	ug/l		4750000	ua/l
	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SH98-1610-3	m&p-Xylene	3721	1279.1			4760000	
	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-2	m&p-Xylene	1054	5294			5580000	
	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-3	m&p-Xylene	3133		ug/L ug/L		4430000	
	INIVINIAL	Diag 1010, Shaw Al B, SC	JI -4	00/01/84	03/00/97	O1 11010 A 10 10-2	Analyte avg kfw	2665	1414	ug/L		4430000	ug/L
							, aldryte dvg Niv	2000					
2	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	03/11/09	SH98-1610-2	Total Xylenes	2584	2778.8	ug/l		7180000	ua/l
	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4 JP-4	06/01/94		SH98-1610-3	Total Xylenes	3483	2070			7210000	
	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4 JP-4	06/01/94		SHMW1610-2	Total Xylenes	1024	8333			8530000	
	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4 JP-4	06/01/94		SHMW1610-2	Total Xylenes	2890	2360			6820000	
	OBG	Bldg 1610, Shaw AFB, SC	JP-4 JP-4	06/01/94		SHMW1610-3	Total Xylenes	3871	3100			1200000	
	OBG	Bldg 1610, Shaw AFB, SC	JP-4 JP-4	06/01/94		SHMW1610-1	Total Xylenes Total Xylenes	6875	1600			11000000	
	OBG	Bldg 1610, Snaw AFB, SC	JP-4 JP-4	06/01/94		SHMW1610-2 SHMW1610-3		4545	2200				
	OBG		JP-4 JP-4				Total Xylenes					10000000 11000000	
3	UDG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	07/18/02	SHMW1610-22	Total Xylenes	5238	2100	ug/L		11000000	ug/L
						1	Analyte avg kfw	3814		+			-
2	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	03/11/09	SH98-1610-2	1,2,3-Trimethylbenzene	5855	534.6	ug/l		3130000	ua/l
	INITIVITAL	Bldg 1610, Shaw AFB, SC	JP-4 JP-4	06/01/94		SH98-1610-3	1,2,3-Trimethylbenzene	7159				2860000	

Event	Lab Code	Site Name	Fuel Type	Spill Date	Date	FPLocid	Analyte	Kfw	GW Results	GW UNITS	Flag	FP Results	Units
	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-2	1,2,3-Trimethylbenzene	1869	1600			2990000	
1	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	03/06/97	SHMW1610-3	1,2,3-Trimethylbenzene	7794		ug/L		3780000	
3	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-1	1,2,3-Trimethylbenzene	7077		ug/L		4600000	
3	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	07/18/02	SHMW1610-2	1,2,3-Trimethylbenzene	11707		ug/L		4800000	
	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-3	1,2,3-Trimethylbenzene	7778		ug/L		4200000	
3	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	07/18/02	SHMW1610-22	1,2,3-Trimethylbenzene	9231		ug/L		4800000	
		, , , , , , , , , , , , , , , , , , , ,					Analyte avg kfw	7309					- 0
							,,,,,,,						
2	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	03/11/98	SH98-1610-2	1,2,4-Trimethylbenzene	7135	1026	ug/L		7320000	ug/L
2	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	03/11/98	SH98-1610-3	1,2,4-Trimethylbenzene	9188	728.1	ug/L		6690000	ug/L
1	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	03/06/97	SHMW1610-2	1,2,4-Trimethylbenzene	1980	2924	ug/L		5790000	ug/L
1	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	03/06/97	SHMW1610-3	1,2,4-Trimethylbenzene	7853	927	ug/L		7280000	ug/L
	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-1	1,2,4-Trimethylbenzene	9167	1200			11000000	
3	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	07/18/02	SHMW1610-2	1,2,4-Trimethylbenzene	15584		ug/L		12000000	ug/L
	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-3	1,2,4-Trimethylbenzene	10000	1000			10000000	
3	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	07/18/02	SHMW1610-22	1,2,4-Trimethylbenzene	12000	1000			12000000	
		, ,					Analyte avg kfw	9113		Ŭ			Ŭ
							, ,						
2	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	03/11/98	SH98-1610-2	1,3,5-Trimethylbenzene	7959	276.4	ug/L		2200000	ug/L
2	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	03/11/98	SH98-1610-3	1,3,5-Trimethylbenzene	10245	196.2			2010000	ug/L
1	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	03/06/97	SHMW1610-2	1,3,5-Trimethylbenzene	3952		ug/L		3450000	ug/L
	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-3	1,3,5-Trimethylbenzene	15808		ug/L		4110000	
3	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	07/18/02	SHMW1610-1	1,3,5-Trimethylbenzene	10286		ug/L		3600000	
	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-2	1,3,5-Trimethylbenzene	16818		ug/L		3700000	
	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-3	1,3,5-Trimethylbenzene	12143		ug/L		3400000	
	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-22	1,3,5-Trimethylbenzene	13333		ug/L		4000000	
		, , , , , , , , , , , , , , , , , , , ,					Analyte avg kfw	11318					- 0
							. ,						
2	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	03/11/98	SH98-1610-2	Naphthalene	3337	395.6	ua/L		1320000	ua/L
	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SH98-1610-3	Naphthalene	3861	318.6			1230000	
1	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-2	Naphthalene	1173		ug/L		1120000	
	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-3	Naphthalene	4528		ug/L		1440000	
3	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	07/18/02	SHMW1610-1	Naphthalene	2552		ug/L		740000	ua/L
	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-2	Naphthalene	2933		ug/L		880000	
3	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	07/18/02	SHMW1610-3	Naphthalene	2500		ug/L		900000	
3	OBG	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-22	Naphthalene	3542		ug/L		850000	ua/L
		, ,					Analyte avg kfw	3053		Ŭ			Ŭ
							,,,,,,,						
2	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	03/11/98	SH98-1610-2	1-MethylNaphthalene	8788	150.2	ug/L		1320000	ug/L
2	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	03/11/98	SH98-1610-3	1-MethylNaphthalene	8646	138.8	ug/L		1200000	ug/L
1	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-2	1-MethylNaphthalene	1514		ug/L		1040000	
1	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	03/06/97	SHMW1610-3	1-MethylNaphthalene	7789	190	ug/L		1480000	ug/L
		, ,					Analyte avg kfw	6684		Ŭ			Ŭ
							, ,						
2	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	03/11/98	SH98-1610-2	2-MethylNaphthalene	10333	212.9	ug/L		2200000	ug/L
2	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SH98-1610-3	2-MethylNaphthalene	10107	195.9			1980000	ug/L
	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94		SHMW1610-2	2-MethylNaphthalene	2814		ug/L		1680000	
1	NRMRL	Bldg 1610, Shaw AFB, SC	JP-4	06/01/94	03/06/97	SHMW1610-3	2-MethylNaphthalene	14821		ug/L		2490000	
		-					Analyte avg kfw	9519					-
	OBG	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81	07/25/01	MBMW8I	Benzene	2600	100	ug/L		260000	ug/kg
1	NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81	03/04/97	MBMW24	Benzene	169	332	ug/L		56200	
	OBG	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81	07/25/01	MBMW24	Benzene	300		ug/L		120000	ug/kg
							Analyte avg kfw	1023					
	OBG	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81	07/25/01	MBMW8I	Toluene	13636	1.1	ug/L		15000	ug/kg

Event	Lab Code	Site Name	Fuel Type	Spill Date	Date	FPLocid	Analyte	Kfw	GW Results	GW UNITS	Flag	FP Results	Units
1	NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81	03/04/97	MBMW24	Toluene	2228	2.5	ug/L		5570	ug/L
	OBG	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81	07/25/01	MBMW24	Toluene	3000	5	ug/L		15000	ug/kg
							Analyte avg kfw	6288		Ĭ			
1	NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81	03/04/97	MBMW24	Ethylbenzene	7762	77.3	ug/L		600000	
	OBG	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81	07/25/01	MBMW24	Ethylbenzene	13571		ug/L		760000	ug/kg
	OBG	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81	07/25/01	MBMW8I	Ethylbenzene	15455	110	ug/L		1700000	
							Analyte avg kfw	12263					
							, ,						
1	NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81	03/04/97	MBMW24	o-Xylene	3838	3.7	ug/L		14200	ug/L
	OBG	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81	07/25/01	MBMW24	o-Xylene	21		ug/L	U	210	ug/kg
	OBG	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81		MBMW8I	o-Xylene	2100		ug/L	U		ug/kg
		, ,					Analyte avg kfw	2969		Ŭ			
							, ,						
1	NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81	03/04/97	MBMW24	m-Xylene	36345	49.8	ug/L		1810000	ua/L
	NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81		MBMW24	p-Xylene	76341		ug/L		313000	
							p : y.c			-3-			
1	NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81	03/04/97	MBMW24	m&p-Xylene	39388	53.9	ug/L		2123000	ua/l
	OBG	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81		MBMW24	m&p-Xylene	20667		ug/L		310000	
	OBG	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81		MBMW8I	m&p-Xylene	17978		ug/L		1600000	
	OBO	Tipoline Edak Oite, Myrtie Bedoit 7th B, CO	01 1	01/01/01	01720701	WIDWWYO	Analyte avg kfw	26011	- 00	ugiL		1000000	ugritg
							Analyte avg kiw	20011					+
1	NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81	03/04/07	MBMW24	Total Xylenes	27541	77.6	ug/L		2137200	ua/l
- '	OBG	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81		MBMW24	Total Xylenes	20667		ug/L		310000	
	OBG	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81		MBMW8I	Total Xylenes	17978		ug/L		1600000	
	OBG	ripeline Leak Site, Myrtie Beach AFB, 3C	JF - 4	01/01/61	07/25/01	IVIDIVIVVOI	Analyte avg kfw	22062		ug/L		1000000	ug/kg
							Allalyte avg kiw	22002					+
_	NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81	02/04/07	MBMW24	1,2,3-Trimethylbenzene	33074	00.4	ug/L		2980000	/!
- '			JP-4 JP-4										
	OBG	Pipeline Leak Site, Myrtle Beach AFB, SC		01/01/81		MBMW24	1,2,3-Trimethylbenzene	37662		ug/L		2900000	
	OBG	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81	07/25/01	MBMW8I	1,2,3-Trimethylbenzene	39344		ug/L		2400000	ug/kg
							Analyte avg kfw	36694					
	NO.4DI	D: " 1 0" M D 1 1 D 00		04/04/04	00/04/07	1401 040 4	1017: "	0.1.100	200			050000	
1		Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81		MBMW24	1,2,4-Trimethylbenzene	31100		ug/L		6500000	
	OBG	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81		MBMW24	1,2,4-Trimethylbenzene	40000		ug/L		12000000	
	OBG	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81	07/25/01	MBMW8I	1,2,4-Trimethylbenzene	52222		ug/L		9400000	ug/kg
							Analyte avg kfw	41108					
1		Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81		MBMW24	1,3,5-Trimethylbenzene	84024		ug/L		2840000	
	OBG	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81		MBMW24	1,3,5-Trimethylbenzene	76923		ug/L		1000000	
	OBG	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81	07/25/01	MBMW8I	1,3,5-Trimethylbenzene	72414		ug/L		2100000	ug/kg
							Analyte avg kfw	77787					
1		Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81		MBMW24	Naphthalene	7194		ug/L		892000	
	OBG	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81		MBMW24	Naphthalene	15730		ug/L		1400000	
	OBG	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81	07/25/01	MBMW8I	Naphthalene	15152		ug/L		1500000	ug/kg
							Analyte avg kfw	12692					
1	NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81		MBMW24	1-MethylNaphthalene	5116		ug/L		1320000	
	NRMRL	Pipeline Leak Site, Myrtle Beach AFB, SC	JP-4	01/01/81	03/04/97	MBMW24	2-MethylNaphthalene	9141	198	ug/L		1810000	ug/L
		•											
3	NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75	05/16/97	CH-MW-103	Benzene	1	36.9	ug/L		25	ug/L
	OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75		CH-MW-103	Benzene	1786		ug/L	J		ug/kg
	OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75		CH-MW-108	Benzene	5105		ug/L	J		ug/kg
	OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75		CH-EW6	Benzene	236		ug/L			ug/kg
					32.0.702	220	Analyte avg kfw	1782		3			-99
	l						,	11.02					+

Event	Lab Code	Site Name	Fuel Type	Spill Date	Date	FPLocid	Analyte	Kfw	GW Results	GW UNITS	Flag	FP Results	Units
		DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75		CH-MW-103	Toluene	231		ug/L		204000	
	OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75		CH-MW-103	Toluene	3947		ug/L	J	3000000	
			JP-4	10/01/75		CH-MW-108	Toluene	2500			J	14000	
	OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75		CH-EW6	Toluene	2786			.I	7800	ug/kg
	OBO	Br or onanoson, rank rraca, riananan, co	0. 1	10/01/10	OLIGITOL	OIT EVVO	Analyte avg kfw	2366		ug/L		7000	ugritg
							7 maryte avg Kiv	2000					
3	NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75	05/16/97	CH-MW-103	Ethylbenzene	1600	535	ug/L		856000	ua/l
		DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75		CH-MW-103	Ethylbenzene	11667		ug/L	1	2100000	
	OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75		CH-MW-108	Ethylbenzene	3953		ug/L	U	170000	ug/kg
		DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75		CH-EW6	Ethylbenzene	4455		ug/L		490000	ug/kg
	OBO	Di di -dilaneston, Tank i Area, Flananan, do	01 4	10/01/13	02/01/02	OTT-EVVO	Analyte avg kfw	5419		ug/L		+30000	ug/kg
							Analyte avg kiw	3413					
3	NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75	05/16/07	CH-MW-103	o-Xylene	2703	370	ug/L		1000000	ua/l
- 3	OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75		CH-MW-103	o-Xylene	10000		ug/L		2800000	
	OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75		CH-MW-108	o-Xylene	5660		ug/L	J	300000	ug/kg
	OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75		CH-EW6	o-Xylene	1486		ug/L ug/L		11000	
	OBG	DESE-Chanesion, Talik TAlea, Flandilan, SC	JF- 4	10/01/73	02/01/02	CH-EVVO	Analyte avg kfw	4962		ug/L		11000	ug/kg
							Analyte avg kiw	4902					
_	NDMDI	DECD Charleston Tord Assa Honoban CC	JP-4	40/04/75	05/40/07	CLL MANA 400	m Video e	2552	050	//		2420000	//
		DFSP-Charleston, Tank 1 Area, Hanahan, SC		10/01/75		CH-MW-103	m-Xylene	2553		ug/L		2430000	
3	NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75	05/16/97	CH-MW-103	p-Xylene	1944	498	ug/L		968000	ug/L
	NIDMB!	DEOD 01 1 1 7 1 1 4 1 1 1 00	ID 4	10/01/75	05/40/05	011 1 111 1 100	0 1/1	00.40	4.50				
		DFSP-Charleston, Tank 1 Area, Hanahan, SC		10/01/75		CH-MW-103	m&p-Xylene	2343		ug/L		3398000	
	OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75		CH-MW-103	m&p-Xylene	14848		ug/L	J	9800000	
	OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75		CH-MW-108	m&p-Xylene	4000		ug/L		160000	
	OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75	02/07/02	CH-EW6	m&p-Xylene	6800	250	ug/L		1700000	ug/kg
							Analyte avg kfw	6998					
3		DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75		CH-MW-103	Total Xylenes	2036	2160.4			4398000	
	OBG		JP-4	10/01/75		CH-MW-103	Total Xylenes	13404		ug/L	J	12600000	ug/kg
	OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75		CH-MW-108	Total Xylenes	6080	7932	ug/L		48229000	ug/kg
	OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75	02/07/02	CH-EW6	Total Xylenes	6647	257.4	ug/L		1711000	ug/kg
							Analyte avg kfw	12692					
3	NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75	05/16/97	CH-MW-103	1,2,3-Trimethylbenzene	7112	134	ug/L		953000	ug/L
	OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75	02/07/02	CH-MW-103	1,2,3-Trimethylbenzene	18966	58	ug/L	J	1100000	ug/kg
	OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75	02/07/02	CH-MW-108	1,2,3-Trimethylbenzene	9150	153	ug/L		1400000	ug/kg
	OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75	02/07/02	CH-EW6	1,2,3-Trimethylbenzene	34706		ug/L		590000	ua/ka
		, , , , , , , , , , , , , , , , , , , ,					Analyte avg kfw	17483		- 0			- 0 0
							, ,						
3	NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75	05/16/97	CH-MW-103	1,2,4-Trimethylbenzene	7466	292	ug/L		2180000	ug/L
	OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC		10/01/75		CH-MW-103	1,2,4-Trimethylbenzene	30000		ug/L	J	3000000	
	OBG		JP-4	10/01/75		CH-MW-108	1,2,4-Trimethylbenzene	12000		ug/L	-	3000000	
	OBG		JP-4	10/01/75		CH-EW6	1,2,4-Trimethylbenzene	34615		ug/L		1800000	
				. 5. 5 17 1 5	02.01.02		Analyte avg kfw	21020		-9		1000000	~59
							, and fit dieg him	21020					
3	NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75	05/16/07	CH-MW-103	1,3,5-Trimethylbenzene	12530	ΩQ	ug/L		1040000	ua/l
	OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75		CH-MW-103	1,3,5-Trimethylbenzene	36667		ug/L ug/L	1	1100000	
	OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75		CH-MW-108	1,3,5-Trimethylbenzene	14651		ug/L ug/L	J	630000	
	OBG		JP-4	10/01/75		CH-EW6	1,3,5-Trimethylbenzene	60000		ug/L		960000	
-	000	DI OI -OIIGHESIUH, TAHK TAIEA, FIAHAHAH, SC	J1 -4	10/01/75	02/01/02	OI I-EVVO	Analyte avg kfw	30962		ug/L		900000	ug/kg
							Analyte avy kiw	30962					
	NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75	05/16/07	CH-MW-103	Nonhthalana	3325	454	ua/l		502000	/!
3							Naphthalene			ug/L			
<u> </u>	OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75		CH-MW-103	Naphthalene	11000		ug/L	J	1100000	ug/kg
	OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75		CH-MW-108	Naphthalene	5357		ug/L		1500000	
	OBG	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75	02/07/02	CH-EW6	Naphthalene	18462		ug/L		1200000	ug/kg
							Analyte avg kfw	9536					

Event	Lab Code	Site Name	Fuel Type	Spill Date	Date	FPLocid	Analyte	Kfw	GW Results	GW UNITS	Flag	FP Results	Units
		DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75		CH-MW-103	1-MethylNaphthalene	10219		ug/L		1400000	
3	NRMRL	DFSP-Charleston, Tank 1 Area, Hanahan, SC	JP-4	10/01/75	05/16/97	CH-MW-103	2-MethylNaphthalene	17822	101	ug/L		1800000	ug/L
1	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	08/27/97	'EAKMW306-FP	Benzene	48	56.7	ug/L		2700	ua/l
		Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73		EAKMW306	Benzene	4286	2.8	ug/L	J	12000	ug/kg
		Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73		EAKMW316-FP	Benzene	104		ug/L	•	900000	
		Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73		EAKMW316	Benzene	110				2200000	
		op o o 2, 2a / 11 2, / 11 1		10/01/10	10/10/01	27 44 44 47 47 47 47 47 47 47 47 47 47 47	Analyte avg kfw	1137		ug/ _			ugritg
							, j						
1	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	08/27/97	EAKMW306-FP	Toluene	11	2.3	ug/L		25	ug/L
		Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73		EAKMW306	Toluene	1417		ug/L	<		ug/kg
		Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73		EAKMW316-FP	Toluene	9		ug/L			ug/L
1	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	10/10/01	EAKMW316	Toluene	320		ug/L	<	8000	ug/kg
							Analyte avg kfw	439					
	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73		EAKMW306-FP	Ethylbenzene	4429	560	ug/L		2480000	ug/L
		Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73		EAKMW306	Ethylbenzene	3968		ug/L		2500000	
		Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73		EAKMW316-FP	Ethylbenzene	4205		ug/L		2960000	
1	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	10/10/01	EAKMW316	Ethylbenzene	1128		ug/L		4400000	ug/kg
							Analyte avg kfw	3432					
1	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	08/27/07	EAKMW306-FP	o-Xylene	2884	586	ug/L		1690000	ua/l
	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73		EAKMW306	o-Xylene	9815		ug/L ug/L		530000	
	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73		EAKMW316-FP	o-Xylene	9486		ug/L		2400000	
		Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73		EAKMW316-11	o-Xylene	700		ug/L		560000	
	IVIXIVIIXE	Opin Oile No. 2, Laker Ar B, Art	01 -4	10/01/10	10/10/01	LARWINGTO	Analyte avg kfw	5721	000	ug/L		300000	ug/kg
							7 that yes a vg kill	0/21					
1	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	08/27/97	EAKMW306-FP	m-Xylene	2663	199	ug/L		530000	ua/l
		Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73		EAKMW316-FP	m-Xylene	5405		ug/L		8880000	
		, , , , , , , , , , , , , , , , , , , ,					Analyte avg kfw	4034		- 3			
							. ,						
1	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	08/27/97	EAKMW306-FP	p-Xylene	4138	708	ug/L		2930000	ug/L
1	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	08/27/97	EAKMW316-FP	p-Xylene	5080		ug/L		4120000	ug/L
							Analyte avg kfw	4609					
		Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73		EAKMW306-FP	m&p-Xylene	3815		ug/L		3460000	
		Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73		EAKMW306	m&p-Xylene	4364		ug/L		4800000	ug/kg
	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73		EAKMW316-FP	m&p-Xylene	5297		ug/L		13000000	
1	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	10/10/01	EAKMW316	m&p-Xylene	1167	18000	ug/L		21000000	ug/kg
							Analyte avg kfw	3661					
1	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	09/27/07	EAKMW306-FP	Total Xylenes	3449	1402	ug/L		5150000	ua/l
	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73		EAKMW306	Total Xylenes	4619		ug/L		5330000	
	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73		EAKMW316-FP	Total Xylenes	5689				15400000	
		Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73		EAKMW316-11	Total Xylenes	1147				21560000	
	IVIIVIIVE	Opin Oite No. 2, Eaker Ar B, Art	01 4	10/01/73	10/10/01	L/4(VIVVO10	Analyte avg kfw	3726		ug/L		21300000	ug/kg
							, ,						
1	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	08/27/97	EAKMW306-FP	1,2,3-Trimethylbenzene	10156	192	ug/L		1950000	ug/L
	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73		EAKMW306	1,2,3-Trimethylbenzene	10833		ug/L		2600000	ug/kg
	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73		EAKMW316-FP	1,2,3-Trimethylbenzene	12932		ug/L		3440000	ug/L
1	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	10/10/01	EAKMW316	1,2,3-Trimethylbenzene	1143		ug/L		4000000	ug/kg
							Analyte avg kfw	8766					<u> </u>
	NDMC:	On the Otto No. O. Fallow A.F.D. A.D.	ID 4	40/04/55	00/07/0	E A 1/A MA/222 EE	4.0.4 Tiday att. "	100				===06::	
	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73		EAKMW306-FP	1,2,4-Trimethylbenzene	13257		ug/L		7570000	
1	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	10/10/01	EAKMW306	1,2,4-Trimethylbenzene	13253	830	ug/L		11000000	ug/kg

Event	Lab Code	Site Name	Fuel Type	Spill Date	Date	FPLocid	Analyte	Kfw	GW Results	GW UNITS	Flag	FP Results	Units
		Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73		EAKMW316-FP	1,2,4-Trimethylbenzene	15303		ug/L		9610000	
		Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73		EAKMW316	1,2,4-Trimethylbenzene	1494	8700			13000000	
							Analyte avg kfw	10827		Ŭ			
1	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	08/27/97	EAKMW306-FP	1,3,5-Trimethylbenzene	12605	334	ug/L		4210000	
1	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	10/10/01	EAKMW306	1,3,5-Trimethylbenzene	14359	390	ug/L		5600000	ug/kg
1	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	08/27/97	EAKMW316-FP	1,3,5-Trimethylbenzene	15860	314	ug/L		4980000	
1	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	10/10/01	EAKMW316	1,3,5-Trimethylbenzene	1722	3600	ug/L		6200000	ug/kg
							Analyte avg kfw	11136					
1	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	08/27/97	EAKMW306-FP	Naphthalene	6522	161	ug/L		1050000	ug/L
1	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	10/10/01	EAKMW306	Naphthalene	6800		ug/L		1700000	
1	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	08/27/97	EAKMW316-FP	Naphthalene	7634	131	ug/L		1000000	ug/L
1	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	10/10/01	EAKMW316	Naphthalene	625	2400			1500000	ug/kg
							Analyte avg kfw	5395		Ĭ			
							, ,						
1	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	08/27/97	EAKMW306-FP	1-MethylNaphthalene	18860	114	ug/L		2150000	ua/L
	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	08/27/97	EAKMW316-FP	1-MethylNaphthalene	23781		ug/L		1610000	
							Analyte avg kfw	21321		Ŭ			
							. ,						
1	NRMRL	Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	08/27/97	EAKMW306-FP	2-MethylNaphthalene	21823	181	ug/L		3950000	ua/L
		Spill Site No. 2, Eaker AFB, AR	JP-4	10/01/73	08/27/97	EAKMW316-FP	2-MethylNaphthalene	30177		ug/L		2900000	
							Analyte avg kfw	26000		-3			-3-
							r many to any min						
1	NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	06/01/90	08/12/97	BFT-401-3	Benzene	637	3.5	ug/L		2230	ua/l
	NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	06/01/90		BFT-401-3	Benzene	45		ug/L		2230	
		raint aim e, Beaarert merte, ee	0. 0	00.000	00/12/01	5	Analyte avg kfw	341		ug. L			ug/ _
							7 maryte avg kiv	011					
1	NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	06/01/90	08/12/97	BFT-401-3	Toluene	118	110	ug/L		13000	ua/l
	NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	06/01/90		BFT-401-3	Toluene	573		ug/L		13000	
	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	Turk Furth 6, Beautiff Wester, 66	01 0	00/01/00	00/12/07	DI 1 101 0	Analyte avg kfw	345		ugiL		10000	ugiL
							7 maryte avg kiv	010					
1	NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	06/01/90	08/12/97	BFT-401-3	Ethylbenzene	959	121	ug/L		116000	ua/l
	NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	06/01/90		BFT-401-3	Ethylbenzene	563		ug/L		116000	
	IVIXIVIIXE	Tank Faith 6, Beadlort WoA6, 66	01 -0	00/01/30	00/12/31	DI 1-401-0	Analyte avg kfw	761	200	ug/L		110000	ug/L
							Analyte avg Kiw	701					
1	NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	06/01/90	08/12/97	BFT-401-3	o-Xylene	1631	176	ug/L		287000	ua/l
	NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	06/01/90		BFT-401-3	o-Xylene	935		ug/L		287000	
- '	TATKIVITAL	Tank Faith 6, Beadior Works, 66	01 -0	00/01/30	00/12/31	DI 1-401-0	Analyte avg kfw	1283	307	ug/L		201000	ug/L
 							, analyte avg niv	1203					
1	NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	06/01/90	08/12/07	BFT-401-3	m-Xylene	1103	203	ug/L		224000	ua/l
	NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	06/01/90		BFT-401-3	m-Xylene	747		ug/L ug/L		224000	
- '	I AL ZIALL ZE	rank raini o, beautoit word, oo	01 -0	00/01/90	00/12/31	Di 1-701-0	Analyte avg kfw	925	300	ug/∟		227000	ug/L
							Analyte avy Niw	920					
1	NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	06/01/90	08/12/07	BFT-401-3	p-Xylene	1443	60	ug/L		99600	ua/l
	NRMRL	Tank Farm C, Beaufort MCAS, SC Tank Farm C, Beaufort MCAS, SC	JP-5 JP-5	06/01/90		BFT-401-3	p-Xylene p-Xylene	1048		ug/L ug/L		99600	
 '	IAIZIAILZE	rank raini G, Deauloit MCA3, 3C	UI -U	00/01/90	00/12/9/	D: 1-401-0	Analyte avg kfw	1246	90	ug/L		33000	ug/L
 							mialyte avy NW	1240					-
1	NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	06/01/90	08/12/07	BFT-401-3	Total-Xylenes	1363	110	ug/L		610600	ua/l
	NRMRL	Tank Farm C, Beaufort MCAS, SC Tank Farm C, Beaufort MCAS, SC	JP-5 JP-5	06/01/90		BFT-401-3	Total-Xylenes	870		ug/L ug/L		610600	
<u> </u>	INIXIVITAL	Talik Fallii C, Deauloit WCAS, SC	JP-0	06/01/90	00/12/9/	DF1-401-3		1116	702	uy/L		010000	ug/L
							Analyte avg kfw	1116		-			
	NDMDI	Tank Form C. Dogufert MCAC. CC	ID 5	06/04/00	00/40/07	DET 404 2	m n Vulanca	4400	070	/1		202000	/!
	NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5 JP-5	06/01/90		BFT-401-3	m,p-Xylenes	1190		ug/L		323600	
1	NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	06/01/90	08/12/97	BFT-401-3	m,p-Xylenes	819	395	ug/L		323600	ug/L
							Analyte avg kfw	1004					1

Event	Lab Code	Site Name	Fuel Type	Spill Date	Date	FPLocid	Analyte	Kfw	GW Results	GW UNITS	Flag	FP Results	Units
	MBMBI	T 1 5 0 0 0 1 111010 00	15.5	00/04/00	00/40/07	DET 101 0	1007: ""		500			470000	
	NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	06/01/90		BFT-401-3	1,2,3-Trimethylbenzene	3380		ug/L		1700000	
1	NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	06/01/90	08/12/97	BFT-401-3	1,2,3-Trimethylbenzene	3696		ug/L		1700000	ug/L
							Analyte avg kfw	3538					
- 1	NRMRL	Tank Farm C. Beaufort MCAS. SC	JP-5	06/01/90	00/12/07	BFT-401-3	1,2,4-Trimethylbenzene	3265	621	ug/L		2060000	ua/l
	NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	06/01/90		BFT-401-3	1,2,4-Trimethylbenzene	3451		ug/L		2060000	
<u>'</u>	INICIVINE	Talik Fallii C, Beauloit WCAS, SC	JF-5	00/01/90	00/12/9/	DF1-401-3	Analyte avg kfw	3358		ug/L		2000000	ug/L
							Analyte avg kiw	3330					-
1	NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	06/01/90	08/12/97	BFT-401-3	1,3,5-Trimethylbenzene	6794	126	ug/L		856000	ua/l
	NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	06/01/90		BFT-401-3	1,3,5-Trimethylbenzene	7575		ug/L		856000	
							Analyte avg kfw	7184					- 0
							, , , , ,						
1	NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	06/01/90	08/12/97	BFT-401-3	Naphthalene	1655	275	ug/L		455000	ug/L
1	NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	06/01/90	08/12/97	BFT-401-3	Naphthalene	1472	309	ug/L		455000	ug/L
							Analyte avg kfw	1564					
	NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	06/01/90		BFT-401-3	1-MethylNaphthalene	6000		ug/L		1290000	
1	NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	06/01/90	08/12/97	BFT-401-3	1-MethylNaphthalene	5513		ug/L		1290000	ug/L
							Analyte avg kfw	5756					
	NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	06/01/90		BFT-401-3	2-MethylNaphthalene	8721		ug/L		1500000	
1	NRMRL	Tank Farm C, Beaufort MCAS, SC	JP-5	06/01/90	08/12/97	BFT-401-3	2-MethylNaphthalene	7937		ug/L		1500000	ug/L
							Analyte avg kfw	8329					
	NIDMOL	Facility 202 Capil Field NAC FI	ID C	00/04/04	05/00/07	OFF 202 OFD	Danner	201	00	/1		22500	//
	NRMRL OBG	Facility 293, Cecil Field NAS, FL Facility 293, Cecil Field NAS, FL	JP-5 JP-5	06/01/81 06/01/81		CEF-293-9FP CEF-VEW-1	Benzene Benzene	261 12500		ug/L ug/L		23500	ug/L ug/kg
	OBG	racility 293, Cecii Field NAS, FL	JP-5	00/01/61	02/06/02	CEF-VEVV-1	Analyte avg kfw	6381		ug/L		25000	ug/kg
							Analyte avg kiw	0301					-
	NRMRL	Facility 293, Cecil Field NAS, FL	JP-5	06/01/81	05/20/97	CEF-293-9FP	Toluene	152	805	ug/L		122000	ua/l
	OBG	Facility 293, Cecil Field NAS, FL	JP-5	06/01/81		CEF-VEW-1	Toluene	5362		ug/L			ug/kg
	OBC	Tubility 200, Ocon Field 14 (0, FE	01 0	00/01/01	02/00/02	OLI VEVV I	Analyte avg kfw	2757	0.0	ugrE		07000	ugritg
							raidific dig iiii	2.0.					
	NRMRL	Facility 293, Cecil Field NAS, FL	JP-5	06/01/81	05/20/97	CEF-293-9FP	Ethylbenzene	2669	944	ug/L		2520000	ug/L
	OBG	Facility 293, Cecil Field NAS, FL	JP-5	06/01/81	02/08/02	CEF-VEW-1	Ethylbenzene	6316	19	ug/L		120000	ug/kg
							Analyte avg kfw	4493					0 0
	NRMRL	Facility 293, Cecil Field NAS, FL	JP-5	06/01/81		CEF-293-9FP	o-Xylene	635		ug/L		317000	ug/L
	OBG	Facility 293, Cecil Field NAS, FL	JP-5	06/01/81	02/08/02	CEF-VEW-1	o-Xylene	8462		ug/L		550000	ug/kg
							Analyte avg kfw	4548					
	NRMRL	Facility 293, Cecil Field NAS, FL	JP-5	06/01/81		CEF-293-9FP	m-Xylene	1867		ug/L		2800000	
	NRMRL	Facility 293, Cecil Field NAS, FL	JP-5	06/01/81	05/20/97	CEF-293-9FP	p-Xylene	2221		ug/L		1670000	ug/L
							Analyte avg kfw	2044					
	NIDME	Franklin 000 Orall Flatel NAO F	ID 5	00/04/04	05/00/05	055 000 055	0 V. J	1005	0050			4470000	
	NRMRL OBG	Facility 293, Cecil Field NAS, FL Facility 293, Cecil Field NAS, FL	JP-5 JP-5	06/01/81 06/01/81		CEF-293-9FP CEF-VEW-1	m&p-Xylene m&p-Xylene	1985 6250		ug/L ug/L		4470000 450000	
	OBG	Facility 293, Cecil Field NAS, FL	JP-5	06/01/81	02/08/02	CEF-VEVV-I	Analyte avg kfw	4117		ug/L		450000	ug/kg
							Analyte avy kiw	4117					
	NRMRL	Facility 293, Cecil Field NAS, FL	JP-5	06/01/81	05/20/07	CEF-293-9FP	Total xylenes	1740	2751	ug/l		4787000	ua/l
	OBG	Facility 293, Cecil Field NAS, FL	JP-5	06/01/81		CEF-VEW-1	Total xylenes	7299		ug/L ug/L		1000000	
		. 45, 250, 66011101414.6, 1 E	0. 0	00/01/01	32,00/02	J. V. V. I	Analyte avg kfw	4520		~g/ L		1000000	~9'''9
							,	1020					
	NRMRL	Facility 293, Cecil Field NAS, FL	JP-5	06/01/81	05/20/97	CEF-293-9FP	1,2,3-TMB	6549	284	ug/L		1860000	ua/L
	OBG	Facility 293, Cecil Field NAS, FL	JP-5	06/01/81		CEF-VEW-1	1,2,3-TMB	8333		ug/L		1800000	
							Analyte avg kfw	7441		Ĭ			

Event Lab Code	Site Name	Fuel Type	Spill Date	Date	FPLocid	Analyte	Kfw	GW Results	GW UNITS	Flag	FP Results	Units
NRMRL	Facility 293, Cecil Field NAS, FL	JP-5	06/01/81		CEF-293-9FP	1,2,4-TMB	6897		ug/L		4000000	
OBG	Facility 293, Cecil Field NAS, FL	JP-5	06/01/81	02/08/02	CEF-VEW-1	1,2,4-TMB	17045	88	ug/L		1500000	ug/kg
						Analyte avg kfw	11971					
NDMDI	Franklin 000 Orall Field NAO FI	ID 5	00/04/04	05/00/07	CEF-293-9FP	4.0.5 TMD	7705	404			4.400000	
NRMRL	Facility 293, Cecil Field NAS, FL	JP-5	06/01/81			1,3,5-TMB	7735		ug/L		1400000	
OBG	Facility 293, Cecil Field NAS, FL	JP-5	06/01/81	02/08/02	CEF-VEW-1	1,3,5-TMB	11765		ug/L		1000000	ug/kg
						Analyte avg kfw	9750					
NRMRL	Facility 293, Cecil Field NAS, FL	JP-5	06/01/81	05/20/97	CEF-293-9FP	Naphthalene	6787	277	ug/L		1880000	ua/l
OBG	Facility 293, Cecil Field NAS, FL	JP-5	06/01/81		CEF-VEW-1	Naphthalene	8605		ug/L		740000	
OBO	r denity 250, Ocen r leid 1470, r E	01 -0	00/01/01	02/00/02	OLI -VLVV-I	Analyte avg kfw	7696		ug/L		740000	ug/kg
						ruidiyio dvg kiiv	7000					
NRMRL	Facility 293, Cecil Field NAS, FL	JP-5	06/01/81	05/20/97	CEF-293-9FP	1-Methylnaphthalene	12722	180	ug/L		2290000	ug/L
NRMRL	Facility 293, Cecil Field NAS, FL	JP-5	06/01/81	05/20/97	CEF-293-9FP	2-Methylnaphthalene	21419	155	ug/L		3320000	ug/L
	•					Analyte avg kfw	17071					
3 NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95		SJMW1SFP	Benzene	229		ug/L		194000	
4 NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95		SJ98-MP2	Benzene	59		ug/L		48900	
OBG	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95	07/24/01	SJMW (18' from 1)	Benzene	1412		ug/L		480000	ug/kg
						Analyte avg kfw	566					
O LIBARI	DI 4500 0 11 45D 00	ID 0	10/01/05	05/45/05	0.11.11.11.05.0	T.	0.51	4400			100000	
3 NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95		SJMW1SFP	Toluene	251	4100			1030000	
4 NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95		SJ98-MP2	Toluene	220				638000	
OBG	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95	07/24/01	SJMW (18' from 1)	Toluene	560		ug/L		470000	ug/kg
						Analyte avg kfw	344					
3 NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95	05/15/97	SJMW1SFP	Ethylbenzene	1390	842	ug/L		1170000	ua/l
4 NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95		SJ98-MP2	Ethylbenzene	1448		ug/L		850000	
OBG	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95		SJMW (18' from 1)	Ethylbenzene	6818		ug/L		1500000	
	, , , , , , , , , , , , , , , , , , , ,				, ,	Analyte avg kfw	3219		- 3			. 5
						, ,						
3 NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95	05/15/97	SJMW1SFP	o-Xylene	1860	946	ug/L		1760000	
4 NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95	03/10/98	SJ98-MP2	o-Xylene	1459				1110000	ug/L
OBG	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95	07/24/01	SJMW (18' from 1)	o-Xylene	1500	200	ug/L		300000	ug/kg
						Analyte avg kfw	1606					
3 NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95		SJMW1SFP	m-Xylene	1891	1650			3120000	
4 NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95	03/10/98	SJ98-MP2	m-Xylene	1165		ug/L		1510000	ug/L
						Analyte avg kfw	1528					
3 NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95	05/15/07	SJMW1SFP	p-Xylene	1729	642	ug/L		1110000	ua/l
4 NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95		SJ98-MP2	p-Xylene p-Xylene	1361		ug/L		592000	
TATAWITAL	Bidg 4022, Geymodi Gomison Al B, Go	01 -0	12/01/33	00/10/00	0030-WII Z	Analyte avg kfw	1545		ug/L		332000	ug/L
						7 maryte avg kiv	1010					
3 NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95	05/15/97	SJ98-MP2	m&p-Xylene	1846	2292	ug/L		4230000	ug/L
4 NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95		SJ98-MP2	m&p-Xylene	1214				2102000	
OBG	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95	07/24/01	SJMW (18' from 1)	m&p-Xylene	9643		ug/L		5400000	
						Analyte avg kfw	4234					
			12/200									
3 NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95		SJMW1SFP	Total xylenes	1850				5990000	
	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95		SJ98-MP2	Total xylenes	1289				3212000	
OBG	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95	07/24/01	SJMW (18' from 1)	Total xylenes	7500		ug/L		5700000	ug/kg
		_				Analyte avg kfw	3546					
3 NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95	05/15/07	SJMW1SFP	1,2,3-Trimethylbenzene	6340	420	ug/L		2720000	ua/l
SINKIVIKL	Diag 7022, Ocymbul Juliisuli AFD, OC	JL-0	12/01/95	05/15/9/	OUIVIVY IOFF	1,2,3-THITIEUTYIDEHZEHE	0340	429	ug/L		2120000	ug/L

Event	Lab Code	Site Name	Fuel Type	Spill Date	Date	FPLocid	Analyte	Kfw	GW Results	GW UNITS F	lag	FP Results	Units
4	NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95		SJ98-MP2	1,2,3-Trimethylbenzene	6076	383.5	ug/L		2330000	
	OBG	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95	07/24/01	SJMW (18' from 1)	1,2,3-Trimethylbenzene	22619	84	ug/L		1900000	ug/kg
							Analyte avg kfw	11678					
	NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95		SJMW1SFP	1,2,4-Trimethylbenzene	7269		ug/L		5590000	
	NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95		SJ98-MP2	1,2,4-Trimethylbenzene	6281	697.3			4380000	
	OBG	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95	07/24/01	SJMW (18' from 1)	1,2,4-Trimethylbenzene	37143	210	ug/L		7800000	ug/kg
							Analyte avg kfw	16898					
3	NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95	05/15/97	SJMW1SFP	1,3,5-Trimethylbenzene	8108	259	ug/L		2100000	ua/l
	NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95		SJ98-MP2	1,3,5-Trimethylbenzene	6284		ug/L		1150000	
	OBG	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95		SJMW (18' from 1)	1,3,5-Trimethylbenzene	41509		ug/L		2200000	
			5. 5			(12	Analyte avg kfw	18634		-g-			-33
	NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95		SJMW1SFP	Naphthalene	5039		ug/L		1280000	
	NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95		SJ98-MP2	Naphthalene	3557	247.1			879000	
	OBG	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95	07/24/01	SJMW (18' from 1)	Naphthalene	12000	100	ug/L		1200000	ug/kg
							Analyte avg kfw	6866					
	NENTE	DI 1500 0 11 150 00	15.0	10/01/05	05/45/05	0 11 11 14 10 5 5	4.54 (1.55)	0.107	450			1510000	
	NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95		SJMW1SFP	1-MethylNaphthalene	9497		ug/L		1510000	
4	NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95	03/10/98	SJ98-MP2	1-MethylNaphthalene Analyte avg kfw	11759 10628	109.7	ug/L		1290000	ug/L
							Analyte avg kiw	10020					
3	NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95	05/15/97	SJMW1SFP	2-MethylNaphthalene	16963	135	ug/L		2290000	ua/l
	NRMRL	Bldg 4522, Seymour Johnson AFB, SC	JP-8	12/01/95		SJ98-MP2	2-MethylNaphthalene	13361	142.2			1900000	
7	IVICIVIIAE	Bidg 4022, Ocymour confiscit At B, OC	01 -0	12/01/33	00/10/00	0030-WII 2	Analyte avg kfw	15162	172.2	ug/L		1300000	ug/L
							i manyee ang imi						
	OBG	AGE Area, Seymour Johnson AFB, SC	JP-5	12/01/95	07/24/01	SJ-AGE-MW4	Benzene	14	740	ug/L		10000	ug/kg
	OBG	AGE Area, Seymour Johnson AFB, SC	JP-5	12/01/95	07/24/01	SJ-AGE-MW13	Benzene	293	1500	ug/L		440000	
							Analyte avg kfw	153					
	OBG	AGE Area, Seymour Johnson AFB, SC	JP-5	12/01/95		SJ-AGE-MW4	Toluene	257	1400			360000	
	OBG	AGE Area, Seymour Johnson AFB, SC	JP-5	12/01/95	07/24/01	SJ-AGE-MW13	Toluene	1263 760	3800	ug/L		4800000	ug/kg
							Analyte avg kfw	760					
	OBG	AGE Area, Seymour Johnson AFB, SC	JP-5	12/01/95	07/24/01	SJ-AGE-MW4	Ethylbenzene	2875	800	ug/L		2300000	ua/ka
	OBG	AGE Area, Seymour Johnson AFB, SC	JP-5	12/01/95		SJ-AGE-MW13	Ethylbenzene	3407		ug/L		920000	
	OBO	7.6E 7.66d, Coymour Cormount II B, CO	0. 0	12/01/00	01721701	CO TICL MITTIC	Analyte avg kfw	3141	210	ugiL		020000	ugritg
							a many to an g min						
	OBG	AGE Area, Seymour Johnson AFB, SC	JP-5	12/01/95	07/24/01	SJ-AGE-MW4	o-Xylene	2526	1900	ug/L		4800000	ug/kg
	OBG	AGE Area, Seymour Johnson AFB, SC	JP-5	12/01/95	07/24/01	SJ-AGE-MW13	o-Xylene	3083	1200	ug/L		3700000	ug/kg
							Analyte avg kfw	2805					
	OBG	AGE Area, Seymour Johnson AFB, SC	JP-5	12/01/95		SJ-AGE-MW4	m&p-Xylene	3421	3800			13000000	
	OBG	AGE Area, Seymour Johnson AFB, SC	JP-5	12/01/95	07/24/01	SJ-AGE-MW13	m&p-Xylene	3905	2100	ug/L		8200000	ug/kg
							Analyte avg kfw	3663					
	OBG	AGE Area, Seymour Johnson AFB, SC	JP-5	12/01/95	07/24/01	SJ-AGE-MW4	Total xylenes	3158	5700	ug/l		18000000	ua/ka
	OBG	AGE Area, Seymour Johnson AFB, SC	JP-5	12/01/95		SJ-AGE-MW13	Total xylenes	3636	3300			12000000	
	550	ACE 71104, Ocymbul bollison Al B, So	01 -0	12/01/30	3112 4 /01	CO /TOL-IVIV IO	Analyte avg kfw	3397	3300	ug, L		12000000	ugring
							, to urg nitt	0007					
	OBG	AGE Area, Seymour Johnson AFB, SC	JP-5	12/01/95	07/24/01	SJ-AGE-MW4	1,2,3-Trimethylbenzene	7838	370	ug/L		2900000	ug/kg
	OBG	AGE Area, Seymour Johnson AFB, SC	JP-5	12/01/95	07/24/01	SJ-AGE-MW13	1,2,3-Trimethylbenzene	4130		ug/L		1900000	
							Analyte avg kfw	5984					
	OBG	AGE Area, Seymour Johnson AFB, SC	JP-5	12/01/95	07/24/01	SJ-AGE-MW4	1,2,4-Trimethylbenzene	14141	990	ug/L		14000000	ug/kg

Event	Lab Code	Site Name	Fuel Type	Spill Date	Date	FPLocid	Analyte	Kfw	GW Results	GW UNITS	Flag	FP Results	Units
	OBG	AGE Area, Seymour Johnson AFB, SC	JP-5	12/01/95	07/24/01	SJ-AGE-MW13	1,2,4-Trimethylbenzene	12353	510	ug/L		6300000	ug/kg
							Analyte avg kfw	13247					
		AGE Area, Seymour Johnson AFB, SC	JP-5	12/01/95		SJ-AGE-MW4	1,3,5-Trimethylbenzene	17917		ug/L		4300000	
	OBG	AGE Area, Seymour Johnson AFB, SC	JP-5	12/01/95	07/24/01	SJ-AGE-MW13	1,3,5-Trimethylbenzene	14706	170	ug/L		2500000	ug/kg
							Analyte avg kfw	16311					
		AGE Area, Seymour Johnson AFB, SC	JP-5	12/01/95		SJ-AGE-MW4	Naphthalene	4875		ug/L		780000	
	OBG	AGE Area, Seymour Johnson AFB, SC	JP-5	12/01/95	07/24/01	SJ-AGE-MW13	Naphthalene	5417		ug/L		1300000	ug/kg
							Analyte avg kfw	5146					
1													
	NRMRL	JP-8 Release Site, Pope AFB, NC	JP-8	04/01/96		SOURCE AREA	Benzene	50		ug/L			ug/L
1	NRMRL	JP-8 Release Site, Pope AFB, NC	JP-8	04/01/96	07/17/96	SOURCE AREA	Benzene	50	0.5	ug/L		25	ug/L
							Analyte avg kfw	50					
	NRMRL	JP-8 Release Site, Pope AFB, NC	JP-8	04/01/96		SOURCE AREA	Toluene	1		ug/L			ug/L
1	NRMRL	JP-8 Release Site, Pope AFB, NC	JP-8	04/01/96	07/17/96	SOURCE AREA	Toluene	25		ug/L		25	ug/L
							Analyte avg kfw	13					
1	NRMRL	JP-8 Release Site. Pope AFB. NC	JP-8	04/01/96	07/17/96	SOURCE AREA	Ethylbenzene	9000	7	ug/L		63000	ug/l
	NRMRL	JP-8 Release Site, Pope AFB, NC	JP-8	04/01/96		SOURCE AREA	Ethylbenzene	1969		ug/L		63000	
		,					Analyte avg kfw	5484		- 3			- 0
							. ,						
1	NRMRL	JP-8 Release Site, Pope AFB, NC	JP-8	04/01/96	07/17/96	SOURCE AREA	o-Xylene	13727	33	ug/L		453000	ua/L
1	NRMRL	JP-8 Release Site, Pope AFB, NC	JP-8	04/01/96	07/17/96	SOURCE AREA	o-Xylene	4768		ug/L		453000	
							Analyte avg kfw	9248		Ĭ			
							, ,						1
1	NRMRL	JP-8 Release Site, Pope AFB, NC	JP-8	04/01/96	07/17/96	SOURCE AREA	m,p-Xylene	2521	219	ug/L		552000	ug/L
1	NRMRL	JP-8 Release Site, Pope AFB, NC	JP-8	04/01/96	07/17/96	SOURCE AREA	m,p-Xylene	NA	0	ug/L		552000	ug/L
							Analyte avg kfw	2521					
1	NRMRL	JP-8 Release Site, Pope AFB, NC	JP-8	04/01/96	07/17/96	SOURCE AREA	Total Xylenes (m,p, and o)	3988	252	ug/L		1005000	ua/l
	NRMRL	JP-8 Release Site, Pope AFB, NC	JP-8	04/01/96		SOURCE AREA	Total Xylenes (m,p, and o)	10579		ug/L		1005000	
	THE COUNTY	or ortalisado olto, r ope Ar B, 140	0. 0	3 110 1130	31,11730	OOOROL AIRLA	Analyte avg kfw	7284	33	ug, L		1000000	- ug/ L
							, and just dry little	7201					+

APPENDIX C-3 RESIDUAL LNAPL CALCULATIONS

Lab Code	Fuel Type	Snill Date	Date S	Site Name Matix	Locid	Analyte	Results Units	Flag FC Analyte	FC Ratio	FPLocid	FPdensity	FPunits	SoilFuel (ug/mL)
NRMRL	Gasoline	6/1/1990			CPT1-39.5	Benzene	42.8 mg/kg	B/FC	0.021725888		738000		16034
NRMRL	Gasoline	6/1/1990			CPT1-39.5	Toluene	105 mg/kg	T/FC	0.053299492		738000		39335
NRMRL	Gasoline	6/1/1990			CPT1-39.5	Ethylbenzene	24.4 mg/kg	E/FC	0.012385787		738000		9141
NRMRL	Gasoline	6/1/1990	##### Tank 349, Offutt AF	FB, NE Soil	CPT1-39.5	m-Xylene	42.4 mg/kg	m-Xylene/FC	0.021522843	MW349-1	738000		15884
NRMRL	Gasoline	6/1/1990	##### Tank 349, Offutt AF	B, NE Soil	CPT1-39.5	o-Xylene	24.3 mg/kg	o-Xylene/FC	0.012335025	MW349-1	738000		9103
NRMRL	Gasoline	6/1/1990	###### Tank 349, Offutt AF	B, NE Soil	CPT1-39.5	p-Xylene	19.3 mg/kg	p-Xylene/FC	0.009796954	MW349-1	738000	ug/mL	7230
NRMRL	Gasoline	6/1/1990			CPT1-39.5	Total Xylenes (m,p, and o)	86 mg/kg	X/FC	0.043654822		738000		32217
NRMRL	Gasoline	6/1/1990			CPT1-39.5	Total BTEX	258.2 mg/kg	BTEX/FC	0.13106599		738000		96727
NRMRL	Gasoline	6/1/1990			CPT1-39.5	B+T	147.8 mg/kg	(B+T)/FC	0.075025381		738000		55369
NRMRL	Gasoline	6/1/1990			CPT1-39.5	E+X	110.4 mg/kg	(E+X)/FC	0.056040609		738000		41358
NRMRL	Gasoline	6/1/1990			CPT1-39.5	B/T	0.40761905	(B/T)/FC	0.000206913		738000		153
NRMRL NRMRL	Gasoline	6/1/1990 6/1/1990			CPT1-39.5 CPT1-39.5	B/E B/X	1.75409836 0.49767442	(B/E)/FC (B/X)/FC	0.000890405 0.000252627		738000		657 186
NRMRL	Gasoline Gasoline	6/1/1990			CPT1-39.5 CPT1-39.5	T/E	4.30327869	(B/X)/FC (T/E)/FC	0.000252627		738000 738000		1612
NRMRL	Gasoline	6/1/1990			CPT1-39.5 CPT1-39.5	T/X	1.22093023	(T/X)/FC	0.002164403		738000		457
NRMRL	Gasoline	6/1/1990		B, NE Soil	CPT1-39.5	E/X	0.28372093	(E/X)/FC	0.00019702		738000		106
NRMRL	Gasoline	6/1/1990			CPT1-39.5	(B+T)/(E+X)	1.33876812	((B+T)/(E+X))/FC			738000		502
NRMRL	Gasoline	6/1/1990			CPT1-39.5	Fuel Carbon	1970 mg/kg			MW349-1	738000		738000
NRMRL	Gasoline	6/1/1990			OFSB-1-39'	Benzene	0.562 mg/kg					- 0	
NRMRL	Gasoline	6/1/1990			OFSB-1-39'	Toluene	0.334 mg/kg				1		
NRMRL	Gasoline	6/1/1990			OFSB-1-39'	Ethylbenzene	0.291 mg/kg						
NRMRL	Gasoline	6/1/1990			OFSB-1-39'	m-Xylene	0.42 mg/kg						
NRMRL	Gasoline	6/1/1990			OFSB-1-39'	o-Xylene	0.147 mg/kg						
NRMRL	Gasoline	6/1/1990			OFSB-1-39'	p-Xylene	0.224 mg/kg						
NRMRL	Gasoline	6/1/1990			OFSB-1-39'	Total Xylenes (m,p, and o)	0.791 mg/kg						
NRMRL	Gasoline	6/1/1990			OFSB-1-39'	Total BTEX	1.978 mg/kg						
NRMRL	Gasoline	6/1/1990			OFSB-1-39'	B+T	0.896 mg/kg						
NRMRL	Gasoline	6/1/1990			OFSB-1-39'	E+X	1.082 mg/kg						
NRMRL	Gasoline	6/1/1990			OFSB-1-39'	B/T	1.68263473						
NRMRL NRMRL	Gasoline	6/1/1990 6/1/1990			OFSB-1-39' OFSB-1-39'	B/E B/X	1.93127148 0.71049305						
NRMRL	Gasoline Gasoline	6/1/1990			OFSB-1-39 OFSB-1-39'	T/E	1.14776632						
NRMRL	Gasoline	6/1/1990			OFSB-1-39'	T/X	0.42225032						
NRMRL	Gasoline	6/1/1990			OFSB-1-39'	E/X	0.36788875						
NRMRL	Gasoline	6/1/1990			OFSB-1-39'	(B+T)/(E+X)	0.82809612						
NRMRL	Gasoline	6/1/1990			OFSB-1-39'	1,2,3-Trimethylbenzene	0.044 mg/kg						
NRMRL	Gasoline	6/1/1990			OFSB-1-39'	1,2,4-Trimethylbenzene	0.295 mg/kg						
NRMRL	Gasoline	6/1/1990	##### Tank 349, Offutt AF	FB, NE Soil	OFSB-1-39'	1,3,5-Trimethylbenzene	0.106 mg/kg						
NRMRL	Gasoline	6/1/1990	##### Tank 349, Offutt AF	B, NE Soil	OFSB-1-39'	1-MethylNaphthalene	0.0118 mg/kg						
NRMRL	Gasoline	6/1/1990	###### Tank 349, Offutt AF	B, NE Soil	OFSB-1-39'	2-MethylNaphthalene	0.0315 mg/kg						
NRMRL	Gasoline	6/1/1990			OFSB-1-40'	Benzene	40.2 mg/kg						
NRMRL	Gasoline	6/1/1990			OFSB-1-40'	Toluene	165 mg/kg						
NRMRL	Gasoline	6/1/1990			OFSB-1-40'	Ethylbenzene	58.7 mg/kg						
NRMRL	Gasoline	6/1/1990			OFSB-1-40'	m-Xylene	99.8 mg/kg						
NRMRL	Gasoline	6/1/1990			OFSB-1-40'	o-Xylene	55.2 mg/kg						
NRMRL NRMRL	Gasoline	6/1/1990 6/1/1990			OFSB-1-40' OFSB-1-40'	p-Xylene	48 mg/kg				-		
NRMRL	Gasoline Gasoline	6/1/1990			OFSB-1-40'	Total Xylenes (m,p, and o) Total BTEX	203 mg/kg 466.9 mg/kg				 		
NRMRL	Gasoline	6/1/1990			OFSB-1-40'	B+T	205.2 mg/kg						
NRMRL	Gasoline	6/1/1990			OFSB-1-40'	E+X	261.7 mg/kg				-		
NRMRL	Gasoline	6/1/1990			OFSB-1-40'	B/T	0.24363636				 		
NRMRL	Gasoline	6/1/1990			OFSB-1-40'	B/E	0.68483816						
NRMRL	Gasoline	6/1/1990			OFSB-1-40'	B/X	0.19802956						
NRMRL	Gasoline	6/1/1990			OFSB-1-40'	T/E	2.8109029						
NRMRL	Gasoline	6/1/1990			OFSB-1-40'	T/X	0.81280788						
NRMRL	Gasoline	6/1/1990			OFSB-1-40'	E/X	0.28916256						
NRMRL	Gasoline	6/1/1990			OFSB-1-40'	(B+T)/(E+X)	0.78410394						
NRMRL	Gasoline	6/1/1990			OFSB-1-40'	1,2,3-Trimethylbenzene	17.6 mg/kg						
NRMRL	Gasoline	6/1/1990			OFSB-1-40'	1,2,4-Trimethylbenzene	66 mg/kg						
NRMRL	Gasoline	6/1/1990			OFSB-1-40'	1,3,5-Trimethylbenzene	22.3 mg/kg						
NRMRL	Gasoline	6/1/1990			OFSB-1-40'	1-MethylNaphthalene	5.59 mg/kg						
NRMRL	Gasoline	6/1/1990			OFSB-1-40'	2-MethylNaphthalene	11.7 mg/kg						
NRMRL	Gasoline	6/1/1990			OFSB-2-39'	Benzene	19.2 mg/kg				ļ		
NRMRL	Gasoline	6/1/1990			OFSB-2-39'	Toluene	83.2 mg/kg				-		
NRMRL	Gasoline	6/1/1990	###### Tank 349, Offutt AF	FB, NE Soil	OFSB-2-39'	Ethylbenzene	37 mg/kg				1		

Lab Code	Fuel Type	Spill Date	Date	Site Name	Matix	Locid	Analyte	Results	Units Flag	FC Analyte	FC Ratio	FPLocid	FPdensity	FPunits	SoilFuel (ug/mL)
NRMRL	Gasoline	6/1/1990	######	Tank 349, Offutt AFB, NE	Soil	OFSB-2-39'	m-Xylene	58.7	mg/kg						
NRMRL	Gasoline	6/1/1990	######	Tank 349, Offutt AFB, NE	Soil	OFSB-2-39'	o-Xylene		mg/kg						
NRMRL	Gasoline	6/1/1990	######	Tank 349, Offutt AFB, NE	Soil	OFSB-2-39'	p-Xylene	28.1	mg/kg						
NRMRL	Gasoline	6/1/1990	######	Tank 349, Offutt AFB, NE	Soil	OFSB-2-39'	Total Xylenes (m,p, and o)	119.7	mg/kg						
NRMRL	Gasoline	6/1/1990	######	Tank 349, Offutt AFB, NE	Soil	OFSB-2-39'	Total BTEX	259.1	mg/kg						
NRMRL	Gasoline	6/1/1990	######	Tank 349, Offutt AFB, NE	Soil	OFSB-2-39'	B+T	102.4	mg/kg						
NRMRL	Gasoline	6/1/1990	######	Tank 349, Offutt AFB, NE	Soil	OFSB-2-39'	E+X	156.7	mg/kg						
NRMRL	Gasoline	6/1/1990	######	Tank 349, Offutt AFB, NE	Soil	OFSB-2-39'	B/T	0.23076923							
NRMRL	Gasoline	6/1/1990	######	Tank 349, Offutt AFB, NE	Soil	OFSB-2-39'	B/E	0.51891892							
NRMRL	Gasoline	6/1/1990	######	Tank 349, Offutt AFB, NE	Soil	OFSB-2-39'	B/X	0.160401							
NRMRL	Gasoline			Tank 349, Offutt AFB, NE	Soil	OFSB-2-39'	T/E	2.24864865							
NRMRL	Gasoline	6/1/1990	######	Tank 349, Offutt AFB, NE	Soil	OFSB-2-39'	T/X	0.69507101							
NRMRL	Gasoline	6/1/1990	######	Tank 349, Offutt AFB, NE	Soil	OFSB-2-39'	E/X	0.3091061							
NRMRL	Gasoline	6/1/1990	######	Tank 349, Offutt AFB, NE	Soil	OFSB-2-39'	(B+T)/(E+X)	0.65347798							
NRMRL	Gasoline			Tank 349, Offutt AFB, NE	Soil	OFSB-2-39'	1,2,3-Trimethylbenzene		mg/kg						
NRMRL	Gasoline			Tank 349, Offutt AFB, NE	Soil	OFSB-2-39'	1,2,4-Trimethylbenzene	45.6	mg/kg						
	Gasoline			Tank 349, Offutt AFB, NE	Soil	OFSB-2-39'	1,3,5-Trimethylbenzene		mg/kg						
NRMRL	Gasoline	6/1/1990	######	Tank 349, Offutt AFB, NE	Soil	OFSB-2-39'	1-MethylNaphthalene	2.63	mg/kg						
NRMRL	Gasoline	6/1/1990	#######	Tank 349, Offutt AFB, NE	Soil	OFSB-2-39'	2-MethylNaphthalene	5.36	mg/kg						
			-	_											

		Spill Date Date	Site Name	Matix		Analyte	Results Units Flag		FC Ratio		FPdensity FPunits	SoilFuel (ug/mL)
NRMRL	JP-4		3ldg 1610, Shaw AFB, SC	Soil	SH98-SB1-27	Benzene	0.331 mg/kg	B/FC		SH98-1610-2	780000 ug/mL	101
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB1-27	Toluene	0.551 mg/kg	T/FC		SH98-1610-2	780000 ug/mL	168
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB1-27	Ethylbenzene	1.84 mg/kg	E/FC		SH98-1610-2	780000 ug/mL	561
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB1-27	m-Xylene	5.11 mg/kg	m-Xylene/FC		SH98-1610-2	780000 ug/mL	1557
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB1-27	o-Xylene	1.86 mg/kg	o-Xylene/FC		SH98-1610-2	780000 ug/mL	567
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB1-27	p-Xylene	1.85 mg/kg	p-Xylene/FC		SH98-1610-2	780000 ug/mL	564
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB1-27	Total Xylenes (m,p, and o)	8.82 mg/kg	X/FC		SH98-1610-2	780000 ug/mL	2687
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB1-27	Total BTEX	11.542 mg/kg	BTEX/FC		SH98-1610-2	780000 ug/mL	3517
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB1-27	B+T	0.882 mg/kg	(B+T)/FC		SH98-1610-2	780000 ug/mL	269
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB1-27	E+X	10.66 mg/kg	(E+X)/FC		SH98-1610-2	780000 ug/mL	3248
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB1-27		0.60072595	(B/T)/FC		SH98-1610-2	780000 ug/mL	183
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB1-27	B/E	0.1798913	(B/E)/FC		SH98-1610-2	780000 ug/mL	55
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB1-27	B/X	0.03752834	(B/X)/FC		SH98-1610-2	780000 ug/mL	11
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB1-27	T/E	0.29945652	(T/E)/FC		SH98-1610-2	780000 ug/mL	91
NRMRL	JP-4	6/1/1994 ######	Bldg 1610, Shaw AFB, SC	Soil	SH98-SB1-27		0.06247166	(T/X)/FC		SH98-1610-2	780000 ug/mL	19
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB1-27		0.20861678	(E/X)/FC		SH98-1610-2	780000 ug/mL	64
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB1-27	` '\ '	0.08273921	((B+T)/(E+X))/FC			780000 ug/mL	25
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB1-27	Fuel Carbon	2560 mg/kg	Fuel Carbon		SH98-1610-2	780000 ug/mL	780000
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB1-27	1,2,3-Trimethylbenzene	3.38 mg/kg	1,2,3 TMB/FC		SH98-1610-2	780000 ug/mL	1030
NRMRL	JP-4	6/1/1994 ######	Bldg 1610, Shaw AFB, SC	Soil	SH98-SB1-27	1,2,4-Trimethylbenzene	11.5 mg/kg	1,2,4 TMB/FC		SH98-1610-2	780000 ug/mL	3504
NRMRL	JP-4		3ldg 1610, Shaw AFB, SC	Soil	SH98-SB1-27	1,3,5-Trimethylbenzene	4.83 mg/kg	1,3,5 TMB/FC		SH98-1610-2	780000 ug/mL	1472
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB1-27	1-MethylNaphthalene	0.789 mg/kg	1-MN/FC		SH98-1610-2	780000 ug/mL	240
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB1-27	2-MethylNaphthalene	1.5 mg/kg	2-MN/FC		SH98-1610-2	780000 ug/mL	457
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB2-27	Benzene	0.394 mg/kg	B/FC		SH98-1610-3	777000 ug/mL	116
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB2-27	Toluene	0.335 mg/kg	T/FC		SH98-1610-3	777000 ug/mL	99
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB2-27	Ethylbenzene	3.9 mg/kg	E/FC		SH98-1610-3	777000 ug/mL	1148
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB2-27	m-Xylene	12.5 mg/kg	m-Xylene/FC		SH98-1610-3	777000 ug/mL	3679
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB2-27	o-Xylene	7.18 mg/kg	o-Xylene/FC		SH98-1610-3	777000 ug/mL	2113
NRMRL	JP-4		3ldg 1610, Shaw AFB, SC	Soil	SH98-SB2-27	p-Xylene	4.43 mg/kg	p-Xylene/FC		SH98-1610-3	777000 ug/mL	1304
NRMRL	JP-4		3ldg 1610, Shaw AFB, SC	Soil	SH98-SB2-27	Total Xylenes (m,p, and o)	24.11 mg/kg	X/FC		SH98-1610-3	777000 ug/mL	7096
NRMRL	JP-4		3ldg 1610, Shaw AFB, SC	Soil	SH98-SB2-27	Total BTEX	28.739 mg/kg	BTEX/FC		SH98-1610-3	777000 ug/mL	8458
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB2-27	B+T	0.729 mg/kg	(B+T)/FC		SH98-1610-3	777000 ug/mL	215
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB2-27	E+X	28.01 mg/kg	(E+X)/FC		SH98-1610-3	777000 ug/mL	8244
NRMRL	JP-4		3ldg 1610, Shaw AFB, SC	Soil	SH98-SB2-27	B/T	1.1761194	(B/T)/FC		SH98-1610-3	777000 ug/mL	346
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB2-27		0.10102564	(B/E)/FC		SH98-1610-3	777000 ug/mL	30
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB2-27		0.01634177	(B/X)/FC		SH98-1610-3	777000 ug/mL	5
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB2-27		0.08589744	(T/E)/FC		SH98-1610-3	777000 ug/mL	25
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB2-27		0.01389465	(T/X)/FC		SH98-1610-3	777000 ug/mL	4
NRMRL	JP-4		3ldg 1610, Shaw AFB, SC	Soil	SH98-SB2-27		0.16175861	(E/X)/FC		SH98-1610-3	777000 ug/mL	48
NRMRL	JP-4		3ldg 1610, Shaw AFB, SC	Soil	SH98-SB2-27		0.02602642	((B+T)/(E+X))/FC			777000 ug/mL	8
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB2-27	Fuel Carbon	2640 mg/kg	Fuel Carbon		SH98-1610-3	777000 ug/mL	777000
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB2-27	1,2,3-Trimethylbenzene	10.3 mg/kg	1,2,3 TMB/FC		SH98-1610-3	777000 ug/mL	3031
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB2-27	1,2,4-Trimethylbenzene	24.7 mg/kg	1,2,4 TMB/FC		SH98-1610-3	777000 ug/mL	7270
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB2-27	1,3,5-Trimethylbenzene	7.8 mg/kg	1,3,5 TMB/FC		SH98-1610-3	777000 ug/mL	2296
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB2-27	1-MethylNaphthalene	4.42 mg/kg	1-MN/FC		SH98-1610-3	777000 ug/mL	1301
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SH98-SB2-27	2-MethylNaphthalene	7.11 mg/kg	2-MN/FC		SH98-1610-3	777000 ug/mL	2093
NRMRL	JP-4	6/1/1994 ###### [Bldg 1610, Shaw AFB, SC	Soil	SHSB-1-33'	Benzene	0.544 mg/kg	B/FC		SHMW1610-2	765000 ug/mL	2225
NRMRL	JP-4	6/1/1994 ###### [Bldg 1610, Shaw AFB, SC	Soil	SHSB-1-33'	Toluene	0.787 mg/kg	T/FC		SHMW1610-2	765000 ug/mL	3220
NRMRL	JP-4	6/1/1994 ######	Bldg 1610, Shaw AFB, SC	Soil	SHSB-1-33'	Ethylbenzene	0.224 mg/kg	E/FC		SHMW1610-2	765000 ug/mL	916
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SHSB-1-33'	m-Xylene	0.78 mg/kg	m-Xylene/FC		SHMW1610-2	765000 ug/mL	3191
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SHSB-1-33'	o-Xylene	0.581 mg/kg	o-Xylene/FC		SHMW1610-2	765000 ug/mL	2377
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SHSB-1-33'	p-Xylene	0.257 mg/kg	p-Xylene/FC		SHMW1610-2	765000 ug/mL	1051
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SHSB-1-33'	Total Xylenes (m,p, and o)	1.618 mg/kg	X/FC		SHMW1610-2	765000 ug/mL	6619
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SHSB-1-33'	Total BTEX	3.173 mg/kg	BTEX/FC		SHMW1610-2	765000 ug/mL	12980
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SHSB-1-33'	B+T	1.331 mg/kg	(B+T)/FC		SHMW1610-2	765000 ug/mL	5445
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SHSB-1-33'	E+X	1.842 mg/kg	(E+X)/FC		SHMW1610-2	765000 ug/mL	7535
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SHSB-1-33'	B/T	0.69123253	(B/T)/FC		SHMW1610-2	765000 ug/mL	2828
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SHSB-1-33'		2.42857143	(B/E)/FC		SHMW1610-2	765000 ug/mL	9935
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SHSB-1-33'		0.33621755	(B/X)/FC		SHMW1610-2	765000 ug/mL	1375
NRMRL	JP-4	6/1/1994 ######	Bldg 1610, Shaw AFB, SC	Soil	SHSB-1-33'	T/E	3.51339286	(T/E)/FC	0.018788	SHMW1610-2	765000 ug/mL	14373
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SHSB-1-33'	T/X	0.48640297	(T/X)/FC		SHMW1610-2	765000 ug/mL	1990
NRMRL	JP-4	6/1/1994 ###### [Bldg 1610, Shaw AFB, SC	Soil	SHSB-1-33'	E/X	0.13844252	(E/X)/FC		SHMW1610-2	765000 ug/mL	566
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SHSB-1-33'	(B+T)/(E+X)	0.72258415	((B+T)/(E+X))/FC	0.003864	SHMW1610-2	765000 ug/mL	2956
	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SHSB-1-33'	Fuel Carbon	187 mg/kg	Fuel Carbon		SHMW1610-2	765000 ug/mL	765000
NRMRL												

Lab Code	Fuel Type	Spill Date Date	Site Name	Matix	Locid	Analyte	Results Units Flag	FC Analyte	FC Ratio	FPLocid	FPdensity FPunits	SoilFuel (ug/mL)
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SHSB-1-33'	1,2,4-Trimethylbenzene	1.74 mg/kg	1,2,4 TMB/FC		SHMW1610-2	765000 ug/mL	7118
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SHSB-1-33'	1,3,5-Trimethylbenzene	0.527 mg/kg	1,3,5 TMB/FC		SHMW1610-2	765000 ug/mL	2156
NRMRL	JP-4	6/1/1994 ######	Bldg 1610, Shaw AFB, SC	Soil	SHSB-1-33'	1-MethylNaphthalene	0.456 mg/kg	1-MN/FC		SHMW1610-2	765000 ug/mL	1865
NRMRL	JP-4	6/1/1994 ######	Bldg 1610, Shaw AFB, SC	Soil	SHSB-1-33'	2-MethylNaphthalene	0.72 mg/kg	2-MN/FC	0.00385	SHMW1610-2	765000 ug/mL	2945
NRMRL	JP-4	6/1/1994 ######	Bldg 1610, Shaw AFB, SC	Soil	SHSB-2-33'	Benzene	5.08 mg/kg	B/FC	0.002117	SHMW1610-3	783000 ug/mL	1657
NRMRL	JP-4	6/1/1994 ######	Bldg 1610, Shaw AFB, SC	Soil	SHSB-2-33'	Toluene	10.8 mg/kg	T/FC	0.0045	SHMW1610-3	783000 ug/mL	3524
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SHSB-2-33'	Ethylbenzene	3.58 mg/kg	E/FC		SHMW1610-3	783000 ug/mL	1168
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SHSB-2-33'	m-Xylene	12.2 mg/kg	m-Xylene/FC		SHMW1610-3	783000 ug/mL	3980
NRMRL	JP-4	6/1/1994 ######	Bldg 1610, Shaw AFB, SC	Soil	SHSB-2-33'	o-Xylene	8.92 mg/kg	o-Xylene/FC		SHMW1610-3	783000 ug/mL	2910
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SHSB-2-33'	p-Xylene	4.17 mg/kg	p-Xylene/FC		SHMW1610-3	783000 ug/mL	1360
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SHSB-2-33'	Total Xylenes (m,p, and o)	25.29 mg/kg	X/FC		SHMW1610-3	783000 ug/mL	8251
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SHSB-2-33'	Total BTEX	44.75 mg/kg	BTEX/FC		SHMW1610-3	783000 ug/mL	14600
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SHSB-2-33'	B+T	15.88 mg/kg	(B+T)/FC		SHMW1610-3	783000 ug/mL	5181
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SHSB-2-33'	E+X	28.87 mg/kg	(E+X)/FC		SHMW1610-3	783000 ug/mL	9419
NRMRL	JP-4	6/1/1994 ######	Bldg 1610, Shaw AFB, SC	Soil	SHSB-2-33'	B/T	0.47037037	(B/T)/FC		SHMW1610-3	783000 ug/mL	153
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SHSB-2-33'	B/E	1.41899441	(B/E)/FC		SHMW1610-3	783000 ug/mL	463
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SHSB-2-33'	B/X	0.20086991	(B/X)/FC		SHMW1610-3	783000 ug/mL	66
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SHSB-2-33'	T/E	3.01675978	(T/E)/FC		SHMW1610-3	783000 ug/mL	984
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SHSB-2-33'	T/X	0.42704626	(T/X)/FC		SHMW1610-3	783000 ug/mL	139
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SHSB-2-33'		0.14155793	(E/X)/FC		SHMW1610-3	783000 ug/mL	46
NRMRL	JP-4		Bldg 1610, Shaw AFB, SC	Soil	SHSB-2-33'		0.55005196	((B+T)/(E+X))/FC			783000 ug/mL	179
NRMRL	JP-4 JP-4		Bldg 1610, Shaw AFB, SC	Soil	SHSB-2-33'	Fuel Carbon	2400 mg/kg	Fuel Carbon		SHMW1610-3	783000 ug/mL	783000
NRMRL NRMRL	JP-4 JP-4		Bldg 1610, Shaw AFB, SC Bldg 1610, Shaw AFB, SC	Soil Soil	SHSB-2-33' SHSB-2-33'	1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene	13.3 mg/kg	1,2,3 TMB/FC 1,2,4 TMB/FC		SHMW1610-3 SHMW1610-3	783000 ug/mL 783000 ug/mL	4339 8222
NRMRL	JP-4 JP-4		Bldg 1610, Shaw AFB, SC	Soil			25.2 mg/kg					4404
NRMRL	JP-4 JP-4		Bldg 1610, Shaw AFB, SC	Soil	SHSB-2-33' SHSB-2-33'	1,3,5-Trimethylbenzene	13.5 mg/kg	1,3,5 TMB/FC 1-MN/FC		SHMW1610-3 SHMW1610-3	783000 ug/mL	1732
NRMRL	JP-4 JP-4		Bldg 1610, Shaw AFB, SC	Soil	SHSB-2-33'	1-MethylNaphthalene 2-MethylNaphthalene	5.31 mg/kg 8.72 mg/kg	2-MN/FC		SHMW1610-3	783000 ug/mL 783000 ug/mL	2845
NRMRL	JP-4		DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB1-14.5'	Benzene	0.006 mg/kg **	B/FC		CH-MW-103	760000 ug/mL	fuel carbon = nd
NRMRL	JP-4		DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB1-14.5'	Toluene	0.000 mg/kg	T/FC		CH-MW-103	760000 ug/mL	fuel carbon = nd
NRMRL	JP-4		DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB1-14.5'	Ethylbenzene	0.006 mg/kg **	E/FC		CH-MW-103	760000 ug/mL	fuel carbon = nd
NRMRL	JP-4		DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB1-14.5'	m-Xylene	0.006 mg/kg **	m-Xylene/FC		CH-MW-103	760000 ug/mL	fuel carbon = nd
NRMRL	JP-4		DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB1-14.5'	o-Xylene	0.006 mg/kg **	o-Xylene/FC		CH-MW-103	760000 ug/mL	fuel carbon = nd
NRMRL	JP-4		DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB1-14.5'	p-Xylene	0.006 mg/kg **	p-Xylene/FC		CH-MW-103	760000 ug/mL	fuel carbon = nd
NRMRL	JP-4			Soil	CHSB1-14.5'	Total Xylenes (m,p, and o)	0.018 mg/kg	X/FC		CH-MW-103	760000 ug/mL	fuel carbon = nd
NRMRL	JP-4			Soil	CHSB1-14.5'	Total BTEX	0.0473 mg/kg	BTEX/FC		CH-MW-103	760000 ug/mL	fuel carbon = nd
NRMRL	JP-4		DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB1-14.5'	B+T	0.0233 mg/kg	(B+T)/FC		CH-MW-103	760000 ug/mL	fuel carbon = nd
NRMRL	JP-4		DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB1-14.5'	E+X	0.024 mg/kg	(E+X)/FC		CH-MW-103	760000 ug/mL	fuel carbon = nd
NRMRL	JP-4		DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB1-14.5'	B/T	0.34682081	(B/T)/FC		CH-MW-103	760000 ug/mL	fuel carbon = nd
NRMRL	JP-4		DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB1-14.5'	B/E	1	(B/E)/FC	166.6667	CH-MW-103	760000 ug/mL	fuel carbon = nd
NRMRL	JP-4	10/1/1975 ######	DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB1-14.5'	B/X	0.33333333	(B/X)/FC	55.55556	CH-MW-103	760000 ug/mL	fuel carbon = nd
NRMRL	JP-4	10/1/1975 ######	DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB1-14.5'	T/E	2.88333333	(T/E)/FC	480.5556	CH-MW-103	760000 ug/mL	fuel carbon = nd
NRMRL	JP-4		DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB1-14.5'	T/X	0.96111111	(T/X)/FC	160.1852	CH-MW-103	760000 ug/mL	fuel carbon = nd
NRMRL	JP-4	10/1/1975 ######	DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB1-14.5'	E/X	0.33333333	(E/X)/FC	55.55556	CH-MW-103	760000 ug/mL	fuel carbon = nd
NRMRL	JP-4			Soil	CHSB1-14.5'	(B+T)/(E+X)	0.97083333	((B+T)/(E+X))/FC			760000 ug/mL	fuel carbon = nd
NRMRL	JP-4			Soil	CHSB1-14.5'	Fuel Carbon	0.006 mg/kg **	Fuel Carbon		CH-MW-103	760000 ug/mL	fuel carbon = nd
NRMRL	JP-4		DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB1-14.5'	1,2,3-Trimethylbenzene	0.006 mg/kg **	1,2,3 TMB/FC		CH-MW-103	760000 ug/mL	fuel carbon = nd
NRMRL	JP-4			Soil	CHSB1-14.5'	1,2,4-Trimethylbenzene	0.006 mg/kg **	1,2,4 TMB/FC		CH-MW-103	760000 ug/mL	fuel carbon = nd
NRMRL	JP-4	10/1/1975 ######	DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB1-14.5'	1,3,5-Trimethylbenzene	0.006 mg/kg **	1,3,5 TMB/FC		CH-MW-103	760000 ug/mL	fuel carbon = nd
NRMRL	JP-4		DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB1-14.5'	1-MethylNaphthalene	0.006 mg/kg **	1-MN/FC		CH-MW-103	760000 ug/mL	fuel carbon = nd
NRMRL	JP-4		DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB1-14.5'	2-MethylNaphthalene	0.006 mg/kg **	2-MN/FC		CH-MW-103	760000 ug/mL	fuel carbon = nd
NRMRL	JP-4		DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB2-12'	Benzene	0.0367 mg/kg	B/FC	0.000546		796000 ug/mL	435
NRMRL	JP-4		DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB2-12'	Toluene	0.0354 mg/kg	T/FC	0.000527		796000 ug/mL	419
NRMRL	JP-4		DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB2-12'	Ethylbenzene	0.134 mg/kg	E/FC	0.001994		796000 ug/mL	1587
NRMRL	JP-4		DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB2-12'	m-Xylene	0.452 mg/kg	m-Xylene/FC	0.006726		796000 ug/mL	5354
NRMRL	JP-4 JP-4			Soil	CHSB2-12'	o-Xylene	0.152 mg/kg	o-Xylene/FC	0.002262		796000 ug/mL	1800
NRMRL NRMRL	JP-4 JP-4		DFSP-Charleston, Tank 1 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB2-12'	p-Xylene	0.199 mg/kg	p-Xylene/FC X/FC	0.002961		796000 ug/mL	2357 9512
NRMRL	JP-4 JP-4		DFSP-Charleston, Tank 1 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil Soil	CHSB2-12' CHSB2-12'	Total Xylenes (m,p, and o) Total BTEX	0.803 mg/kg 1.0091 mg/kg	BTEX/FC	0.011949 0.015016		796000 ug/mL 796000 ug/mL	11953
NRMRL	JP-4 JP-4		DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB2-12'	B+T	0.0721 mg/kg	(B+T)/FC	0.013018		796000 ug/mL	854
NRMRL	JP-4 JP-4		DFSP-Charleston, Tank 1 Area, Hanahan, SC DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB2-12'	E+X	0.0721 mg/kg 0.937 mg/kg	(E+X)/FC	0.001073		796000 ug/mL	11099
NRMRL	JP-4 JP-4		DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB2-12'	B/T	1.03672316	(B/T)/FC	0.015427		796000 ug/mL	12280
NRMRL	JP-4 JP-4			Soil	CHSB2-12'	B/E	0.2738806	(B/E)/FC	0.013427		796000 ug/mL	3244
NRMRL	JP-4 JP-4		DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB2-12'	B/X	0.04570361	(B/X)/FC	0.00068		796000 ug/mL	541
NRMRL	JP-4			Soil	CHSB2-12'	T/E	0.2641791	(T/E)/FC	0.00000		796000 ug/mL	3129
NRMRL	JP-4		DFSP-Charleston, Tank 1 Area, Hanahan, SC		CHSB2-12'		0.04408468	(T/X)/FC	0.003931		796000 ug/mL	522
141 VIVII VL	U1 -T	10, 1/1010 ######	Di Gi Gilanestoli, Falik i Alea, Hallallall, SC	JUII	011002-12	100	0.04400	1(1///)/1 0	0.000000	OIT LVVO	7 30000 jug/IIIL	322

Lab Code	Fuel Type	Spill Date Date	е	Site Name	Matix	Locid	Analyte	Results	Un	nits Flag FC Analyte	FC Ratio	FPLocid	FPdensity FPunits	SoilFuel (ug/mL)
NRMRL	JP-4	10/1/1975 #####	## [DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB2-12'	E/X	0.16687422		(E/X)/FC		3 CH-EW6	796000 ug/mL	1977
NRMRL	JP-4	10/1/1975 #####	## [DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB2-12'	(B+T)/(E+X)	0.07694771	1	((B+T)/(E+X))/FC	0.001145	5 CH-EW6	796000 ug/mL	911
NRMRL	JP-4	10/1/1975 #####	## [DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB2-12'	Fuel Carbon	67.2	2 mg	g/kg Fuel Carbon		1 CH-EW6	796000 ug/mL	796000
NRMRL	JP-4	10/1/1975 #####	## [DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB2-12'	1,2,3-Trimethylbenzene	0.168	8 mg	g/kg 1,2,3 TMB/FC	0.0025	5 CH-EW6	796000 ug/mL	1990
NRMRL	JP-4	10/1/1975 #####	## [DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB2-12'	1,2,4-Trimethylbenzene	0.331	1 mg	g/kg 1,2,4 TMB/FC	0.004926	6 CH-EW6	796000 ug/mL	3921
NRMRL	JP-4	10/1/1975 #####	## [DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB2-12'	1,3,5-Trimethylbenzene	0.167	7 mg	g/kg 1,3,5 TMB/FC	0.00248	5 CH-EW6	796000 ug/mL	1978
NRMRL	JP-4	10/1/1975 #####	## [DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB2-12'	1-MethylNaphthalene	0.189			0.002813	3 CH-EW6	796000 ug/mL	2239
NRMRL	JP-4	10/1/1975 #####	## [DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB2-12'	2-MethylNaphthalene	0.236	6 mg	g/kg 2-MN/FC	0.003512	2 CH-EW6	796000 ug/mL	2795
NRMRL	JP-4	10/1/1975 #####	## [DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB2-13'	Benzene	1.05	5 mg	g/kg B/FC	0.000107	7 CH-EW6	796000 ug/mL	85
NRMRL	JP-4	10/1/1975 #####	## [DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB2-13'	Toluene		7 mg		0.002217	7 CH-EW6	796000 ug/mL	1764
NRMRL	JP-4	10/1/1975 #####		DFSP-Charleston, Tank 1 Area, Hanahan, SC		CHSB2-13'	Ethylbenzene		3 mg			4 CH-EW6	796000 ug/mL	2789
NRMRL	JP-4	10/1/1975 #####		DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB2-13'	m-Xylene	90	0 mg	g/kg m-Xylene/FC	0.009193	3 CH-EW6	796000 ug/mL	7318
NRMRL	JP-4	10/1/1975 #####		DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB2-13'	o-Xylene	45.2	2 mg	g/kg o-Xylene/FC	0.004617	7 CH-EW6	796000 ug/mL	3675
NRMRL	JP-4	10/1/1975 #####			Soil	CHSB2-13'	p-Xylene		8 mg			2 CH-EW6	796000 ug/mL	3090
NRMRL	JP-4	10/1/1975 #####		DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB2-13'	Total Xylenes (m,p, and o)					2 CH-EW6	796000 ug/mL	14082
NRMRL	JP-4				Soil	CHSB2-13'	Total BTEX	230.25				9 CH-EW6	796000 ug/mL	18721
NRMRL	JP-4	10/1/1975 #####			Soil	CHSB2-13'	B+T	22.75				4 CH-EW6	796000 ug/mL	1850
NRMRL	JP-4			DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB2-13'	E+X	207.5				5 CH-EW6	796000 ug/mL	16871
NRMRL	JP-4	10/1/1975 #####			Soil	CHSB2-13'	B/T	0.0483871		(B/T)/FC		6 CH-EW6	796000 ug/mL	4
NRMRL	JP-4	10/1/1975 #####			Soil	CHSB2-13'	B/E	0.03061224		(B/E)/FC		6 CH-EW6	796000 ug/mL	2
NRMRL	JP-4	10/1/1975 #####		DFSP-Charleston, Tank 1 Area, Hanahan, SC		CHSB2-13'	B/X	0.00606236		(B/X)/FC		7 CH-EW6	796000 ug/mL	0
NRMRL	JP-4	10/1/1975 #####			Soil	CHSB2-13'	T/E	0.63265306		(T/E)/FC		5 CH-EW6	796000 ug/mL	51
NRMRL	JP-4	10/1/1975 #####			Soil	CHSB2-13'	T/X	0.12528868		(T/X)/FC		5 CH-EW6	796000 ug/mL	10
NRMRL	JP-4	10/1/1975 #####		DFSP-Charleston, Tank 1 Area, Hanahan, SC	Soil	CHSB2-13'	E/X	0.19803695		(E/X)/FC		5 CH-EW6	796000 ug/mL	16
NRMRL	JP-4	10/1/1975 #####			Soil	CHSB2-13'	(B+T)/(E+X)	0.10963855		((B+T)/(E+X))/FC		5 CH-EW6	796000 ug/mL	9
NRMRL	JP-4	10/1/1975 #####			Soil	CHSB2-13'	Fuel Carbon	9790				1 CH-EW6	796000 ug/mL	796000
NRMRL	JP-4	10/1/1975 #####			Soil	CHSB2-13'	1,2,3-Trimethylbenzene		4 mg			6 CH-EW6	796000 ug/mL	1740
NRMRL	JP-4	10/1/1975 #####		DFSP-Charleston, Tank 1 Area, Hanahan, SC		CHSB2-13'	1,2,4-Trimethylbenzene		9 mg			B CH-EW6	796000 ug/mL	3732
NRMRL	JP-4	10/1/1975 #####		DFSP-Charleston, Tank 1 Area, Hanahan, SC		CHSB2-13'	1,3,5-Trimethylbenzene		7 mg			7 CH-EW6	796000 ug/mL	1764
NRMRL	JP-4	10/1/1975 #####		DFSP-Charleston, Tank 1 Area, Hanahan, SC		CHSB2-13'	1-MethylNaphthalene		8 mg			7 CH-EW6	796000 ug/mL	2179
NRMRL	JP-4	10/1/1975 #####			Soil	CHSB2-13'	2-MethylNaphthalene		7 mg		0.003442	2 CH-EW6	796000 ug/mL	2740
NRMRL	JP-4	10/1/1988 #####		CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB4	Benzene	0.006						No FP/No FC data
NRMRL	JP-4			CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB4	Toluene	0.006						No FP/No FC data
NRMRL	JP-4			CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB4	Ethylbenzene	0.006						No FP/No FC data
NRMRL	JP-4			CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB4	m-Xylene	0.006						No FP/No FC data
NRMRL	JP-4			CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB4	o-Xylene	0.006						No FP/No FC data
NRMRL	JP-4			CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB4	p-Xylene	0.006						No FP/No FC data
NRMRL	JP-4			CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB4	Total Xylenes (m,p, and o)							No FP/No FC data
NRMRL	JP-4			CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB4	Total BTEX	0.036						No FP/No FC data
NRMRL	JP-4	10/1/1988 #####		CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB4	B+T	0.012						No FP/No FC data
NRMRL	JP-4	10/1/1988 #####		CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB4	E+X	0.024	4 mg	g/kg				No FP/No FC data
NRMRL	JP-4	10/1/1988 #####		CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB4	B/T	1	1					No FP/No FC data
NRMRL	JP-4	10/1/1988 #####		CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB4	B/E	1	•					No FP/No FC data
NRMRL	JP-4	10/1/1988 #####		CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB4	B/X	0.33333333				1		No FP/No FC data
NRMRL	JP-4 JP-4	10/1/1988 #####		CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB4	T/E	0.00000000	•			1		No FP/No FC data
NRMRL		10/1/1988 #####		CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB4	T/X	0.33333333					 	No FP/No FC data
NRMRL	JP-4 JP-4	10/1/1988 #####		CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB4	E/X	0.33333333					 	No FP/No FC data
NRMRL NRMRL	JP-4 JP-4	10/1/1988 #####		CC-135 Crash Site, Wurtsmith AFB, MI CC-135 Crash Site, Wurtsmith AFB, MI	Soil Soil	SB4 SB4	(B+T)/(E+X) 1,2,3-Trimethylbenzene	0.0475		alka				No FP/No FC data No FP/No FC data
NRMRL	JP-4 JP-4			CC-135 Crash Site, Wurtsmith AFB, MI CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB4	1,2,3-Trimethylbenzene	0.0475				1		No FP/No FC data
NRMRL	JP-4 JP-4			CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB4	1,3,5-Trimethylbenzene		8 mg					No FP/No FC data
NRMRL	JP-4 JP-4			CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB4	1-MethylNaphthalene	0.20						No FP/No FC data
NRMRL	JP-4 JP-4			CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB4	2-MethylNaphthalene	0.117				1		No FP/No FC data
NRMRL	JP-4 JP-4			CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB5	Benzene	0.006						No FP/No FC data
NRMRL	JP-4 JP-4			CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB5	Toluene	0.0855						No FP/No FC data
NRMRL	JP-4 JP-4			CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB5	Ethylbenzene	0.005				1		No FP/No FC data
NRMRL	JP-4 JP-4	10/1/1988 #####		CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB5	m-Xylene	0.006						No FP/No FC data
NRMRL	JP-4 JP-4			CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB5	o-Xylene	0.006						No FP/No FC data
NRMRL	JP-4			CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB5	p-Xylene	0.006						No FP/No FC data
NRMRL	JP-4	10/1/1988 #####		CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB5	Total Xylenes (m,p, and o)							No FP/No FC data
NRMRL	JP-4	10/1/1988 #####		CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB5	Total BTEX	0.010						No FP/No FC data
NRMRL	JP-4	10/1/1988 #####		CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB5	B+T	0.0915						No FP/No FC data
NRMRL	JP-4 JP-4	10/1/1988 #####		CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB5	E+X	0.0915				1		No FP/No FC data
NRMRL	JP-4			CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB5	B/T	0.07017544		3,1,3				No FP/No FC data
NRMRL	JP-4			CC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB5	B/E	1 0.07017344	1					No FP/No FC data
MINIMIXE	UI -T	10/1/1000 ######	um l	to 100 Gradii Gite, vvurtdillitii AFD, Wii	JUII	ODO	D/ L		-	1 1	1	1	1 1	140 I I /I40 I C uala

Figure 1941	Lab Code	Fuel Type	Spill Date Date	Site Name	Matix	Locid	Analyte	Results	Units	s Flag	FC Analyte	FC Ratio	FPLocid	FPdensity FPunits	SoilFuel (ug/mL)
WATER PA	NRMRL	JP-4	10/1/1988 #####	KC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB5	B/X	0.33333333	3		-				No FP/No FC data
NOTIFICATION PASSESSED	NRMRL	JP-4	10/1/1988 #####	KC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB5	T/E	14.25	5						No FP/No FC data
WASTERN PA	NRMRL	JP-4	10/1/1988 #####	KC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB5	T/X	4.75	5						No FP/No FC data
MAXIFICATION 19-4 10-11191 10-11192	NRMRL	JP-4	10/1/1988 #####	KC-135 Crash Site, Wurtsmith AFB, MI	Soil	SB5	E/X	0.33333333	3						No FP/No FC data
WASHED PA															No FP/No FC data
WASHED PA	NRMRL	JP-4	10/1/1988 #####							a					No FP/No FC data
MANUAL															No FP/No FC data
MARKEL #4 101/1958 Immere MC-135 Crash Ste, Wurtsman, AFE MI Sol Sol															No FP/No FC data
MARMAIL PA															No FP/No FC data
NAME PA															No FP/No FC data
MARKER P-4											B/FC	0.002048 MBN	MW8I	750000 ug/mL	1536
NEMBEL P-4															8
NAME P-4															3324
NRAMEL P-4															7947
NEMBER P-4															183
NAMERIC P-4															1536
MARKEL P-4															9666
NEMBEL P															14535
NRMRR P4															1545
NRMRR P4															12990
NRMRIL JP-4 1/1/1981 parament Pipeline Leas Site, Myrife Beach AFB, SC Sol MRSB-1-9 Site 0.46218487 (JRSF)FC 0.000286 MRMWR 750000 Lym.										9					256052
NRMRIR JP 4															
NRMRIL DF4															646
NRMRIC JP4															222
NRMRIL JP-4															4
NRMRL JP-4				, , , , ,							` '				1
NRMRIL JP-4		_													480
NRMRL JP-4					Soil						((B+T)/(E+X))/FC				166
NRARIL JP-4 11/11981 ###### Pipeline Leak Site, Myrite Beach AFB, SC Sol MISSB-1-9.5" 1,2-f-trimethybenzene 9.66 mg/sg 1,2-f-trimetrybenzene 0.00521 MisMW31 750000 lug/mL 1,0-f-trimetry 1,5-f-trimetry 1,5-f-trime															750000
NRANEL JP-4	NRMRL	JP-4	1/1/1981 #####	Pipeline Leak Site, Myrtle Beach AFB, SC	Soil	MBSB-1-9.5'	1,2,3-Trimethylbenzene	4.17	mg/kg	g	1,2,3 TMB/FC	0.007765 MBN	MW8I	750000 ug/mL	5824
NRMRL JP-4	NRMRL	JP-4	1/1/1981 #####	Pipeline Leak Site, Myrtle Beach AFB, SC	Soil	MBSB-1-9.5'	1,2,4-Trimethylbenzene	9.66	mg/kg	g	1,2,4 TMB/FC	0.017989 MBN	MW8I	750000 ug/mL	13492
NRANKL P-4		JP-4	1/1/1981 #####	Pipeline Leak Site, Myrtle Beach AFB, SC	Soil	MBSB-1-9.5'	1,3,5-Trimethylbenzene	2.82	mg/kg	g	1,3,5 TMB/FC	0.005251 MBN	MW8I	750000 ug/mL	3939
NRMRL P4 11/1981 ###### Pipeline Leak Site, Myrite Beach AFB, SC Soil MSSB-2-9.5 Benzene 1.71 mg/kg BFC 0.000615 MSMW24 764000 lg/mL NRMRL P4 11/1981 ###### Pipeline Leak Site, Myrite Beach AFB, SC Soil MSSB-2-9.5 Ethylbenzene 8.47 mg/kg EFC 0.003047 MSMW24 764000 lg/mL NRMRL P4 11/1981 ###### Pipeline Leak Site, Myrite Beach AFB, SC Soil MSSB-2-9.5 Ethylbenzene 8.47 mg/kg EFC 0.003047 MSMW24 764000 lg/mL NRMRL P4 11/1981 ###### Pipeline Leak Site, Myrite Beach AFB, SC Soil MSSB-2-9.5 O.Xylene 0.0503 mg/kg O.Xylene/FC 1.81E-05 MSMW24 764000 lg/mL NRMRL P4 11/1981 ###### Pipeline Leak Site, Myrite Beach AFB, SC Soil MSSB-2-9.5 O.Xylene 0.0503 mg/kg O.Xylene/FC 1.81E-05 MSMW24 764000 lg/mL NRMRL P4 11/1981 ###### Pipeline Leak Site, Myrite Beach AFB, SC Soil MSSB-2-9.5 O.Xylene 0.0937 mg/kg O.Xylene/FC 0.000179 MSMW24 764000 lg/mL NRMRL JP4 11/1981 ###### Pipeline Leak Site, Myrite Beach AFB, SC Soil MSSB-2-9.5 Total Xylenes (mp, and o) 11.4473 mg/kg X/FC 0.00179 MSMW24 764000 lg/mL NRMRL JP4 11/1981 ###### Pipeline Leak Site, Myrite Beach AFB, SC Soil MSSB-2-9.5 Soil MSS	NRMRL	JP-4	1/1/1981 #####	Pipeline Leak Site, Myrtle Beach AFB, SC	Soil	MBSB-1-9.5'	1-MethylNaphthalene	2.71	mg/kg	g l	1-MN/FC	0.005047 MBN	MW8I	750000 ug/mL	3785
NRIMPIL DP-4 11/1/1981 ###### Pipeline Leak Site, Myrfile Beach AFB, SC Soil MRSB-2-9.5 Toluene 0.9303 mg/kg FPC 1.09E-05 MBMW24 764000 ug/mL NRIMPIL DP-4 11/1/1981 ##### Pipeline Leak Site, Myrfile Beach AFB, SC Soil MRSB-2-9.5 m-Xylene 1.0.9 mg/kg m-XyleneFC 0.00307 MBMW24 764000 ug/mL NRIMPIL DP-4 11/1/1981 ###### Pipeline Leak Site, Myrfile Beach AFB, SC Soil MRSB-2-9.5 m-Xylene 1.0.9 mg/kg m-XyleneFC 0.00307 MBMW24 764000 ug/mL NRIMPIL DP-4 11/1/1981 ###### Pipeline Leak Site, Myrfile Beach AFB, SC Soil MRSB-2-9.5 m-Xylene 0.0530 mg/kg 0.0530	NRMRL	JP-4	1/1/1981 #####	Pipeline Leak Site, Myrtle Beach AFB, SC	Soil	MBSB-1-9.5'	2-MethylNaphthalene	3.93	mg/kg	g	2-MN/FC	0.007318 MBN	MW8I	750000 ug/mL	5489
NRIMICL DP-4 1/1/1981 ###### Ppeline Leak Site, Myrite Beach AFB, SC Soil MBSB-2-9.5 Emytherazene 8.47 mg/kg E/FC 0.003347 MBMW24 764000 ug/ml.	NRMRL	JP-4	1/1/1981 #####	Pipeline Leak Site, Myrtle Beach AFB, SC	Soil	MBSB-2-9.5'	Benzene	1.71	mg/kg	g	B/FC	0.000615 MBN	MW24	764000 ug/mL	470
NRMRIL DP-4 11/1981 ##### Pipeline Leak Site, Myrtle Beach AFB, SC MSBR-2-9.5 MSBR-2-9.5 O-Xylene 0.05031 mg/kg O-Xylene/FC 1.81E-0.5 MSBM-2-9.5 O-Xylene NZWINE NZWINE NZWINE PEACH AFB, SC NZWINE NZWIN	NRMRL	JP-4	1/1/1981 #####	Pipeline Leak Site, Myrtle Beach AFB, SC	Soil	MBSB-2-9.5'	Toluene	0.0303	mg/kg	g	T/FC	1.09E-05 MBN	MW24	764000 ug/mL	8
NRMRIL DP-4 11/1981 ##### Pipeline Leak Site, Myrtle Beach AFB, SC MSBR-2-9.5 MSBR-2-9.5 O-Xylene 0.05031 mg/kg O-Xylene/FC 1.81E-0.5 MSBM-2-9.5 O-Xylene NZWINE NZWINE NZWINE PEACH AFB, SC NZWINE NZWIN	NRMRL	JP-4	1/1/1981 #####	Pipeline Leak Site, Myrtle Beach AFB, SC	Soil	MBSB-2-9.5'	Ethylbenzene	8.47	mg/kg	g	E/FC	0.003047 MBN	MW24	764000 ug/mL	2328
NRMRL JP-4	NRMRL	JP-4	1/1/1981 #####	Pipeline Leak Site, Myrtle Beach AFB, SC	Soil	MBSB-2-9.5'	m-Xylene				m-Xylene/FC	0.003921 MBN	MW24	764000 ug/mL	2996
NRMRL JP-4	NRMRL	JP-4	1/1/1981 #####	Pipeline Leak Site, Myrtle Beach AFB, SC	Soil	MBSB-2-9.5'	o-Xylene	0.0503	mg/kg	q	o-Xylene/FC	1.81E-05 MBN	MW24	764000 ug/mL	14
NRMRIL JP-4	NRMRL	JP-4			Soil	MBSB-2-9.5'					p-Xylene/FC	0.000179 MBN	MW24		137
NRMRL JP-4 11/1/1981 ###### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5 B+T 1.74/30 mg/kg (E+X)FC 0.000726 MBMW24 764000 ug/mL	NRMRL	JP-4	1/1/1981 #####	Pipeline Leak Site, Myrtle Beach AFB, SC	Soil	MBSB-2-9.5'	Total Xvlenes (m.p. and o)	11.4473	ma/kc			0.004118 MBN	MW24	764000 ug/mL	3146
NRMRI JP-4 11/1/1981 ###### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5 E+X 19.173 mg/kg (E+T)/FC 0.000768 MBMW24 764000 lug/ml NRMRI JP-4 11/1/1981 ###### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5 BT 58.4356436 (BT)/FC 0.000301 MBMW24 764000 lug/ml 76	NRMRL	JP-4	1/1/1981 #####	Pipeline Leak Site, Myrtle Beach AFB, SC	Soil	MBSB-2-9.5'		21.6576	mg/kg			0.007791 MBN	MW24	764000 ug/mL	5952
NRMRL JP-4 11/11981 ###### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5' E+X 19.9173 mg/kg (E+X)FC 0.007164 MBMW24 764000 ug/mL MRMRL JP-4 11/11981 ###### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5' B/E 0.20188902 (B/E)FC 7.26E-05 MBMW24 764000 ug/mL MRMRL JP-4 11/11981 ###### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5' B/E 0.20188902 (B/E)FC 7.26E-05 MBMW24 764000 ug/mL MRMRL JP-4 11/11981 ###### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5' B/E 0.00357733 (T/E)FC 0.57E-05 MBMW24 764000 ug/mL MRMRL JP-4 11/11981 ###### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5' T/E 0.00357733 (T/E)FC 0.57E-05 MBWW24 764000 ug/mL MRMRL JP-4 11/11981 ###### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5' T/K 0.00264991 (T/X)FC 9.52E-07 MBWW24 764000 ug/mL MRMRL JP-4 11/11981 ###### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5' T/K 0.00264991 (T/X)FC 9.52E-07 MBWW24 764000 ug/mL MRMRL JP-4 11/11981 ###### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5' E/X 0.73991247 (E/X)FC 0.000266 MBWW24 764000 ug/mL MSMRL JP-4 11/11981 ###### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5' Fipel Carbon 2780 mg/kg Fipel Carbon 1.68MW24 764000 ug/mL MSMRL JP-4 11/11981 ###### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5' 1.2.4-Timethylbenzene 36.4 mg/kg 1.2.3-Timethylbenzene 36.4 mg/kg 1.2.3-Timethylbenzene 36.4 mg/kg 1.2.3-Timethylbenzene 36.4 mg/kg 1.2.4-Timethylbenzene 36.4 mg/kg 1.2.4-	NRMRL	JP-4	1/1/1981 #####	Pipeline Leak Site, Myrtle Beach AFB, SC	Soil	MBSB-2-9.5'	B+T				(B+T)/FC	0.000626 MBN	MW24		478
NRMRL JP-4	NRMRL	JP-4	1/1/1981 #####	Pipeline Leak Site, Myrtle Beach AFB, SC	Soil	MBSB-2-9.5'	E+X				(E+X)/FC	0.007164 MBN	MW24		5474
NRMRL JP-4	NRMRL	JP-4	1/1/1981 #####		Soil	MBSB-2-9.5'									15510
NRMRL JP-4															55
NRMRL JP-4 1/1/1981 ##### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5 T/E 0.00357733 (T/E/FC 1.29E-06 MBMW24 764000 ug/mL NRMRL JP-4 1/1/1981 ##### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5 T/X 0.00264691 (T/X)/FC 9.52E-07 MBMW24 764000 ug/mL NRMRL JP-4 1/1/1981 ##### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5 E/X 0.73991247 (E/X)/FC 0.00266 MBMW24 764000 ug/mL NRMRL JP-4 1/1/1981 ##### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5 E/X 0.73991247 (E/X)/FC 0.00266 MBMW24 764000 ug/mL NRMRL JP-4 1/1/1981 ##### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5 Fuel Carbon 2780 mg/kg Fuel Carbon 1 MBMW24 764000 ug/mL NRMRL JP-4 1/1/1981 ##### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5 T/2.3 Trimethylbenzene 14.7 mg/kg 1.2.3 TMB/FC 0.00528 MBSMW24 764000 ug/mL NRMRL JP-4 1/1/1981 ##### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5 T/2.3 Trimethylbenzene 9.51 mg/kg 1.2.4 TMB/FC 0.003421 MBMW24 764000 ug/mL NRMRL JP-4 1/1/1981 ###### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5 1.3.5 Trimethylbenzene 9.51 mg/kg 1.3.5 TMB/FC 0.003421 MBMW24 764000 ug/mL NRMRL JP-4 1/1/1981 ###### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5 1.3.5 Trimethylbenzene 9.51 mg/kg 1.3.5 TMB/FC 0.003421 MBMW24 764000 ug/mL NRMRL JP-4 1/1/1981 ###### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5 1.3.5 Trimethylbenzene 9.51 mg/kg 1.3.5 TMB/FC 0.003421 MBMW24 764000 ug/mL NRMRL JP-4 1/1/1981 ###### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5 2.4 Mthylhylhylhylhylhylhylhylhylhylhylhylhylh															41
NRMRL JP-4 1/1/1981 ##### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5' T/X 0.00264691 (T/X)/FC 9.52E-07 MBMW24 764000 ug/mL MSRR-2 MSRB-2-9.5' E/X 0.73991247 (E/X)/FC 0.00266 MBMW24 764000 ug/mL MSRB-2 MSRB-2-9.5' E/X 0.73991247 (E/X)/FC 0.00266 MBMW24 764000 ug/mL MSRB-2 MSRB-2-9.5' E/X 0.73991247 (E/X)/FC 0.00266 MBMW24 764000 ug/mL MSRB-2 MSRB-2-9.5' E/X 0.73991247 (E/X)/FC 0.00266 MBMW24 764000 ug/mL MSRB-2 MSRB-2-9.5' E/X 0.0873763 ((B+T)/(E+X))/FC 3.14E-05 MBMW24 764000 ug/mL MSRB-2-9.5' Fuel Carbon 2780 mg/kg Fuel Carbon MSRB-2-9.5' Fuel Carbon 1 MBWW24 764000 ug/mL MSRB-2-9.5' 1.2,3-Trimethylbenzene 14.7 mg/kg 1.2,3 TMB/FC 0.005288 MBMW24 764000 ug/mL MSRB-2-9.5' 1.2,4-Trimethylbenzene 9.51 mg/kg 1.2,3 TMB/FC 0.003421 MBWW24 764000 ug/mL MSRB-2-9.5' 1.3,5-Trimethylbenzene 9.51 mg/kg 1.3,5 TMB/FC 0.003421 MBWW24 764000 ug/mL MSRB-2-9.5' 1.3,5-Trimethylbenzene 9.51 mg/kg 1.3,5 TMB/FC 0.003421 MBWW24 764000 ug/mL MSRB-2-9.5' 1.3,5-Trimethylbenzene 9.51 mg/kg 1.4,4 TMB/FC 0.003421 MBWW24 764000 ug/mL MSRB-2-9.5' 1.3,5-Trimethylbenzene 9.51 mg/kg 1.4,4 TMB/FC 0.003421 MBWW24 764000 ug/mL MSRB-2-9.5' 1.3,5-Trimethylbenzene 9.51 mg/kg 1.4,4 TMB/FC 0.003421 MBWW24 764000 ug/mL MSRB-2-9.5' 1.3,5-Trimethylbenzene 9.51 mg/kg 1.4,4 TMB/FC 0.003421 MBWW24 764000 ug/mL MSRB-2-9.5' 1.3,5-Trimethylbenzene 9.51 mg/kg 1.4,4 TMB/FC 0.003421 MBWW24 764000 ug/mL MSRB-2-9.5' 1.3,5-Trimethylbenzene 9.51 mg/kg 1.4,4 TMB/FC 0.003421 MBWW24 764000 ug/mL MSRB-2-9.5' 1.3,5-Trimethylbenzene 9.51 mg/kg 1.4,4 TMB/FC 0.003421 MBWW24 764000 ug/mL MSRB-2-9.5' 1.3,5-Trimethylbenzene 9.51 mg/kg 1.4,4 TMB/FC 0.003421 MBWW24 764000 ug/mL MSRB-2-9.5' 1.3,5-Trimethylbenzene 9.51															1
NRMRL JP-4 1/1/1981 ##### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5' E/X 0.73991247 (E/X)/FC 0.000266 MBMW24 764000 ug/mL MBSM-2-9.5' MBSM-2-9.5' (B+T)/(E+X) 0.0873763 (B+T)/(E+X)/FC 3.14E-05 MBMW24 764000 ug/mL MBSM-2-9.5' MBSM-2-9.5' (B+T)/(E+X) 0.0873763 (B+T)/(E+X)/FC 3.14E-05 MBMW24 764000 ug/mL MBSM-2-9.5' Fuel Carbon 2780 mg/kg Fuel Carbon 1 MBMW24 764000 ug/mL 764000 ug/mL MBSM-2-9.5' (B+T)/(E+X)/FC 3.14E-05 MBSM-2-9.5' MBSM-2-9.5' 1.2,3-Trimethylbenzene 14.7 mg/kg 1.2,3 TMB/FC 0.005288 MBW24 764000 ug/mL MBSM-2-9.5' 1.2,4-Trimethylbenzene 36.4 mg/kg 1.2,3 TMB/FC 0.010344 MBMW24 764000 ug/mL MBSM-2-9.5' 1.3,5-Trimethylbenzene 36.4 mg/kg 1.2,4 TMB/FC 0.010344 MBMW24 764000 ug/mL MBSM-2-9.5' 1.3,5-Trimethylbenzene 36.4 mg/kg 1.2,4 TMB/FC 0.010344 MBMW24 764000 ug/mL MBSM-2-9.5' 1.3,5-Trimethylbenzene 36.4 mg/kg 1.2,4 TMB/FC 0.010344 MBMW24 764000 ug/mL MBSM-2-9.5' 1.3,5-Trimethylbenzene 36.4 mg/kg 1.3,5 TMB/FC 0.003421 MBMW24 764000 ug/mL MBSM-2-9.5' 1.3,5-Trimethylbenzene 36.4 mg/kg 1.3,5 TMB/FC 0.003421 MBMW24 764000 ug/mL MBSM-2-9.5' 1.3,5-Trimethylbenzene 36.4 mg/kg 1.3,5 TMB/FC 0.003421 MBMW24 764000 ug/mL MBSM-2-9.5' 1.3,5-Trimethylbenzene 36.4 mg/kg 1.3,5 TMB/FC 0.003421 MBMW24 764000 ug/mL MBSM-2-9.5' 1.3,5-Trimethylbenzene 36.4 mg/kg 1.3,5 TMB/FC 0.003421 MBMW24 764000 ug/mL MBSM-2-9.5' 1.3,5-Trimethylbenzene 36.4 mg/kg 1.3,5 TMB/FC 0.003421 MBMW24 764000 ug/mL MBSM-2-9.5' 1.3,5-Trimethylbenzene 36.4 mg/kg 1.3,5 TMB/FC 0.003421 MBMW24 764000 ug/mL MBSM-2-9.5' 1.3,5-Trimethylbenzene 36.4 mg/kg 1.3,5 TMB/FC 0.003421 MBMW24 764000 ug/mL MBSM-2-9.5' 1.3,5-Trimethylbenzene 36.4 mg/kg 1.3,5 TMB/FC 0.003421 MBMW24 764000 ug/mL MBSM-2-9.5' 1.3,5-Trimethylbenzene 36.4 mg/kg															1
NRMRL JP-4 1/1/1981 ##### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5' (B+T)/(E+X) 0.0873763 ((B+T)/(E+X))/FC 3.14E-05 MBMW24 764000 ug/mL 764000 ug															203
NRMRL JP-4 1/1/1981 ##### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5' Fuel Carbon 2780 mg/kg Fuel Carbon 1 MBMW24 764000 ug/mL 764															24
NRMRL JP-4 1/1/1981 ##### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5' 1,2,3-Trimethylbenzene 14.7 mg/kg 1,2,3 TMB/FC 0.005288 MBMW24 764000 ug/mL MBSM-2-9.5' 1,2,4-Trimethylbenzene 36.4 mg/kg 1,2,4 TMB/FC 0.01394 MBMW24 764000 ug/mL MBSM-2-9.5' 1,2,4-Trimethylbenzene 36.4 mg/kg 1,2,5 TMB/FC 0.01394 MBMW24 764000 ug/mL MBSM-2-9.5' 1,3,5-Trimethylbenzene 9.51 mg/kg 1,3,5 TMB/FC 0.01394 MBMW24 764000 ug/mL MBSM-2-9.5' 1,3,5-Trimethylbenzene 9.51 mg/kg 1,3,5 TMB/FC 0.003421 MBMW24 764000 ug/mL MBSM-2-9.5' 1,3,5-Trimethylbenzene 9.51 mg/kg 1,3,5 TMB/FC 0.003421 MBMW24 764000 ug/mL MBSM-2-9.5' 1,3,5-Trimethylbenzene 9.51 mg/kg 1,3,5 TMB/FC 0.003421 MBMW24 764000 ug/mL MBSM-2-9.5' 1,3,5-Trimethylbenzene 9.51 mg/kg 1,3,5 TMB/FC 0.003421 MBMW24 764000 ug/mL MBSM-2-9.5' 1,3,5-Trimethylbenzene 9.51 mg/kg 1,3,5 TMB/FC 0.003421 MBMW24 764000 ug/mL MBSM-2-9.5' 1,3,5-Trimethylbenzene 1,5 mg/kg 1,3,5 TMB/FC 0.003421 MBMW24 764000 ug/mL MBSM-2-9.5' 1,3,5-Trimethylbenzene 1,5 mg/kg 1,3,5 TMB/FC 0.003421 MBMW24 764000 ug/mL MBSM-2-9.5' 1,3,5-Trimethylbenzene 1,5 mg/kg 1,3,5 TMB/FC 0.003421 MBMW24 764000 ug/mL MBSM-2-9.5' 1,3,5-Trimethylbenzene 1,5 mg/kg 1,3,5 TMB/FC 0.003421 MBMW24 764000 ug/mL MBSM-2-9.5' 1,3,5-Trimethylbenzene 1,5 mg/kg 1,3,5 TMB/FC 0.003421 MBMW24 764000 ug/mL MBSM-2-9.5' 1,3,5-Trimethylbenzene 1,5 mg/kg 1,3,5 TMB/FC 0.003421 MBMW24 764000 ug/mL MBSM-2-9.5' 1,3,5-Trimethylbenzene 1,5 mg/kg 1,3,5 TMB/FC 0.003421 MBMW24 764000 ug/mL MBSM-2-9.5' 1,3,5-Trimethylbenzene 1,5 mg/kg 1,3,5 TMB/FC 0.004341 MBSM-2-9.5' 1,3,5 TMB/FC 0.004341 MBSM-2-9.5' 1,3,5 TMB/FC 0.005341 MBSM-2-9.5' 1,3,5 TMB/FC 0.005341 MBSM-2-9.5' 1,3,5 TMB/FC 0.005341 MBSM-2-9.5' 1,3,5 TMB/FC 0.005341 MBSM-2-9.5' 1,3,5 TMB/FC															764000
NRMRL JP-4 1/1/1981 ##### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5' 1,2,4-Trimethylbenzene 36.4 mg/kg 1,2,4 TMB/FC 0.013094 MBMW24 764000 ug/mL MRSMR JP-4 1/1/1981 ###### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5' 1,3,5-Trimethylbenzene 9.51 mg/kg 1,3,5 TMB/FC 0.003421 MBMW24 764000 ug/mL MRSMR JP-4 1/1/1981 ###### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5' 1,3,5-Trimethylbenzene 9.51 mg/kg 1,3,5 TMB/FC 0.003421 MBMW24 764000 ug/mL MRSMR JP-4 1/1/1981 ###### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5' 1,4thylNaphthalene 7.62 mg/kg 1,4thylNaphthalene 1,5 mg/kg															4040
NRMRL JP-4 1/1/1981 ##### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5' 1,3,5-Trimethylbenzene 9.51 mg/kg 1,3,5 TMB/FC 0.003421 MBMW24 764000 ug/mL MRMRL JP-4 1/1/1981 ###### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5' 1,4,5-Trimethylbenzene 7.62 mg/kg 1,4,15 TMB/FC 0.003421 MBMW24 764000 ug/mL MBSB-2-9.5' 1,4,6-Trimethylbenzene 7.62 mg/kg 1,4,15 TMB/FC 0.003421 MBMW24 764000 ug/mL MBSB-2-9.5' 1,4,6-Trimethylbenzene 7.62 mg/kg 1,4,15 TMB/FC 0.003421 MBMW24 764000 ug/mL MBSB-2-9.5' 1,4,6-Trimethylbenzene 7.62 mg/kg 1,4,15 TMB/FC 0.003421 MBMW24 764000 ug/mL MBSB-2-9.5' 1,4,6-Trimethylbenzene 7.62 mg/kg 1,4,15 TMB/FC 0.003421 MBMW24 764000 ug/mL MBSB-2-9.5' 1,4,6-Trimethylbenzene 7.62 mg/kg 1,4,15 TMB/FC 0.003421 MBMW24 764000 ug/mL MBSB-2-9.5' 1,4,6-Trimethylbenzene 7.62 mg/kg 1,4,15 TMB/FC 0.004121 MBMW24 764000 ug/mL MBSB-2-9.5' 1,4,6-Trimethylbenzene 7.62 mg/kg 1,4,15 TMB/FC 0.004121 MBMW24 764000 ug/mL MBSB-2-9.5' 1,4,6-Trimethylbenzene 7.62 mg/kg 1,4,15 TMB/FC 0.004121 MBMW24 764000 ug/mL MBSB-2-9.5' 1,4,6-Trimethylbenzene 7.62 mg/kg 1,4,15 TMB/FC 0.004121 MBMW24 764000 ug/mL MBSB-2-9.5' 1,4,6-Trimethylbenzene 7.62 mg/kg 1,4,15 TMB/FC 0.004121 MBMW24 764000 ug/mL MBSB-2-9.5' 1,4,6-Trimethylbenzene 7.62 mg/kg 1,4,15 TMB/FC 0.004121 MBMW24 764000 ug/mL MBSB-2-9.5' 1,4,6-Trimethylbenzene 1,5 mg/kg MBSB-2-9.5' 1,4,6-Trimet															10003
NRMRL JP-4 1/1/1981 ##### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5' 1-MethylNaphthalene 7.62 mg/kg 1-MN/FC 0.002741 MBMW24 764000 ug/mL MSMRL JP-4 10/1/1973 ###### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5' 1-MethylNaphthalene 11.5 mg/kg 2-MN/FC 0.004137 MBMW24 764000 ug/mL MSMRL JP-4 10/1/1973 ##### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 Toluene 0.039 mg/kg JFC 0.00345 EAKMW316-FP 770400 ug/mL MSMRL JP-4 10/1/1973 ##### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 Toluene 0.039 mg/kg JFC 0.005304 EAKMW316-FP 770400 ug/mL MSMRL JP-4 10/1/1973 ##### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 M-Xylene 43.7 mg/kg MSMRL JP-4 10/1/1973 ##### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 O-Xylene 17.5 mg/kg O-Xylene/FC 0.005304 EAKMW316-FP 770400 ug/mL MSMRL JP-4 10/1/1973 ##### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 O-Xylene 17.5 mg/kg O-Xylene/FC 0.005691 EAKMW316-FP 770400 ug/mL MSMRL JP-4 10/1/1973 ##### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 Total Xylenes (m,p, and o) 81.3 mg/kg X/FC 0.025974 EAKMW316-FP 770400 ug/mL MSMRL JP-4 10/1/1973 ##### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 Total Xylenes (m,p, and o) 81.3 mg/kg BTEXFC 0.034741 EAKMW316-FP 770400 ug/mL MSMRL JP-4 10/1/1973 JFFC JFFC															2614
NRMRL JP-4 1/1/1981 ###### Pipeline Leak Site, Myrtle Beach AFB, SC Soil MBSB-2-9.5' 2-MethylNaphthalene 11.5 mg/kg 2-MN/FC 0.004137 MBMW24 764000 ug/mL NRMRL JP-4 10/1/1973 ###### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 Benzene 10.8 mg/kg B/FC 0.00345 EAKMW316-FP 770400 ug/mL NRMRL JP-4 10/1/1973 ##### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 Toluene 0.039 mg/kg T/FC 1.25E-05 EAKMW316-FP 770400 ug/mL NRMRL JP-4 10/1/1973 ##### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 Ethylbenzene 16.6 mg/kg E/FC 0.05304 EAKMW316-FP 770400 ug/mL NRMRL JP-4 10/1/1973 ##### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 m-Xylene 43.7 mg/kg m-Xylene/FC 0.013962 EAKMW316-FP 770400 ug/mL NRMRL JP-4 10/1/1973 ##### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 o-Xylene 17.5 mg/kg o-Xylene/FC 0.005591 EAKMW316-FP															2014
NRMRL JP-4 10/1/1973 ###### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 Benzene 10.8 mg/kg B/FC 0.0345 EAKMW316-FP 770400 ug/mL NRMRL JP-4 10/1/1973 ###### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 Toluene 0.039 mg/kg T/FC 1.25E-05 EAKMW316-FP 770400 ug/mL NRMRL JP-4 10/1/1973 ##### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 Ethylbenzene 16.6 mg/kg E/FC 0.005304 EAKMW316-FP 770400 ug/mL NRMRL JP-4 10/1/1973 ##### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 m-Xylene 43.7 mg/kg m-Xylene/FC 0.005304 EAKMW316-FP 770400 ug/mL NRMRL JP-4 10/1/1973 ##### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 o-Xylene 17.5 mg/kg o-Xylene/FC 0.005591 EAKMW316-FP 770400 ug/mL NRMRL JP-4 10/1/1973 ##### Spill Site No. 2, Eaker AFB, AR So															3160
NRMRL JP-4 10/1/1973 ###### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 Toluene 0.039 mg/kg T/FC 1.25E-05 EAKMW316-FP 770400 ug/mL															
NRMRL JP-4 10/1/1973 ##### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 Ethylbenzene 16.6 mg/kg E/FC 0.005304 EAKMW316-FP 770400 ug/mL NRMRL JP-4 10/1/1973 ###### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 m-Xylene 43.7 mg/kg m-Xylene/FC 0.013962 EAKMW316-FP 770400 ug/mL NRMRL JP-4 10/1/1973 ###### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 o-Xylene 17.5 mg/kg o-Xylene/FC 0.005591 EAKMW316-FP 770400 ug/mL NRMRL JP-4 10/1/1973 ###### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 p-Xylene 20.1 mg/kg p-Xylene/FC 0.005591 EAKMW316-FP 770400 ug/mL NRMRL JP-4 10/1/1973 ###### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 Total STEX 108.739 mg/kg D-Xylene/FC 0.02594* EAKMW316-FP 770400 ug/mL 2 NRMRL JP-4 10/1/1973 ###### Spill S															2658
NRMRL JP-4 10/1/1973 ###### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 m-Xylene 43.7 mg/kg m-Xylene/FC 0.013962 EAKMW316-FP 770400 ug/mL NRMRL JP-4 10/1/1973 ###### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 o-Xylene 17.5 mg/kg o-Xylene/FC 0.005591 EAKMW316-FP 770400 ug/mL NRMRL JP-4 10/1/1973 ###### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 p-Xylene 20.1 mg/kg p-Xylene/FC 0.00591 EAKMW316-FP 770400 ug/mL NRMRL JP-4 10/1/1973 ###### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 Total STEX 10.00591 Description of the properties of the proper															10
NRMRL JP-4 10/1/1973 ###### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 o-Xylene 17.5 mg/kg o-Xylene/FC 0.005591 EAKMW316-FP 770400 ug/mL NRMRL JP-4 10/1/1973 ###### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 p-Xylene 20.1 mg/kg p-Xylene/FC 0.005422 EAKMW316-FP 770400 ug/mL NRMRL JP-4 10/1/1973 ##### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 Total Xylenes (m,p, and o) 81.3 mg/kg X/FC 0.025974 EAKMW316-FP 770400 ug/mL 2.2 NRMRL JP-4 10/1/1973 ###### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 Total Xylenes (m,p, and o) 81.3 mg/kg X/FC 0.025974 EAKMW316-FP 770400 ug/mL 2.2 NRMRL JP-4 10/1/1973 ###### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 Total Xylenes (m,p, and o) 81.3 mg/kg X/FC 0.024741 EAKMW316-FP															4086
NRMRL JP-4 10/1/1973 ###### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 p-Xylene 20.1 mg/kg p-Xylene/FC 0.006422 EAKMW316-FP 770400 ug/mL NRMRL JP-4 10/1/1973 ###### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 Total Xylenes (m, p, and o) 81.3 mg/kg X/FC 0.025974 EAKMW316-FP 770400 ug/mL 2 NRMRL JP-4 10/1/1973 ###### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 Total BTEX 108.739 mg/kg BTEX/FC 0.034741 EAKMW316-FP 770400 ug/mL 2															10756
NRMRL JP-4 10/1/1973 ###### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 Total Xylenes (m,p, and o) 81.3 mg/kg X/FC 0.025974 EAKMW316-FP 770400 ug/mL 2 NRMRL JP-4 10/1/1973 ###### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 Total BTEX 108.739 mg/kg BTEX/FC 0.034741 EAKMW316-FP 770400 ug/mL 2															4307
NRMRL JP-4 10/1/1973 ##### Spill Site No. 2, Eaker AFB, AR Soil EAKSB1-3 Total BTEX 108.739 mg/kg BTEX/FC 0.034741 EAKMW316-FP 770400 ug/mL 2															4947
															20011
NDMDI ID-4 10/1/1073 ###### Spill Site No. 2 Faker AFR AP Spill FAKSR1-3 R+T 10.830 mg/kg (/R+T)/FC 0.003/63 EAKMM/346 ED 770/00 ug/ml					Soil		Total BTEX								26764
[MANNINE 01 10.111010 ####### Opin Once NO. 2, Eaker AFB, AR Obin EAKOD 1-0 D+1 10.000 IIII/MY	NRMRL	JP-4	10/1/1973 #####	Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB1-3	B+T	10.839	mg/kg	g	(B+T)/FC	0.003463 EAK	KMW316-FP	770400 ug/mL	2668

Lab Code	Fuel Type	Spill Date [Site Name	Matix	Locid	Analyte	Results	Units	Flag	FC Analyte	FC Ratio	FPLocid	FPdensity	FPunits	SoilFuel (ug/mL)
NRMRL	JP-4	10/1/1973 ##		Spill Site No. 2, Eaker AFB, AR	Soil		E+X		mg/kg		(E+X)/FC		EAKMW316-FP	770400		24097
NRMRL	JP-4	10/1/1973 ##		Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB1-3	B/T	276.923077	'		(B/T)/FC	0.088474	EAKMW316-FP	770400	ug/mL	68160
NRMRL	JP-4	10/1/1973 ##	##### 5	Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB1-3	B/E	0.65060241			(B/E)/FC	0.000208	EAKMW316-FP	770400	ug/mL	160
NRMRL	JP-4	10/1/1973 ##	#####	Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB1-3	B/X	0.13284133	3		(B/X)/FC	4.24E-05	EAKMW316-FP	770400	ug/mL	33
NRMRL	JP-4	10/1/1973 ##	##### 5	Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB1-3	T/E	0.0023494	ı		(T/E)/FC	7.51E-07	EAKMW316-FP	770400	ug/mL	1
NRMRL	JP-4	10/1/1973 ##	##### 5	Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB1-3	T/X	0.0004797	'		(T/X)/FC	1.53E-07	EAKMW316-FP	770400	ug/mL	0
NRMRL	JP-4	10/1/1973 ##	##### 5	Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB1-3	E/X	0.20418204	Ļ		(E/X)/FC	6.52E-05	EAKMW316-FP	770400	ug/mL	50
NRMRL	JP-4	10/1/1973 ##	##### 5	Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB1-3	(B+T)/(E+X)	0.11071502	2		((B+T)/(E+X))/FC	3.54E-05	EAKMW316-FP	770400	ug/mL	27
NRMRL	JP-4	10/1/1973 ##	##### 5	Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB1-3	Fuel Carbon	3130	mg/kg		Fuel Carbon	1	EAKMW316-FP	770400		770400
NRMRL	JP-4	10/1/1973 ##	##### 5	Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB1-3	1,2,3-Trimethylbenzene		mg/kg		1,2,3 TMB/FC	0.003898	EAKMW316-FP	770400	ug/mL	3003
NRMRL	JP-4	10/1/1973 ##	##### 5	Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB1-3	1,2,4-Trimethylbenzene		mg/kg		1,2,4 TMB/FC	0.011565	EAKMW316-FP	770400	ug/mL	8910
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB1-3	1,3,5-Trimethylbenzene		mg/kg		1,3,5 TMB/FC		EAKMW316-FP	770400		4824
NRMRL	JP-4	10/1/1973 ##	##### 5	Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB1-3	1-MethylNaphthalene		mg/kg		1-MN/FC	0.002058	EAKMW316-FP	770400		1585
NRMRL	JP-4	10/1/1973 ##		Spill Site No. 2, Eaker AFB, AR	Soil		2-MethylNaphthalene		mg/kg		2-MN/FC		EAKMW316-FP	770400		2880
NRMRL	JP-4	10/1/1973 ##		Spill Site No. 2, Eaker AFB, AR	Soil		Benzene		mg/kg		B/FC		EAKMW306-FP	762600		16
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB2-2	Toluene		mg/kg		T/FC		EAKMW306-FP	762600		16
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil		Ethylbenzene		mg/kg		E/FC		EAKMW306-FP	762600		694
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil		m-Xylene		mg/kg		m-Xylene/FC		EAKMW306-FP	762600		16
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil		o-Xylene		mg/kg		o-Xylene/FC		EAKMW306-FP	762600		16
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil		p-Xylene		mg/kg		p-Xylene/FC		EAKMW306-FP	762600		506
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB2-2	Total Xylenes (m,p, and o)		mg/kg		X/FC		EAKMW306-FP	762600		537
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB2-2	Total BTEX		mg/kg		BTEX/FC		EAKMW306-FP	762600		1263
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil		B+T		mg/kg		(B+T)/FC		EAKMW306-FP	762600		31
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil		E+X		mg/kg		(E+X)/FC		EAKMW306-FP	762600		1232
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil		B/T	0.47	ilig/kg		(B/T)/FC		EAKMW306-FP	762600		2621
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil		B/E	0.02264151	1		(B/E)/FC		EAKMW306-FP	762600		59
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil		B/X	0.02204131			(B/X)/FC		EAKMW306-FP	762600		77
NRMRL	JP-4 JP-4			Spill Site No. 2, Eaker AFB, AR	Soil		T/E	0.02926629			(T/E)/FC		EAKMW306-FP	762600		59
	JP-4 JP-4															77
NRMRL				Spill Site No. 2, Eaker AFB, AR	Soil		T/X	0.02926829			(T/X)/FC		EAKMW306-FP	762600		
NRMRL	JP-4	10/1/1973 ##		Spill Site No. 2, Eaker AFB, AR	Soil		E/X	1.29268293			(E/X)/FC		EAKMW306-FP	762600		3388
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB2-2	(B+T)/(E+X)	0.02553191			((B+T)/(E+X))/FC			762600		67
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB2-2	Fuel Carbon		mg/kg		Fuel Carbon		EAKMW306-FP	762600		762600
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB2-2	1,2,3-Trimethylbenzene		mg/kg		1,2,3 TMB/FC		EAKMW306-FP	762600		1787
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB2-2	1,2,4-Trimethylbenzene		mg/kg		1,2,4 TMB/FC		EAKMW306-FP	762600		5215
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB2-2	1,3,5-Trimethylbenzene		mg/kg		1,3,5 TMB/FC		EAKMW306-FP	762600		1813
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB2-2	1-MethylNaphthalene		mg/kg		1-MN/FC		EAKMW306-FP	762600		1402
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil		2-MethylNaphthalene		mg/kg		2-MN/FC		EAKMW306-FP	762600		1122
NRMRL	JP-4	10/1/1973 ##		Spill Site No. 2, Eaker AFB, AR	Soil		Benzene		mg/kg		B/FC		EAKMW306-FP	762600		3
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB2-4	Toluene		mg/kg		T/FC		EAKMW306-FP	762600		3
NRMRL	JP-4	10/1/1973 ##		Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB2-4	Ethylbenzene		mg/kg		E/FC		EAKMW306-FP	762600		2558
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil		m-Xylene		mg/kg		m-Xylene/FC		EAKMW306-FP	762600		415
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil		o-Xylene		mg/kg		o-Xylene/FC		EAKMW306-FP	762600		1288
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil		p-Xylene		mg/kg		p-Xylene/FC		EAKMW306-FP	762600		2747
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB2-4	Total Xylenes (m,p, and o)		mg/kg		X/FC		EAKMW306-FP	762600		4451
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB2-4	Total BTEX	14.809			BTEX/FC		EAKMW306-FP	762600		7014
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil		B+T		mg/kg		(B+T)/FC		EAKMW306-FP	762600		6
NRMRL	JP-4	10/1/1973 ##	##### 5	Spill Site No. 2, Eaker AFB, AR	Soil		E+X	14.797	mg/kg		(E+X)/FC		EAKMW306-FP	762600	ug/mL	7009
NRMRL	JP-4	10/1/1973 ##	#####	Spill Site No. 2, Eaker AFB, AR	Soil		B/T	1			(B/T)/FC	0.000621	EAKMW306-FP	762600	ug/mL	474
NRMRL	JP-4	10/1/1973 ##	##### 5	Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB2-4	B/E	0.00111111	1	1	(B/E)/FC	6.9E-07	EAKMW306-FP	762600	ug/mL	1
NRMRL	JP-4	10/1/1973 ##	#####	Spill Site No. 2, Eaker AFB, AR	Soil		B/X	0.0006385	5		(B/X)/FC	3.97E-07	EAKMW306-FP	762600	ug/mL	0
NRMRL	JP-4	10/1/1973 ##	#####	Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB2-4	T/E	0.00111111			(T/E)/FC		EAKMW306-FP	762600		1
NRMRL	JP-4	10/1/1973 ##	##### 5	Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB2-4	T/X	0.0006385	5		(T/X)/FC	3.97E-07	EAKMW306-FP	762600		0
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil		E/X	0.57465148			(E/X)/FC		EAKMW306-FP	762600		272
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil		(B+T)/(E+X)	0.00081098			((B+T)/(E+X))/FC		EAKMW306-FP	762600		0
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB2-4	Fuel Carbon		mg/kg		Fuel Carbon		EAKMW306-FP	762600		762600
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil		1,2,3-Trimethylbenzene		mg/kg		1,2,3 TMB/FC		EAKMW306-FP	762600		1937
NRMRL	JP-4	10/1/1973 ##		Spill Site No. 2. Eaker AFB. AR	Soil	EAKSB2-4	1,2,4-Trimethylbenzene		mg/kg		1.2.4 TMB/FC		EAKMW306-FP	762600		6679
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB2-4	1,3,5-Trimethylbenzene		mg/kg		1,3,5 TMB/FC		EAKMW306-FP	762600		3628
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil	EAKSB2-4	1-MethylNaphthalene		mg/kg		1-MN/FC		EAKMW306-FP	762600		1772
NRMRL	JP-4			Spill Site No. 2, Eaker AFB, AR	Soil		2-MethylNaphthalene		mg/kg		2-MN/FC		EAKMW306-FP	762600		3178
	v. ¬	. υ/ // / / / / ππ		2p 3.13 .13. 2, Editor / 11 D, / 11 t	COII	ODL ¬	=o.iyii tapiitiiaiciic	U.7 I	g/Ag		1/1 0	J.00-100		702000	149/IIIL	3170

Lab Code	Fuel Type	Spill Date	Date	Site Name	Matix		Analyte	Results Uni	its Flag FC Anal		FPLocid	FPdensity	FPunits	SoilFuel (ug/mL)
	JP-5			Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB1-4'	Benzene	0.0457 mg/k			6 BFT-401-3	804400		8
	JP-5			Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB1-4'	Toluene	0.56 mg/k			2 BFT-401-3	804400		93
	JP-5			Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB1-4'	Ethylbenzene	3.35 mg/k			9 BFT-401-3	804400		557
	JP-5			Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB1-4'	m-Xylene	5.02 mg/k			9 BFT-401-3	804400		834
	JP-5			Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB1-4'	o-Xylene	3.95 mg/k			6 BFT-401-3	804400		656
	JP-5	6/1/1990			Soil	BUTFC-SB1-4'	p-Xylene	1.98 mg/k			1 BFT-401-3	804400		329
	JP-5			Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB1-4'	Total Xylenes (m,p, and o)	10.95 mg/k			7 BFT-401-3	804400		1820
	JP-5			Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB1-4'	Total BTEX	14.9057 mg/k			9 BFT-401-3	804400		2477
	JP-5			Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB1-4'	B+T	0.6057 mg/k			5 BFT-401-3	804400		101
	JP-5			Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB1-4'	E+X	14.3 mg/k			5 BFT-401-3	804400		2377
	JP-5	6/1/1990			Soil	BUTFC-SB1-4'	B/T	0.08160714	(B/T)/FC		5 BFT-401-3	804400		14
	JP-5			Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB1-4'	B/E	0.01364179	(B/E)/FC		6 BFT-401-3	804400		2
	JP-5 JP-5			Tank Farm C, Beaufort MCAS, SC Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB1-4' BUTFC-SB1-4'	B/X T/E	0.00417352	(B/X)/FC		7 BFT-401-3	804400		1
	JP-5 JP-5			Tank Farm C, Beaufort MCAS, SC Tank Farm C, Beaufort MCAS, SC	Soil Soil	BUTFC-SB1-4'	T/X	0.16716418 0.05114155	(T/E)/FC (T/X)/FC		5 BFT-401-3 5 BFT-401-3	804400 804400		28
	JP-5 JP-5	6/1/1990		Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB1-4'	E/X	0.30593607	(E/X)/FC		5 BFT-401-3			51
	JP-5 JP-5			Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB1-4'		0.04235664	((B+T)/(E+X		6 BFT-401-3	804400 804400		7
	JP-5 JP-5			Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB1-4'	(B+T)/(E+X) Fuel Carbon	4840 mg/k			1 BFT-401-3	804400		804400
	JP-5			Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB1-4'	1,2,3-Trimethylbenzene	20.6 mg/k			8 BFT-401-3	804400		3424
	JP-5			Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB1-4'	1,2,4-Trimethylbenzene	33.4 mg/k			6 BFT-401-3	804400		5551
	JP-5			Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB1-4'	1,3,5-Trimethylbenzene	9.58 mg/k			9 BFT-401-3	804400		1592
	JP-5 JP-5			Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB1-4'	1-MethylNaphthalene	20.5 mg/k			7 BFT-401-3	804400		3407
	JP-5			Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB1-4'	2-MethylNaphthalene	27.4 mg/k			7 BFT-401-3	804400		4554
	JP-5			Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB2-3.5'		0.375 mg/k			5 BFT-401-3	804400		15
	JP-5			Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB2-3.5'		0.382 mg/k			5 BFT-401-3	804400		15
	JP-5			Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB2-3.5'		15.3 mg/k			5 BFT-401-3	804400		606
	JP-5			Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB2-3.5'		22.9 mg/k			9 BFT-401-3	804400		907
	JP-5			Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB2-3.5'		13.7 mg/k			7 BFT-401-3	804400		543
	JP-5			Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB2-3.5'		8.94 mg/k			4 BFT-401-3	804400		354
	JP-5			Tank Farm C, Beaufort MCAS, SC	Soil		Total Xylenes (m,p, and o)	45.54 mg/k			5 BFT-401-3	804400		1805
	JP-5			Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB2-3.5'		61.597 mg/k			5 BFT-401-3	804400		2441
NRMRL	JP-5			Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB2-3.5'		0.757 mg/k			5 BFT-401-3	804400		30
NRMRL	JP-5	6/1/1990	######	Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB2-3.5'	E+X	60.84 mg/k		0.00299704	4 BFT-401-3	804400		2411
	JP-5	6/1/1990	######	Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB2-3.5'		0.98167539	(B/T)/FC		5 BFT-401-3	804400		39
NRMRL	JP-5	6/1/1990	######	Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB2-3.5'	B/E	0.0245098	(B/E)/FC	1.20738E-0	6 BFT-401-3	804400	ug/mL	1
NRMRL	JP-5	6/1/1990	######	Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB2-3.5'		0.00823452	(B/X)/FC	4.05641E-0	7 BFT-401-3	804400	ug/mL	0
	JP-5	6/1/1990	######	Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB2-3.5'		0.02496732	(T/E)/FC	1.22992E-0	6 BFT-401-3	804400	ug/mL	1
	JP-5	6/1/1990	######	Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB2-3.5'	T/X	0.00838823	(T/X)/FC	4.13213E-0	7 BFT-401-3	804400	ug/mL	0
	JP-5			Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB2-3.5'		0.33596838	(E/X)/FC		5 BFT-401-3	804400		13
	JP-5			Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB2-3.5'		0.01244247	((B+T)/(E+X		7 BFT-401-3	804400		0
	JP-5			Tank Farm C, Beaufort MCAS, SC	Soil	BUTFC-SB2-3.5'		20300 mg/k			1 BFT-401-3	804400		804400
	JP-5			Tank Farm C, Beaufort MCAS, SC	Soil		1,2,3-Trimethylbenzene	95.5 mg/k			3 BFT-401-3	804400		3784
	JP-5			Tank Farm C, Beaufort MCAS, SC	Soil		1,2,4-Trimethylbenzene	148 mg/k			4 BFT-401-3	804400		5865
	JP-5			Tank Farm C, Beaufort MCAS, SC	Soil		1,3,5-Trimethylbenzene	43.5 mg/k			7 BFT-401-3	804400		1724
	JP-5			Tank Farm C, Beaufort MCAS, SC	Soil		1-MethylNaphthalene	87.3 mg/k			3 BFT-401-3	804400		3459
	JP-5			Tank Farm C, Beaufort MCAS, SC	Soil		2-MethylNaphthalene	115 mg/k			5 BFT-401-3	804400		4557
	JP-5			Day Tank 865, Beaufort MCAS, SC	Soil	BUDTSB-3.5'	Benzene	3.25 mg/k			2 ASSUMEdens			620
	JP-5			Day Tank 865, Beaufort MCAS, SC	Soil	BUDTSB-3.5'	Toluene	0.0786 mg/k			5 ASSUMEdens			15
	JP-5 JP-5			Day Tank 865, Beaufort MCAS, SC	Soil	BUDTSB-3.5'	Ethylbenzene m Vylono	23.9 mg/k			7 ASSUMEdens			4556
	JP-5 JP-5			Day Tank 865, Beaufort MCAS, SC	Soil	BUDTSB-3.5' BUDTSB-3.5'	m-Xylene	0.006 mg/k			6 ASSUMEdens 5 ASSUMEdens			15
	JP-5 JP-5			Day Tank 865, Beaufort MCAS, SC Day Tank 865, Beaufort MCAS, SC	Soil Soil	BUDTSB-3.5'	o-Xylene p-Xylene	0.0812 mg/k 0.006 mg/k			6 ASSUMEdens			15
	JP-5 JP-5			Day Tank 865, Beaufort MCAS, SC	Soil	BUDTSB-3.5'	Total Xylenes (m,p, and o)	0.0932 mg/k			5 ASSUMEdens			18
	JP-5 JP-5			Day Tank 865, Beaufort MCAS, SC	Soil	BUDTSB-3.5'	Total BTEX	27.3218 mg/k			6 ASSUMEdens			5208
	JP-5			Day Tank 865, Beaufort MCAS, SC	Soil	BUDTSB-3.5'	B+T	3.3286 mg/k			8 ASSUMEdens			634
	JP-5			Day Tank 865, Beaufort MCAS, SC	Soil	BUDTSB-3.5'	E+X	23.9932 mg/k			2 ASSUMEdens			4573
	JP-5			Day Tank 865, Beaufort MCAS, SC	Soil	BUDTSB-3.5'	B/T	41.3486005	(B/T)/FC		7 ASSUMEdens			7882
	JP-5			Day Tank 865, Beaufort MCAS, SC	Soil	BUDTSB-3.5'	B/E	0.13598326	(B/E)/FC		5 ASSUMEdens			26
	JP-5			Day Tank 865, Beaufort MCAS, SC	Soil	BUDTSB-3.5'	B/X	34.8712446	(B/X)/FC		8 ASSUMEdens			6647
	JP-5			Day Tank 865, Beaufort MCAS, SC	Soil	BUDTSB-3.5'	T/E	0.0032887	(T/E)/FC		7 ASSUMEdens			1
	JP-5			Day Tank 865, Beaufort MCAS, SC	Soil	BUDTSB-3.5'	T/X	0.84334764	(T/X)/FC		5 ASSUMEdens			161
	JP-5			Day Tank 865, Beaufort MCAS, SC	Soil	BUDTSB-3.5'	E/X	256.437768	(E/X)/FC		4 ASSUMEdens			48881
	JP-5			Day Tank 865, Beaufort MCAS, SC	Soil	BUDTSB-3.5'	(B+T)/(E+X)	0.13873097	((B+T)/(E+X		5 ASSUMEdens			26
	JP-5			Day Tank 865, Beaufort MCAS, SC	Soil	BUDTSB-3.5'	Fuel Carbon	4220 mg/k		,	1 ASSUMEdens			804400
	JP-5			Day Tank 865, Beaufort MCAS, SC	Soil	BUDTSB-3.5'	1,2,3-Trimethylbenzene	28 mg/k		C 0.00663507	1 ASSUMEdens			5337
	JP-5			Day Tank 865, Beaufort MCAS, SC		BUDTSB-3.5'	1,2,4-Trimethylbenzene	0.287 mg/k			5 ASSUMEdens			55
	-				1		, , ,		J .,=,		. ,			00

PASSERT P-5	FPdensity FPunits	SoilFuel (ug/mL)
MARKER_ P-5	804400 ug/mL	3
NAMERICAN P-5	804400 ug/mL	5680
NEMBER, P-5	804400 ug/mL	8444
NRAME, P-6	799000 ug/mL	27
NRAMER P-6	799000 ug/mL	479
NEARINE, P-5	799000 ug/mL	3925
MPASHEL IP-5 6-111981 memore Facility 250. Ceel Fred MAS, FL Soli CF891-8-5 IP-X/priese T11 mg/sq y-X/pries C 0.0039712 CEF-293-9FP MPASHEL IP-5 6-111981 memore Facility 250. Ceel Fred MAS, FL Soli CF891-8-5 T004 6*TEX SSS.55 mg/sq D*TEX*** C 0.013733440 CF7-293-9FP MPASHEL IP-5 6-111981 memore Facility 250. Ceel Fred MAS, FL Soli CF891-8-5 T004 6*TEX SSS.55 mg/sq D*TEX*** C 0.013733450 CF7-293-9FP MPASHEL IP-5 6-111981 memore Facility 250. Ceel Fred MAS, FL Soli CF891-8-5 BrT 0.005460988 (BTF) C 1.930066 C 0.016740 C 0.0	799000 ug/mL	6487
NRMRR IP-5	799000 ug/mL	913
MRMRIR, IP-5	799000 ug/mL	3174
NRAMER JP-5	799000 ug/mL	10574
NRMRIR JP-5	799000 ug/mL	15004
NRMRIR JP 5	799000 ug/mL	505
NRMING JP-5	799000 ug/mL	14499
NRMRR, UP-5	799000 ug/mL	2
NRMRIL JP-5	799000 ug/mL	0
NRANIR. JP-5	799000 ug/mL	0
NRMRL JP-5	799000 ug/mL	3
NRARIR, JP-5 6/11/981 ###### Facility 2/39, Ceal Field NAS, FL Soil CFS81-8.5 Feel Carbon CFS81-9.5 Feel Carbon Feel Carbon CFS81-9.5 Feel Carbon CFS81-	799000 ug/mL	1
NRMRL JP-5 67/17981 ##### Facility 293, Ceal Field NAS, FL Soil CFS81-8.5 FusiCarbon 10EF-293-9FP NRMRL JP-5 67/17981 ##### Facility 293, Ceal Field NAS, FL Soil CFS81-8.5 12,4*Trimetlybenzene 210 mg/kg 1,2 x 1MB/FC 0.003808103 CEF-293-9FP NRMRL JP-5 67/17981 ###### Facility 293, Ceal Field NAS, FL Soil CFS81-8.5 13,5*Trimetlybenzene 210 mg/kg 1,2 x 1MB/FC 0.003808103 CEF-293-9FP NRMRL JP-5 67/17981 ###### Facility 293, Ceal Field NAS, FL Soil CFS81-8.5 13,5*Trimetlybenzene 84.3 mg/kg 1,4 x 1MB/FC 0.003080810 CEF-293-9FP NRMRL JP-5 67/17981 ###### Facility 293, Ceal Field NAS, FL Soil CFS81-8.5 1,3 x 1MB/FC 0.003080810 CFS93-9FP NRMRL JP-5 67/17981 ###### Facility 293, Ceal Field NAS, FL Soil CFS81-8.5 1,3 x 1MB/FC 0.003080830 CFF-293-9FP NRMRL JP-5 67/17981 ###### Facility 293, Ceal Field NAS, FL Soil CFS81-8.5 CFS81-8.5	799000 ug/mL	10
NRARIL JP-5 61/17981 ##### Facility 293 Ceal Field NAS, FL Soil CFS81-8.5* 12,3-Trimethybenzene 83.4 mg/kg 1,2.3 TMB/FC 0.003309130 CEF.289.9FP NRARIL JP-5 61/17981 ##### facility 293 Ceal Field NAS, FL Soil CFS81-8.5* 12,3-Trimethybenzene 81.3 mg/kg 1,2.4 TMB/FC 0.003309730 CEF.289.9FP NRARIL JP-5 61/17981 ##### facility 293 Ceal Field NAS, FL Soil CFS81-8.5* 1.3,5-Trimethybenzene 84.3 mg/kg 1.MMFC 0.003006860 CEF.289.9FP NRARIL JP-5 61/17981 ##### facility 293 Ceal Field NAS, FL Soil CFS81-8.5* Methyphyphthalene 133 mg/kg 1.MMFC 0.00239722 CEF.299.9FP NRARIL JP-5 61/17981 ##### facility 293 Ceal Field NAS, FL Soil CFS81-8.5* Methyphyphthalene 133 mg/kg 3/FC 3.3530E-65 CEF-289.9FP NRARIL JP-5 61/17981 ##### facility 293 Ceal Field NAS, FL Soil CFS811-8.5* Methyphyphyphyphyphyphyphysiolane Methyphyphyphysiolane Methyphyphyphysiolane Methyphyphysiolane Methyphyphysiolane Methyphyphysiolane Methyphyphyphysiolane Methyphyphyphysi	799000 ug/mL	1
NRARIE, JP-5 61/17981 ##### Facility 293, Ceel Field NAS, FL Soil CFS81-8.5 12,4-Trmethybenzene 210 mg/kg 12,4-TMBFC 0003078707 CEF-289-9FP NRARIE, JP-5 61/17981 ##### Facility 293, Ceel Field NAS, FL Soil CFS81-8.5 13,5-TMBFD 000307890 CEF-289-9FP NRARIE, JP-5 61/17981 ###### Facility 293, Ceel Field NAS, FL Soil CFS81-8.5 1.MethyfNaphthalene 84.3 mg/kg 1.3,5-TMBFC 000307890 CEF-289-9FP NRARIE, JP-5 61/17981 ###### Facility 293, Ceel Field NAS, FL Soil CFS81-8.5 MethyfNaphthalene 133 mg/kg 2.MMFC 0.00463440 CEF-289-9FP NRARIE, JP-5 61/17981 ###### Facility 293, Ceel Field NAS, FL Soil CFS811-8.5 Methyfnaphthalene 19.1 mg/kg T/FC 0.005052640 CEF-289-9FP NRARIE, JP-5 61/17981 ###### Facility 293, Ceel Field NAS, FL Soil CFS811-8.5 Methyfnaphthalene 15.5 mg/kg T/FC 0.005052640 CEF-289-9FP NRARIE, JP-5 61/17981 ###### Facility 293, Ceel Field NAS, FL Soil CFS811-8.5 Methyfnaphthalene 15.5 mg/kg T/FC 0.005052640 CEF-289-9FP NRARIE, JP-5 61/17981 ###### Facility 293, Ceel Field NAS, FL Soil CFS811-8.5 Methyfnaphthalene 15.5 mg/kg T/FC 0.005052640 CEF-289-9FP NRARIE, JP-5 61/17981 ###### Facility 293, Ceel Field NAS, FL Soil CFS811-8.5 T/FC T/FC T/FC 0.005052640 CEF-289-9FP NRARIE, JP-5 61/17981 ####### Facility 293, Ceel Field NAS, FL Soil CFS811-8.5 T/FC T/FC 0.005052640 CEF-289-9FP NRARIE, JP-5 61/17981 ########## Facility 293, Ceel Field NAS, FL Soil CFS811-8.5 T/FC T/FC 0.005052640 CEF-289-9FP NRARIE, JP-5 61/17981 ###################################	799000 ug/mL	799000
NRMRL JP-5	799000 ug/mL	2461
NRANKL P-5 67/1981	799000 ug/mL	5846
NRMRL JP-5 6/11/981 ##### Facility 293, Cecil Field MAS, FL Soil CFS811-8.5" 2-MetryNaphthene 133 mg/kg 2-MWFC 0.0046341-6 CEF-229-9FP NRMRL JP-5 6/11/981 ##### Facility 293, Cecil Field MAS, FL Soil CFS811-8.5" Toluene 19.1 mg/kg T/FC 0.00056597 CEF-229-9FP NRMRL JP-5 6/11/981 ###### Facility 293, Cecil Field MAS, FL Soil CFS811-8.5" Toluene 19.1 mg/kg T/FC 0.00056597 CEF-229-9FP NRMRL JP-5 6/11/981 ###### Facility 293, Cecil Field MAS, FL Soil CFS811-8.5" Toluene 258 mg/kg T/FC 0.00056597 CEF-229-9FP NRMRL JP-5 6/11/981 ###### Facility 293, Cecil Field MAS, FL Soil CFS811-8.5" Toluene 258 mg/kg T/FC 0.00057801 CEF-229-9FP NRMRL JP-5 6/11/981 ###### Facility 293, Cecil Field MAS, FL Soil CFS811-8.5" Toluene 258 mg/kg D/SyleneFC 0.00057801 CEF-229-9FP NRMRL JP-5 6/11/981 ###### Facility 293, Cecil Field MAS, FL Soil CFS811-8.5" Toluene 125 mg/kg D/SyleneFC 0.00426553 CEF-229-9FP NRMRL JP-5 6/11/981 ###### Facility 293, Cecil Field MAS, FL Soil CFS811-8.5" Toluene 125 mg/kg D/SyleneFC 0.00426553 CEF-229-9FP NRMRL JP-5 6/11/981 ###### Facility 293, Cecil Field MAS, FL Soil CFS811-8.5" Toluene 125 mg/kg D/SyleneFC 0.00426553 CEF-229-9FP NRMRL JP-5 6/11/981 ###### Facility 293, Cecil Field MAS, FL Soil CFS811-8.5" Toluene 125 mg/kg D/SyleneFC 0.00426533 CEF-229-9FP NRMRL JP-5 6/11/981 ###### Facility 293, Cecil Field MAS, FL Soil CFS811-8.5" Toluene 125 mg/kg D/SyleneFC 0.00426533 CEF-229-9FP NRMRL JP-5 6/11/981 ##### Facility 293, Cecil Field MAS, FL Soil CFS811-8.5" Toluene 125 mg/kg D/SyleneFC 0.00426933 CEF-229-9FP NRMRL JP-5 6/11/981 ##### Facility 293, Cecil Field MAS, FL Soil CFS811-8.5" EPX Soil CFS811-8.5" D/SyleneFC 0.0042693 CEF-229-9FP NRMRL JP-5 6/11/981 #####	799000 ug/mL	2403
NRINKL JP-5 67/1981 ##### Facility 293, Cecil Field MAS, FL Soil CFS811-8.5" Date 19.75 67/1981 ##### Facility 293, Cecil Field MAS, FL Soil CFS811-8.5" Totalen 19.75 MRINKL JP-5 67/1981 ##### Facility 293, Cecil Field MAS, FL Soil CFS811-8.5" Ethylbenzene 155 mg/kg E/FC 0.0052646 (EF-293-9FP NRINKL JP-5 67/1981 ###### Facility 293, Cecil Field MAS, FL Soil CFS811-8.5" Navylene 263 mg/kg E/FC 0.0052646 (EF-293-9FP NRINKL JP-5 67/1981 ###### Facility 293, Cecil Field MAS, FL Soil CFS811-8.5" O.Xylene 37.4 mg/kg O.Xylene/FC 0.001286523 (EF-293-9FP NRINKL JP-5 67/1981 ###### Facility 293, Cecil Field MAS, FL Soil CFS811-8.5" O.Xylene 125 mg/kg X/FC 0.001286523 (EF-293-9FP NRINKL JP-5 67/1981 ###### Facility 293, Cecil Field MAS, FL Soil CFS811-8.5" Total Xylenes (mp., and o) 425.4 mg/kg X/FC 0.014816857 (EF-293-9FP NRINKL JP-5 67/1981 ###### Facility 293, Cecil Field MAS, FL Soil CFS811-8.5" Total Xylenes (mp., and o) 425.4 mg/kg X/FC 0.014816857 (EF-293-9FP NRINKL JP-5 67/1981 ###### Facility 293, Cecil Field MAS, FL Soil CFS811-8.5" Total Xylenes (mp., and o) 425.4 mg/kg X/FC 0.014816857 (EF-293-9FP NRINKL JP-5 67/1981 ###### Facility 293, Cecil Field MAS, FL Soil CFS811-8.5" ST Total Xylenes (mp., and o) 425.4 mg/kg (B*T)/FC 0.00688997 (EF-293-9FP NRINKL JP-5 67/1981 ###### Facility 293, Cecil Field MAS, FL Soil CFS811-8.5" ST Total Xylenes (mp., and o) 425.4 mg/kg (B*T)/FC 0.00688997 (EF-293-9FP NRINKL JP-5 67/1981 ##### Facility 293, Cecil Field MAS, FL Soil CFS811-8.5" ST Total Xylenes (mp., and o) 425.4 mg/kg (B*T)/FC 0.00688997 (EF-293-9FP NRINKL JP-5 67/1981 ##### Facility 293, Cecil Field MAS, FL Soil CFS811-8.5" ST Total Xylenes (mp., and o) 425.4 mg/kg (B*T)/FC 0.00688997 (EF-293-9FP NRINKL JP-5 67/1981 ##### Facility 293, Cecil Field MAS, F	799000 ug/mL	2347
NRMINIL JP-5 67/17981 ##### Facility 293.0 cell Field NAS, FL Soil CFSB11-8.5 Tolune 19.1 lmg/kg T/FC 0.00056357 (CEF-293-9FP NRMINIL JP-5 67/17981 ###### Facility 293.0 cell Field NAS, FL Soil CFSB11-8.5 mg/kg m-Xylene/FC 0.00052363 (CEF-293-9FP NRMINIL JP-5 67/17981 ##### Facility 293.0 cell Field NAS, FL Soil CFSB11-8.5 mg/kg m-Xylene/FC 0.00052353 (CEF-293-9FP NRMINIL JP-5 67/17981 ##### Facility 293.0 cell Field NAS, FL Soil CFSB11-8.5 mg/kg m-Xylene/FC 0.00128323 (CEF-293-9FP NRMINIL JP-5 67/17981 ##### Facility 293.0 cell Field NAS, FL Soil CFSB11-8.5 mg/kg mg/kg m-Xylene/FC 0.004295533 (CEF-293-9FP NRMINIL JP-5 67/17981 ##### Facility 293.0 cell Field NAS, FL Soil CFSB11-8.5 Tolal Xylenes (mp. and o) 4254 mg/kg Mg/	799000 ug/mL	3703
NRIMPIL JP-5 6/1/1981 ###### Facility 233. Ceil Field NAS, FL Soil CFSB11-8.5 Ellybenzone 155 mg/kg EFC 0.00932846 (CEF-233-9FP NRIMPIL JP-5 6/1/1981 ###### Facility 233. Ceil Field NAS, FL Soil CFSB11-8.5 O-Xylene 37.4 mg/kg O-Xylene/FC 0.00932833 (CEF-233-9FP NRIMPIL JP-5 6/1/1981 ###### Facility 233. Ceil Field NAS, FL Soil CFSB11-8.5 O-Xylene 37.4 mg/kg O-Xylene/FC 0.00428523 (CEF-233-9FP NRIMPIL JP-5 6/1/1981 ###### Facility 233. Ceil Field NAS, FL Soil CFSB11-8.5 Total Xylenes (m.p., and o) 4.25.4 mg/kg X/FC 0.01481857 (CEF-233-9FP NRIMPIL JP-5 6/1/1981 ###### Facility 233. Ceil Field NAS, FL Soil CFSB11-8.5 Total Xylenes (m.p., and o) 4.25.4 mg/kg X/FC 0.01481857 (CEF-233-9FP NRIMPIL JP-5 6/1/1981 ###### Facility 233. Ceil Field NAS, FL Soil CFSB11-8.5 Total Xylenes (m.p., and o) 4.25.4 mg/kg X/FC 0.01481857 (CEF-233-9FP NRIMPIL JP-5 6/1/1981 ###### Facility 233. Ceil Field NAS, FL Soil CFSB11-8.5 Total Xylenes (m.p., and o) 4.25.4 mg/kg X/FC 0.010486397 (CEF-233-9FP NRIMPIL JP-5 6/1/1981 ###### Facility 233. Ceil Field NAS, FL Soil CFSB11-8.5 EFX 500.4 mg/kg (B+T)FC 0.00088987 (CEF-233-9FP NRIMPIL JP-5 6/1/1981 ####### Facility 233. Ceil Field NAS, FL Soil CFSB11-8.5 B/T 0.0510948 (B+T)FC 0.01948570 (CEF-233-9FP NRIMPIL JP-5 6/1/1981 ####### Facility 233. Ceil Field NAS, FL Soil CFSB11-8.5 B/T 0.0510948 (B/T)FC 2.16384-6.0 (CEF-233-9FP NRIMPIL JP-5 6/1/1981 ###### Facility 233. Ceil Field NAS, FL Soil CFSB11-8.5 EX CFSB1	799000 ug/mL	27
RRMRIL JP-5 6/1/1981	799000 ug/mL	524
NRMMEL JP-5 6/1/1981 ###### Facility 2/3 Cecl Field NAS, FL Soli CFSB11-8.5 D.Xylene 37.4 mg/kg D.Xylene/FC 0.001285232 CEF-293-9FP NRMEL JP-5 6/1/1981 ##### Facility 2/3 Cecl Field NAS, FL Soli CFSB11-8.5 Total EXTENDED TOTAL TOTAL	799000 ug/mL	4256
NRMMEL JP-5 6/1/1981 ###### Facility 2/3 Cecil Field NAS, FL Soil CFSB11-8.5" D,Xylene 125 mg/kg D,Xylene/FC 0.00429533 CEF-293-9FP NRMMEL JP-5 6/1/1981 ###### Facility 2/3 Cecil Field NAS, FL Soil CFSB11-8.5" Tolal Xylenes (mp, and o) 425.4 mg/kg XFC 0.10495357 CEF-293-9FP NRMMEL JP-5 6/1/1981 ###### Facility 2/3 Cecil Field NAS, FL Soil CFSB11-8.5" Tolal Xylenes (mp, and o) 425.4 mg/kg XFC 0.00269391 CEF-293-9FP NRMMEL JP-5 6/1/1981 ##### Facility 2/3 Cecil Field NAS, FL Soil CFSB11-8.5" FFSB11-8.5" FFSB11-8.5" Tolal Xylenes (mp, and o) 425.4 mg/kg XFC 0.0069897 CEF-293-9FP NRMMEL JP-5 6/1/1981 ###### Facility 2/3 Cecil Field NAS, FL Soil CFSB11-8.5" FFSB11-8.5" FFSB1	799000 ug/mL	7221
NRMRIL JP-5 6/1/1981 ###### Facility 230, Cecil Field NAS, FL Soil CFSB11-8.5" Total Xylenes (m.p., and o.) 425.4 mg/kg XFC 0.01618557 CEF-293.9FP NRMRIL JP-5 6/1/1981 ##### Facility 230, Cecil Field NAS, FL Soil CFSB11-8.5" E+X 50.076 mg/kg (B+T)/FC 0.000839897 CEF-293.9FP NRMRIL JP-5 6/1/1981 ##### Facility 230, Cecil Field NAS, FL Soil CFSB11-8.5" B+T 0.05109948 (B+T)/FC 0.000839897 CEF-293.9FP NRMRIL JP-5 6/1/1981 ##### Facility 230, Cecil Field NAS, FL Soil CFSB11-8.5" B/T 0.05109948 (B-T)/FC 0.01945017 CEF-293.9FP NRMRIL JP-5 6/1/1981 ##### Facility 230, Cecil Field NAS, FL Soil CFSB11-8.5" B/T 0.05109948 (BT)/FC 0.10945017 CEF-293.9FP NRMRIL JP-5 6/1/1981 ###### Facility 230, Cecil Field NAS, FL Soil CFSB11-8.5" B/E 0.000259677 (B/E)/FC 2.16384E-07 CEF-293.9FP NRMRIL JP-5 6/1/1981 ###### Facility 230, Cecil Field NAS, FL Soil CFSB11-8.5" B/E 0.000259677 (B/E)/FC 2.16384E-07 CEF-293.9FP NRMRIL JP-5 6/1/1981 ###### Facility 230, Cecil Field NAS, FL Soil CFSB11-8.5" T/E 0.12322581 (T/E)/FC 4.23456E-06 CEF-293.9FP NRMRIL JP-5 6/1/1981 ###### Facility 230, Cecil Field NAS, FL Soil CFSB11-8.5" T/E 0.12322581 (T/E)/FC 4.23456E-06 CEF-293.9FP NRMRIL JP-5 6/1/1981 ###### Facility 230, Cecil Field NAS, FL Soil CFSB11-8.5" T/X 0.04489892 (T/E)/FC 4.23456E-06 CEF-293.9FP NRMRIL JP-5 6/1/1981 ###### Facility 230, Cecil Field NAS, FL Soil CFSB11-8.5" T/X 0.03458994 (B*T)/EC* 1.25211E-05 CEF-293.9FP NRMRIL JP-5 6/1/1981 ###### Facility 230, Cecil Field NAS, FL Soil CFSB11-8.5" T/E CEP T/E	799000 ug/mL	1027
NRMRI	799000 ug/mL	3432
NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' Sol CFSB11-8	799000 ug/mL	11680
NRMRL JP-5 61/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5 E+X 580.4 Img/kg (E+X)/FC 0.019945017 CEF-293-9FP NRMRL JP-5 61/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5 B/T 0.00529677 (B/E)/FC 2.16384E-07 CEF-293-9FP NRMRL JP-5 61/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5 B/E 0.00629677 (B/E)/FC 2.16384E-07 CEF-293-9FP NRMRL JP-5 61/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5 T/E 0.12322581 (B/K)/FC 7.88423E-08 CEF-293-9FP NRMRL JP-5 61/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5 T/E 0.12322581 (T/E)/FC 4.23456E-06 CEF-293-9FP NRMRL JP-5 61/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5 T/K 0.04489892 (T/K)/FC 1.5429E-06 CEF-293-9FP NRMRL JP-5 61/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5 E/X 0.36436295 (E/X)/FC 1.5252E-09 CEP-293-9FP NRMRL JP-5 61/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5 (B+T)/(E+X) 0.03458994 (B/E+T)/(E+X)/FC 1.18866E-06 CEF-293-9FP NRMRL JP-5 61/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5 (B+T)/(E+X) 0.03458994 (B/E)/(E+X)/FC 1.18866E-06 CEF-293-9FP NRMRL JP-5 61/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5 (JEY)/FC	799000 ug/mL	16487
NRMRL JP-5 6/11/981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' B/T D. 0.05109948 (B/T)/FC 1.756E-06 CEF-293-9FP NRMRL JP-5 6/11/981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' B/X D. 0.00229431 (B/X)/FC 7.88423E-08 CEF-293-9FP NRMRL JP-5 6/11/981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' T/E D. 12322581 (T/E)/FC 4.23456E-06 CEF-293-9FP NRMRL JP-5 6/11/981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' T/X D. 0.0489892 (T/X)/FC 4.23456E-06 CEF-293-9FP NRMRL JP-5 6/11/981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' T/X D. 0.0489892 (T/X)/FC 1.5221E-05 CEF-293-9FP NRMRL JP-5 6/11/981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' CFSB	799000 ug/mL	551 15936
NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' B/E 0.00629677 (B/E/FC 2.16384E-07 CF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' T/E 0.12322581 (T/E/FC 7.884225-06 CF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' T/E 0.12322581 (T/E/FC 4.23456E-06 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' T/X 0.04489982 (T/K)/FC 1.54292E-06 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' T/X 0.04489982 (T/K)/FC 1.52212E-06 CEF-293-9FP NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' (B+T)/(E+X)/FC 1.866E-06 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' Fuel Carbon 29100 mg/kg Fuel Carbon 1.02429E-06 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' 1.2.4-Trimethylbenzene 99.8 mg/kg 1.2.3 TMB/FC 0.003429553 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' 1.2.4-Trimethylbenzene 99.8 mg/kg 1.2.4 TMB/FC 0.003429553 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' 1.3.5-Trimethylbenzene 99.9 mg/kg 1.2.4 TMB/FC 0.003429563 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' 1.3.5-Trimethylbenzene 99.9 mg/kg 1.2.4 TMB/FC 0.003429563 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' 1.3.5-Trimethylbenzene 99.9 mg/kg 1.3.5 TMB/FC 0.00342986 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB1-8.5' 1.4.4 Trimethylbenzene 99.9 mg/kg 1.4.4 TMB/FC 0.003	799000 ug/mL	15950
NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' T/E 0.12322581 (T/K)/FC 4.234566-8 CEF-293-9FP NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' T/E 0.12322581 (T/K)/FC 4.234566-8 CEF-293-9FP NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' T/K 0.04489892 (T/K)/FC 1.54292-6 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' E/X 0.36436295 (E/K)/FC 1.54292-6 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' E/X 0.36436295 (E/K)/FC 1.522116-5 CEF-293-9FP NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' E/X E/X	799000 ug/mL 799000 ug/mL	1
NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' T/E 0.12322581 (T/E/FC 4.23456E-06 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' T/X 0.04489892 (T/X)/FC 1.5429E-06 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' E/X 0.34636295 (E/X)/FC 1.52511E-05 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' E/X 0.03463994 ((B+T)/(E+X)/FC 1.18866E-06 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' Fuel Carbon 29100 mg/kg Fuel Carbon 1.2,4 Trimethylbenzene 99.8 mg/kg 1.2,3 TMB/FC 0.003429553 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' 1.2,3-Trimethylbenzene 238 mg/kg 1.2,4 TMB/FC 0.003429553 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' 1.2,4-Trimethylbenzene 238 mg/kg 1.2,4 TMB/FC 0.003429553 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' 1.3,5-Trimethylbenzene 94.9 mg/kg 1.3,5 TMB/FC 0.00324987 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' 1.4ethylNaphthalene 94.4 mg/kg 1.4mM/FC 0.00324986 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' 2.4ethylNaphthalene 150 mg/kg 2.4NMFC 0.00514639 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Toluene 0.208 mg/kg 3.45 TMB/FC 0.00034986 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Toluene 0.208 mg/kg 3.45 TMB/FC 0.00034986 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Tol	799000 ug/mL	0
NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' T/X 0.04489892 (T/X)/FC 1.54292E-06 CEF-293-9FP	799000 ug/mL	9
NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' E/X 0.36436295 (E/X)/FC 1.25211E-05 CEF-293-9FP	799000 ug/mL	1 1
NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' (B+T)/(E+X) 0.03458994 ((B+T)/(E+X))/FC 1.18866E-06 CEF-293-9FP NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' Fuel Carbon 29100 mg/kg Fuel Carbon 1 CEF-293-9FP NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' 1,2,3-Trimethylbenzene 99.8 mg/kg 1,2,3 TMB/FC 0.003429553 CEF-293-9FP NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' 1,2,4-Trimethylbenzene 96.9 mg/kg 1,2,4 TMB/FC 0.008178694 CEF-293-9FP NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' 1,3,5-Trimethylbenzene 96.9 mg/kg 1,2,5 TMB/FC 0.00324986 CEF-293-9FP NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' 1,3,5-Trimethylbenzene 94.4 mg/kg 1,4,4 TMB/FC 0.00324986 CEF-293-9FP NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' 2-MethylNaphthalene 94.4 mg/kg 1,4,4 TMB/FC 0.00324986 CEF-293-9FP NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB1-8.5' 2-MethylNaphthalene 150 mg/kg 2-MN/FC 0.005154639 CEF-293-9FP NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Dolume 0.208 mg/kg JFC 3.64742E-06 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Dolume 0.208 mg/kg JFC 0.000446809 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Dolume 0.666 mg/kg Dolume/FC 0.00029082432 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Dolume 0.666 mg/kg Dolume/FC 0.0002908298 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' D	799000 ug/mL	10
NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' Fuel Carbon 1 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' 1,2,3-Trimethylbenzene 99.8 mg/kg 1,2,3 TMB/FC 0.003429553 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' 1,2,4-Trimethylbenzene 99.8 mg/kg 1,2,3 TMB/FC 0.008178694 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' 1,3,5-Trimethylbenzene 99.9 mg/kg 1,3,5 TMB/FC 0.003329897 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' 1,3,5-Trimethylbenzene 99.9 mg/kg 1,3,5 TMB/FC 0.003329897 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' 2-MethylNaphthalene 94.4 mg/kg 1-MN/FC 0.0033243986 CEF-293-9FP NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Benzene 0.012 mg/kg 2-MN/FC 0.005154639 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Benzene 0.012 mg/kg Def De	799000 ug/mL	10
NRMRL JP-5	799000 ug/mL	799000
NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' 1,2,4-Trimethylbenzene 238 mg/kg 1,2,4 TMB/FC 0.008178694 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' 1,3,5-Trimethylbenzene 9.9 mg/kg 1,3,5 TMB/FC 0.003243986 CEF-293-9FP NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' 1-MethylNaphthalene 9.9 mg/kg 1.4N/FC 0.003243986 CEF-293-9FP NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' 2-MethylNaphthalene 150 mg/kg 2-MN/FC 0.005154639 CEF-293-9FP NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Benzene 0.012 mg/kg B/FC 3.64742E-06 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Toluene 0.208 mg/kg T/FC 3.62219E-05 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Ethylbenzene 1.47 mg/kg E/FC 0.000446809 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' m-Xylene 3.26 mg/kg m-Xylene/FC 0.00090881 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' D-Xylene 0.666 mg/kg m-Xylene/FC 0.000398176 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' D-Xylene 0.666 mg/kg Mylene/FC 0.000398176 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Total Xylenes (m,p, and o) 5.236 mg/kg XFC 0.001591489 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Total BTEX 6.926 mg/kg B/FC 0.002103167 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' E+X 6.706 mg/kg (E+X)/FC	799000 ug/mL	2740
NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' 1,3,5-Trimethylbenzene 96.9 mg/kg 1,3,5 TMB/FC 0.003329897 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' 1-MethylNaphthalene 94.4 mg/kg 1-MN/FC 0.003324986 CEF-293-9FP NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' 2-MethylNaphthalene 150 mg/kg 2-MN/FC 0.005154639 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Benzene 0.012 mg/kg B/FC 3.64742E-06 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Toluene 0.208 mg/kg T/FC 6.32219E-06 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Ethylbenzene 1.47 mg/kg E/FC 0.000446809 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' m-Xylene 3.26 mg/kg m-Xylene/FC 0.000990881 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' m-Xylene 0.666 mg/kg 0-Xylene/FC 0.000202432 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' D-Xylene 0.666 mg/kg D-Xylene/FC 0.000398176 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Total Xylenes m,p, and o) 5.236 mg/kg X/FC 0.00191489 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Total Xylenes Mg/kg X/FC 0.00191489 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Total Xylenes Mg/kg (B+T)/FC 0.002038288 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/T 0.05769231 (B/F)/FC 2.48124E-06 ASSUMEd	799000 ug/mL	6535
NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' 1-MethylNaphthalene 94.4 mg/kg 1-MN/FC 0.003243986 CEF-293-9FP NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB11-8.5' 2-MethylNaphthalene 150 mg/kg 2-MN/FC 0.005154639 CEF-293-9FP NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB1-8.5' Benzene 0.012 mg/kg B/FC 3.64742E-06 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Toluene 0.208 mg/kg T/FC 6.32219E-05 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Ethylbenzene 1.47 mg/kg E/FC 0.000446809 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' m-Xylene 3.26 mg/kg m-Xylene/FC 0.00090881 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' o-Xylene 0.666 mg/kg m-Xylene/FC 0.000202432 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' o-Xylene 1.31 mg/kg p-Xylene/FC 0.000398176 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' o-Xylene 1.31 mg/kg p-Xylene/FC 0.000398176 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Total Xylene (m,p, and o) 5.236 mg/kg MyFC 0.001519189 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Total Aylene (m,p, and o) 5.236 mg/kg MyFC 0.00215189 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Total Aylene (m,p, and o) 5.236 mg/kg (B+T)/FC 6.68693E-05 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' E+X 6.706 mg/kg (E+X)/FC	799000 ug/mL	2661
NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB1-8.5' 2-MethylNaphthalene 150 mg/kg 2-MN/FC 0.005154639 CEF-293-9FP NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5 Benzene 0.012 mg/kg B/FC 3.64742E-06 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Toluene 0.208 mg/kg T/FC 3.62219E-05 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Ethylbenzene 1.47 mg/kg E/FC 0.000446809 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' m-Xylene 3.26 mg/kg m-Xylene/FC 0.00090881 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' o-Xylene 0.666 mg/kg o-Xylene/FC 0.000398176 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' o-Xylene 1.31 mg/kg p-Xylene/FC 0.000398176 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Total Xylenes (m,p, and o) 5.236 mg/kg M/FC 0.001591489 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Total BTEX 6.926 mg/kg B/FC 0.002105167 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Total BTEX 6.926 mg/kg B/FC 0.002105167 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/F 0.00816327 (B/F)/FC 0.00203828 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/F 0.00816327 (B/F)/FC 2.48124E-06 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/F 0.00816327 (B/F)/FC 2.48124E-06 ASSUMEdens NRMRL JP-5 6/1/1981 ######	799000 ug/mL	2592
NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Benzene 0.012 mg/kg B/FC 3.64742E-06 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Toluene 0.208 mg/kg T/FC 6.32219E-05 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Ethylbenzene 1.47 mg/kg E/FC 0.00046809 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' m-Xylene 3.26 mg/kg m-Xylene/FC 0.000990831 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' o-Xylene 0.666 mg/kg o-Xylene/FC 0.000202432 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' D-Xylene 1.31 mg/kg p-Xylene/FC 0.000398176 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Total Xylenes (m,p, and o) 5.236 mg/kg M/FC 0.001591489 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Total STEX G.926 mg/kg B/FC G.86893E-05 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B+T 0.22 mg/kg (B+T)/FC G.86893E-05 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' E+X G.706 mg/kg (B+T)/FC G.86893E-05 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/F G.900816327 (B/F)/FC G.86893E-05 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/F G.900816327 (B/F)/FC G.86893E-05 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/F G.900816327 (B/F)/FC G.86893E-05 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293,	799000 ug/mL	4119
NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Toluene 0.208 mg/kg T/FC 6.32219E-05 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Ethylbenzene 1.47 mg/kg E/FC 0.000446809 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' m-Xylene 3.26 mg/kg m-Xylene/FC 0.000990881 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' o-Xylene 0.666 mg/kg o-Xylene/FC 0.000202432 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' p-Xylene 1.31 mg/kg p-Xylene/FC 0.000399176 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Total Xylenes (m,p, and o) 5.236 mg/kg M/FC 0.001591489 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Total BTEX 6.926 mg/kg B/FX/FC 0.002105167 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/FT 0.222 mg/kg (B+T)/FC 0.002303288 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' E+X 6.706 mg/kg (B+T)/FC 0.002303288 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/FT 0.05769231 (B/F)/FC 2.48124E-06 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/F 0.00816327 (B/E)/FC 2.48124E-06 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/F 0.00816327 (B/E)/FC 2.48124E-06 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/F 0.00816327 (B/E)/FC 2.48124E-06 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility	799000 ug/mL	3
NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Ethylbenzene 1.47 mg/kg E/FC 0.000446809 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' m-Xylene 3.26 mg/kg m-Xylene/FC 0.00090881 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' p-Xylene 0.666 mg/kg 0-Xylene/FC 0.000202432 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' p-Xylene 1.31 mg/kg p-Xylene/FC 0.000398176 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Total Xylenes (m,p, and o) 5.236 mg/kg X/FC 0.001591489 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Total BTEX 6.926 mg/kg BTEX/FC 0.002105167 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B+T 0.22 mg/kg (B+T)/FC 0.00230828 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' E+X 6.706 mg/kg (E+X)/FC 0.00230828 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/T 0.00769231 (B/T)/FC 2.48124E-06 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/T 0.00769231 (B/T)/FC 2.48124E-06 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/T 0.00769231 (B/T)/FC 2.48124E-06 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/T 0.00769231 (B/T)/FC 2.48124E-06 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/T 0.00769231 (B/T)/FC 2.48124E-06 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil	799000 ug/mL	51
NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' m-Xylene 3.26 mg/kg m-Xylene/FC 0.000990881 ASSUMEdens NRMRL JP-5 6/1/1981 ####### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' O-Xylene 0.666 mg/kg o-Xylene/FC 0.000202432 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' D-Xylene 1.31 mg/kg p-Xylene/FC 0.000398176 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Total Xylenes (m,p, and o) 5.236 mg/kg X/FC 0.001598176 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Total Xylenes (m,p, and o) 5.236 mg/kg X/FC 0.001598176 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B+T 0.22	799000 ug/mL	357
NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' o-Xylene 0.666 mg/kg o-Xylene/FC 0.000202432 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' D-Xylene 1.31 mg/kg p-Xylene/FC 0.000398176 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Total Xylenes (m,p, and o) 5.236 mg/kg X/FC 0.001591489 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Total BTEX 6.926 mg/kg BTEX/FC 0.00215157 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B+T 0.22 mg/kg (B+T)/FC 6.68693E-05 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' E+X 6.706 mg/kg (E+X)/FC 0.00238298 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/T 0.05769231 (B/T)/FC 1.7535TE-05 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/T 0.05769231 (B/F)/FC 2.48124E-06 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/F 0.00816327 (B/E)/FC 2.48124E-06 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/F 0.00816327 (B/E)/FC 2.48124E-06 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/F 0.00816327 (B/E)/FC 2.48124E-06 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/F 0.00816327 (B/E)/FC 2.48124E-06 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/F 0.00816327 (B/E)/FC 2.48124E-06 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/F 0.00816327 (B/E)/FC 2.48124E-06	799000 ug/mL	792
NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' p-Xylene 1.31 mg/kg p-Xylene/FC 0.000398176 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Total Xylenes (m,p, and o) 5.236 mg/kg XFC 0.001591489 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Total BTEX 6.926 mg/kg BTEX/FC 0.002105167 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B+T 0.22 mg/kg (B+T)/FC 6.68693E-05 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' E+X 6.706 mg/kg (E+X)/FC 0.002038288 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/T 0.05769231 (B/T)/FC 1.75357E-05 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/F 0.00816327 (B/E)/FC 2.48124E-06 ASSUMEdens ASSUMEDED ASSUMEDED	799000 ug/mL	162
NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Total Xylenes (m,p, and o) 5.236 mg/kg X/FC 0.001591489 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Total BTEX 6.926 mg/kg BTEX/FC 0.002105167 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B+T 0.22 mg/kg (B+T)/FC 6.68693E-05 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' E+X 6.706 mg/kg (E+X)/FC 0.0023829 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/T 0.05769231 (B/F)/FC 1.75537E-05 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' <t< td=""><td>799000 ug/mL</td><td>318</td></t<>	799000 ug/mL	318
NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' Total BTEX 6.926 mg/kg BTEX/FC 0.002105167 ASSUMEdens NRMRL JP-5 6/1/1981 ####### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B+T 0.22 mg/kg (B+T)/FC 6.88693E-05 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' E+X 6.706 mg/kg (E/T)/FC 0.00238298 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/T 0.05769231 (B/T)/FC 1.75357E-05 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/E 0.00816327 (B/E)/FC 2.48124E-06 ASSUMEdens	799000 ug/mL	1272
NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B+T 0.22 mg/kg (B+T)/FC 6.68693E-05 ASSUMEdens NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' E+X 6.706 mg/kg (E+X)/FC 0.002038298 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/T 0.05769231 (B/T)/FC 1.7535TE-05 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/E 0.00816327 (B/E)/FC 2.48124E-06 ASSUMEdens ASSUM	799000 ug/mL	1682
NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' E+X 6.706 mg/kg (E+X)/FC 0.002038298 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/T 0.05769231 (B/T)/FC 1.75357E-05 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/E 0.00816327 (B/E)/FC 2.48124E-06 ASSUMEdens	799000 ug/mL	53
NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/T 0.05769231 (B/T)/FC 1.75357E-05 ASSUMEdens NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/E 0.00816327 (B/E)/FC 2.48124E-06 ASSUMEdens	799000 ug/mL	1629
NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/E 0.00816327 (B/E)/FC 2.48124E-06 ASSUMEdens	799000 ug/mL	14
	799000 ug/mL	2
NRMRL JP-5 6/1/1981 ##### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' B/X 0.00229183 (B/X)/FC 6.96604E-07 ASSUMEdens	799000 ug/mL	1
NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' T/E 0.1414966 (7/Tc)/FC 4.30081E-05 [ASSUMEdens]	799000 ug/mL	34
NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' T/X 0.03972498 (T/X)/FC 1.20745E-05 ASSUMEdens	799000 ug/mL	10
NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' E/X 0.28074866 (E/X)/FC 8.5339E-05 ASSUMEdens	799000 ug/mL	68
NRMRL JP-5 6/1/1981 ###### Facility 293, Cecil Field NAS, FL Soil CFSB3-8.5' (B+T)/(E+X) 0.03280644 ((B+T)/(E+X))/FC 9.97156E-06 ASSUMEdens	799000 ug/mL	8

Lab Code	Fuel Type	Spill Date	Date	Site Name	Matix	Locid	Analyte	Results Units Flag	FC Analyte	FC Ratio	FPLocid	FPdensity FPunits	SoilFuel (ug/mL)
NRMRL	JP-5	6/1/1981	######	Facility 293, Cecil Field NAS, FL	Soil	CFSB3-8.5'	Fuel Carbon	3290 mg/kg	Fuel Carbon	1	ASSUMEdens	799000 ug/mL	799000
NRMRL	JP-5	6/1/1981	######	Facility 293, Cecil Field NAS, FL	Soil	CFSB3-8.5'	1,2,3-Trimethylbenzene	13.9 mg/kg	1,2,3 TMB/FC	0.004224924	ASSUMEdens	799000 ug/mL	3376
NRMRL	JP-5	6/1/1981	######	Facility 293, Cecil Field NAS, FL	Soil	CFSB3-8.5'	1,2,4-Trimethylbenzene	21.5 mg/kg	1,2,4 TMB/FC	0.006534954	ASSUMEdens	799000 ug/mL	5221
NRMRL	JP-5	6/1/1981	######	Facility 293, Cecil Field NAS, FL	Soil	CFSB3-8.5'	1,3,5-Trimethylbenzene	7.05 mg/kg	1,3,5 TMB/FC	0.002142857	ASSUMEdens	799000 ug/mL	1712
NRMRL	JP-5	6/1/1981	######	Facility 293, Cecil Field NAS, FL	Soil	CFSB3-8.5'	1-MethylNaphthalene	16.4 mg/kg	1-MN/FC		ASSUMEdens		3983
NRMRL	JP-5	6/1/1981	######	Facility 293, Cecil Field NAS, FL	Soil	CFSB3-8.5'	2-MethylNaphthalene	25.5 mg/kg	2-MN/FC	0.00775076	ASSUMEdens	799000 ug/mL	6193

	Fuel Type	Spill Date	Date	Site Name	Matix	Locid	Analyte	Results	Units	Flag FC Analyte	FC Ratio	FPLocid	FPdensity	FPunits	SoilFuel (ug/mL)
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB1-3	Benzene		mg/kg		0.000221739		818000		181
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB1-3	Toluene		2 mg/kg		0.001246377		818000		1020
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB1-3	Ethylbenzene		mg/kg			SJ98-MW1S	818000		1440
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB1-3	m-Xylene		mg/kg			SJ98-MW1S	818000		3142
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB1-3	o-Xylene		mg/kg		0.002144928		818000		1755
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB1-3	p-Xylene		mg/kg		0.001369565		818000		1120
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB1-3	Total Xylenes (m,p, and o)		mg/kg		0.007355072		818000		6016
NRMRL	JP-8			2, Seymour Johnson AFB, SC		SJ98-SB1-3	Total BTEX		mg/kg		0.010584058		818000		8658
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB1-3	B+T		mg/kg		0.001468116		818000		1201
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB1-3	B/T	0.17790698		(B/T)/FC	1.28918E-05		818000		11
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB1-3	B/E	0.12592593		(B/E)/FC	9.12507E-06		818000		/
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil		B/X	0.03014778		(B/X)/FC	2.18462E-06		818000		2
	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB1-3	T/E	0.70781893		(T/E)/FC	5.12912E-05		818000		42
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB1-3	T/X	0.16945813		(T/X)/FC	1.22796E-05		818000		10 14
	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB1-3	E/X	0.23940887		(E/X)/FC	1.73485E-05		818000		
	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB1-3	Fuel Carbon		mg/kg			SJ98-MW1S	818000		818000
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB1-3	1,2,3-Trimethylbenzene		1 mg/kg		0.004376812		818000		3580
	JP-8			2, Seymour Johnson AFB, SC		SJ98-SB1-3	1,2,4-Trimethylbenzene		mg/kg		0.008550725		818000		6994
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB1-3	1,3,5-Trimethylbenzene		mg/kg		0.002775362		818000		2270
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB1-3	1-MethylNaphthalene		mg/kg		0.002536232		818000		2075
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB1-3	2-MethylNaphthalene		mg/kg		0.003804348		818000		3112
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-3	Benzene		mg/kg		0.000164455		812000		134
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-3	Toluene		mg/kg		0.00163981		812000		1332
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-3	Ethylbenzene		mg/kg		0.002563981		812000		2082 3964
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-3	m-Xylene		mg/kg		0.004881517		812000		
	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-3	o-Xylene		mg/kg		0.003175355		812000		2578
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-3	p-Xylene		1 mg/kg		0.001819905		812000		1478
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-3	Total Xylenes (m,p, and o)		1 mg/kg		0.009876777		812000		8020
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-3	Total BTEX		mg/kg		0.014245024		812000		11567
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-3	B+T		mg/kg		0.001804265		812000		1465
	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-3	B/T	0.10028902		(B/T)/FC	4.75303E-06		812000		4
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-3	B/E	0.06414048		(B/E)/FC	3.03983E-06		812000		2
NRMRL NRMRL	JP-8 JP-8			2, Seymour Johnson AFB, SC	Soil Soil		B/X T/E	0.01665067		(B/X)/FC	7.89131E-07 3.03107E-05		812000 812000		25
NRMRL				2, Seymour Johnson AFB, SC		SJ98-SB2-3	T/X	0.63955638		(T/E)/FC					25 6
NRMRL	JP-8 JP-8			2, Seymour Johnson AFB, SC	Soil Soil	SJ98-SB2-3 SJ98-SB2-3	E/X	0.16602687		(T/X)/FC (E/X)/FC	7.86857E-06 1.23032E-05		812000 812000		10
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil							SJ96-IVIP2 SJ98-MP2			812000
	JP-8			2, Seymour Johnson AFB, SC 2, Seymour Johnson AFB, SC		SJ98-SB2-3 SJ98-SB2-3	Fuel Carbon 1,2,3-Trimethylbenzene		mg/kg mg/kg		0.007014218		812000 812000		5696
NRMRL	JP-8			2, Seymour Johnson AFB, SC		SJ98-SB2-3	1,2,4-Trimethylbenzene		mg/kg		0.012606635		812000		10237
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-3	1,3,5-Trimethylbenzene		2 mg/kg		0.003706161		812000		3009
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-3	1-MethylNaphthalene		3 mg/kg		0.003700101		812000		3379
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-3	2-MethylNaphthalene		mg/kg		0.006066351		812000		4926
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-4	Benzene		2 mg/kg		7.87879E-05		812000		64
	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-4	Toluene		mg/kg		0.001268398		812000		1030
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-4	Ethylbenzene		mg/kg		0.001200390		812000		1403
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-4	m-Xylene		mg/kg		0.002796537		812000		2271
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-4	o-Xylene		mg/kg		0.002790337		812000		1462
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-4	p-Xylene		mg/kg		0.000922078		812000		749
	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-4	Total Xylenes (m,p, and o)		mg/kg		0.005519481		812000		4482
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-4	Total BTEX		2 mg/kg		0.008593939		812000		6978
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-4	B+T		2 mg/kg		0.001347186		812000		1094
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-4	B/T	0.06211604		(B/T)/FC	2.68901E-06		812000		2
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil		B/E	0.04561404		(B/E)/FC	1.97463E-06		812000		2
	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-4	B/X	0.01427451		(B/X)/FC	6.17944E-07		812000		1
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-4	T/E	0.73433584		(T/E)/FC	3.17894E-05		812000		26
	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-4	T/X	0.22980392		(T/X)/FC	9.94822E-06		812000		8
	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-4	E/X	0.31294118		(E/X)/FC	1.35472E-05		812000		11
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-4	Fuel Carbon		mg/kg			SJ98-MP2	812000		812000
	JP-8			2, Seymour Johnson AFB, SC		SJ98-SB2-4	1,2,3-Trimethylbenzene		1 mg/kg		0.004246753		812000		3448
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-4	1,2,4-Trimethylbenzene		mg/kg		0.008917749		812000		7241
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-4	1,3,5-Trimethylbenzene		mg/kg		0.002103896		812000		1708
	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-4	1-MethylNaphthalene		1 mg/kg		0.002100000		812000		2123
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJ98-SB2-4	2-MethylNaphthalene		2 mg/kg		0.003774892		812000		3065
	JP-8			2, Seymour Johnson AFB, SC	Soil	SJSB1-5.5'	Benzene		mg/kg		0.000486486		793000		386
NRMRL	JP-8			2, Seymour Johnson AFB, SC	Soil	SJSB1-5.5'	Toluene		mg/kg		0.002914414		793000		2311
	JP-8			2, Seymour Johnson AFB, SC	Soil	SJSB1-5.5'	Ethylbenzene		1 mg/kg		0.002527027		793000		2004
	J. U	17 1000 07		-,,ai ooiiilooii / ii b, 00	Joon	00001 0.0	,	30.1	g,.tg	11.0	3.30L0L10L1	CC. 1111 1 1 C1 1	7 00000	og/III∟	2004

Lab Code	Fuel Type	Spill Date Date	Site Name	Matix	Locid	Analyte	Results	Units	Flag FC Analyte	FC Ratio	FPLocid	FPdensity	FPunits	SoilFuel (ug/mL)
NRMRL	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB1-5.5'	m-Xylene		mg/kg	m-Xylene/FC	0.006846847		793000		5430
NRMRL	JP-8	12/1/1995 5/14/1997 B	Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB1-5.5'	o-Xylene	86.7	mg/kg	o-Xylene/FC	0.003905405	SJMW1SFP	793000	ug/mL	3097
	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB1-5.5'	p-Xylene	53.6	mg/kg	p-Xylene/FC	0.002414414		793000		1915
NRMRL	JP-8		lldg 4522, Seymour Johnson AFB, SC	Soil	SJSB1-5.5'	Total Xylenes (m,p, and o)	292.3	mg/kg	X/FC	0.013166667		793000		10441
NRMRL	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB1-5.5'	Total BTEX		mg/kg	BTEX/FC	0.019094595		793000		15142
NRMRL	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB1-5.5'	B+T	75.5	mg/kg	(B+T)/FC	0.003400901		793000		2697
NRMRL	JP-8	12/1/1995 5/14/1997 B	Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB1-5.5'	E+X	348.4	mg/kg	(E+X)/FC	0.015693694	SJMW1SFP	793000	ug/mL	12445
	JP-8	12/1/1995 5/14/1997 B	Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB1-5.5'	B/T	0.16692427		(B/T)/FC	7.51911E-06		793000	ug/mL	6
NRMRL	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB1-5.5'	B/E	0.19251337		(B/E)/FC	8.67177E-06		793000		7
NRMRL	JP-8	12/1/1995 5/14/1997 B	Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB1-5.5'	B/X	0.03694834	ļ.	(B/X)/FC	1.66434E-06	SJMW1SFP	793000	ug/mL	1
NRMRL	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB1-5.5'	T/E	1.15329768		(T/E)/FC	5.19503E-05		793000		41
NRMRL	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB1-5.5'	T/X	0.22134793	3	(T/X)/FC	9.97063E-06		793000	ug/mL	8
NRMRL	JP-8	12/1/1995 5/14/1997 B	lldg 4522, Seymour Johnson AFB, SC	Soil	SJSB1-5.5'	E/X	0.1919261		(E/X)/FC	8.64532E-06	SJMW1SFP	793000		7
NRMRL	JP-8	12/1/1995 5/14/1997 B	Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB1-5.5'	(B+T)/(E+X)	0.21670494		((B+T)/(E+X))/FC	9.76148E-06	SJMW1SFP	793000		8
	JP-8	12/1/1995 5/14/1997 B	Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB1-5.5'	Fuel Carbon	22200	mg/kg	Fuel Carbon		SJMW1SFP	793000		793000
NRMRL	JP-8	12/1/1995 5/14/1997 B	Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB1-5.5'	1,2,3-Trimethylbenzene	119	mg/kg	1,2,3 TMB/FC	0.00536036	SJMW1SFP	793000	ug/mL	4251
NRMRL	JP-8	12/1/1995 5/14/1997 B	Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB1-5.5'	1,2,4-Trimethylbenzene	269	mg/kg	1,2,4 TMB/FC	0.012117117		793000		9609
NRMRL	JP-8	12/1/1995 5/14/1997 B	Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB1-5.5'	1,3,5-Trimethylbenzene	102	mg/kg	1,3,5 TMB/FC	0.004594595	SJMW1SFP	793000		3644
NRMRL	JP-8	12/1/1995 5/14/1997 B	lldg 4522, Seymour Johnson AFB, SC	Soil	SJSB1-5.5'	1-MethylNaphthalene	62.4	mg/kg	1-MN/FC	0.002810811	SJMW1SFP	793000	ug/mL	2229
NRMRL	JP-8	12/1/1995 5/14/1997 B	lldg 4522, Seymour Johnson AFB, SC	Soil	SJSB1-5.5'	2-MethylNaphthalene	96.9	mg/kg	2-MN/FC	0.004364865	SJMW1SFP	793000	ug/mL	3461
	JP-8	12/1/1995 5/15/1997 B	Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB2-5.5'	Benzene	12.5	mg/kg	B/FC	0.000313283		793000		248
	JP-8	12/1/1995 5/15/1997 B	lldg 4522, Seymour Johnson AFB, SC	Soil	SJSB2-5.5'	Toluene	56.3	mg/kg	T/FC	0.001411028	SJMW1SFP	793000	ug/mL	1119
NRMRL	JP-8	12/1/1995 5/15/1997 B	lldg 4522, Seymour Johnson AFB, SC	Soil	SJSB2-5.5'	Ethylbenzene	75.3	mg/kg	E/FC	0.001887218	SJMW1SFP	793000	ug/mL	1497
NRMRL	JP-8	12/1/1995 5/15/1997 B	lldg 4522, Seymour Johnson AFB, SC	Soil	SJSB2-5.5'	m-Xylene	217	mg/kg	m-Xylene/FC	0.005438596	SJMW1SFP	793000	ug/mL	4313
NRMRL	JP-8	12/1/1995 5/15/1997 B	lldg 4522, Seymour Johnson AFB, SC	Soil	SJSB2-5.5'	o-Xylene	124	mg/kg	o-Xylene/FC	0.003107769	SJMW1SFP	793000	ug/mL	2464
NRMRL	JP-8	12/1/1995 5/15/1997 B	Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB2-5.5'	p-Xylene		mg/kg	p-Xylene/FC	0.001889724	SJMW1SFP	793000	ug/mL	1499
NRMRL	JP-8	12/1/1995 5/15/1997 B	Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB2-5.5'	Total Xylenes (m,p, and o)		mg/kg	X/FC	0.01043609	SJMW1SFP	793000		8276
NRMRL	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB2-5.5'	Total BTEX		mg/kg	BTEX/FC	0.014047619		793000		11140
NRMRL	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB2-5.5'	B+T		mg/kg	(B+T)/FC	0.001724311		793000		1367
NRMRL	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB2-5.5'	E+X		mg/kg	(E+X)/FC	0.012323308	SJMW1SFP	793000		9772
	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB2-5.5'	B/T	0.22202487		(B/T)/FC	5.56453E-06		793000		4
NRMRL	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB2-5.5'	B/E	0.16600266		(B/E)/FC	4.16047E-06		793000		3
	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil		B/X	0.03001921		(B/X)/FC	7.52361E-07		793000		1
NRMRL	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB2-5.5'	T/E	0.74767596		(T/E)/FC	1.87387E-05		793000		15
NRMRL	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB2-5.5'	T/X	0.13520653		(T/X)/FC	3.38863E-06		793000		3
NRMRL	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB2-5.5'	E/X	0.18083573		(E/X)/FC	4.53222E-06		793000		4
NRMRL	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB2-5.5'	(B+T)/(E+X)	0.13992272		((B+T)/(E+X))/FC	3.50684E-06		793000		3
	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB2-5.5'	Fuel Carbon		mg/kg			SJMW1SFP	793000		793000
NRMRL	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB2-5.5'	1,2,3-Trimethylbenzene		mg/kg	1,2,3 TMB/FC	0.005213033		793000		4134
NRMRL	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB2-5.5'	1,2,4-Trimethylbenzene		mg/kg		0.010877193		793000		8626
NRMRL	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB2-5.5'	1,3,5-Trimethylbenzene		mg/kg		0.003909774		793000		3100
NRMRL	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB2-5.5'	1-MethylNaphthalene		mg/kg	1-MN/FC	0.00283208		793000		2246
NRMRL	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	SJSB2-5.5'	2-MethylNaphthalene		mg/kg	2-MN/FC	0.004310777		793000		3418
	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 1	Benzene		mg/kg						no FC data
NRMRL	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 1	Toluene		mg/kg						no FC data
NRMRL	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 1	Ethylbenzene		mg/kg						no FC data
	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 1	m-Xylene		mg/kg						no FC data
NRMRL	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 1	o-Xylene		mg/kg						no FC data
	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 1	p-Xylene		mg/kg						no FC data
NRMRL	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 1	Total Xylenes (m,p, and o)		mg/kg						no FC data
NRMRL	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 1	Total BTEX		mg/kg						no FC data
NRMRL	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 1	B+T		mg/kg						no FC data
NRMRL	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 1	E+X		mg/kg						no FC data
	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 1	B/T	0.35076923							no FC data
NRMRL	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 1	B/E	0.35403727							no FC data
	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 1	B/X	0.08351648							no FC data
	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 1	T/E	1.00931677							no FC data
NRMRL	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 1	T/X	0.23809524							no FC data
	JP-8		Ildg 4522, Seymour Johnson AFB, SC		Soil Sample 1	E/X	0.23589744							no FC data
NRMRL	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 1	(B+T)/(E+X)	0.26022525				 	†		no FC data
NRMRL	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 1	1,2,3-Trimethylbenzene		mg/kg			 	†		no FC data
	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 1	1,2,4-Trimethylbenzene		mg/kg			<u> </u>	<u> </u>		no FC data
NRMRL	JP-8		ldg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 1	1,3,5-Trimethylbenzene		mg/kg			 	 		no FC data
	JP-8		Ildg 4522, Seymour Johnson AFB, SC	Soil		1-MethylNaphthalene					 	 		no FC data
NRMRL	JP-8 JP-8		ldg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 1 Soil Sample 1	2-MethylNaphthalene		mg/kg mg/kg			-	-		no FC data
	JP-8 JP-8		ldg 4522, Seymour Johnson AFB, SC					mg/kg			-	-		no FC data
INIZIVIEZE	JF -0	12/1/1990 1/19/1990 18	nug 4022, Seymour Johnson AFB, SC	Soil	Soil Sample 2	Benzene	11.1	i jilig/kg			[io no data

Lab Code	Fuel Type	Spill Date Date	Site Name	Matix	Locid	Analyte	Results	Units	s Flag	FC Analyte	FC Ratio	FPLocid	FPdensity	FPunits	SoilFuel (ug/mL)
NRMRL	JP-8	12/1/1995 7/19/1996 B	ldg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 2	Toluene	78.6	mg/kg		•					no FC data
NRMRL	JP-8	12/1/1995 7/19/1996 B	ldg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 2	Ethylbenzene	64.2	mg/kg	9						no FC data
NRMRL	JP-8	12/1/1995 7/19/1996 B	ldg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 2	m-Xylene	115	mg/kg	9						no FC data
NRMRL	JP-8	12/1/1995 7/19/1996 B	ldg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 2	o-Xylene		mg/kg							no FC data
NRMRL	JP-8	12/1/1995 7/19/1996 B	ldg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 2	p-Xylene	45.7	mg/kg	9						no FC data
NRMRL	JP-8	12/1/1995 7/19/1996 B	ldg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 2	Total Xylenes (m,p, and o)		mg/kg							no FC data
NRMRL	JP-8	12/1/1995 7/19/1996 B	ldg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 2	Total BTEX	387	mg/kg	9						no FC data
NRMRL	JP-8	12/1/1995 7/19/1996 B	ldg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 2	B+T	89.7	mg/kg	9						no FC data
NRMRL	JP-8		ldg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 2	E+X	297.3	mg/kg	9						no FC data
NRMRL	JP-8	12/1/1995 7/19/1996 B	ldg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 2	B/T	0.14122137	,							no FC data
NRMRL	JP-8	12/1/1995 7/19/1996 B	ldg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 2	B/E	0.1728972	2							no FC data
NRMRL	JP-8	12/1/1995 7/19/1996 B	ldg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 2	B/X	0.04761905	5							no FC data
NRMRL	JP-8	12/1/1995 7/19/1996 B	ldg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 2	T/E	1.22429907	,							no FC data
NRMRL	JP-8	12/1/1995 7/19/1996 B	ldg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 2	T/X	0.33719434	L .							no FC data
NRMRL	JP-8		ldg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 2	E/X	0.27541828	3							no FC data
NRMRL	JP-8	12/1/1995 7/19/1996 B	ldg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 2	(B+T)/(E+X)	0.30171544	ļ							no FC data
NRMRL	JP-8	12/1/1995 7/19/1996 B	ldg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 2	1,2,3-Trimethylbenzene	57.2	mg/kg	q						no FC data
NRMRL	JP-8	12/1/1995 7/19/1996 B	ldg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 2	1,2,4-Trimethylbenzene		mg/kg							no FC data
NRMRL	JP-8	12/1/1995 7/19/1996 B	ldg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 2	1,3,5-Trimethylbenzene	50.6	mg/kg	a						no FC data
NRMRL	JP-8	12/1/1995 7/19/1996 B	ldg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 2	1-MethylNaphthalene		mg/kg							no FC data
NRMRL	JP-8	12/1/1995 7/19/1996 B	ldg 4522, Seymour Johnson AFB, SC	Soil	Soil Sample 2	2-MethylNaphthalene		mg/kg							no FC data
NRMRL	JP-8		P-8 Release Site, Pope AFB, NC	Soil	7POP2	Benzene		mg/kg							no FC data
NRMRL	JP-8		P-8 Release Site, Pope AFB, NC	Soil	7POP2	Toluene		mg/kg							no FC data
NRMRL	JP-8	4/1/1996 7/19/1996 JI	P-8 Release Site, Pope AFB, NC	Soil	7POP2	Ethylbenzene		mg/kg							no FC data
NRMRL	JP-8		P-8 Release Site, Pope AFB, NC	Soil	7POP2	m-Xylene		mg/kg							no FC data
NRMRL	JP-8		P-8 Release Site, Pope AFB, NC	Soil	7POP2	o-Xylene		mg/kg							no FC data
NRMRL	JP-8		P-8 Release Site, Pope AFB, NC	Soil	7POP2	p-Xylene	0.006	mg/kg	a **						no FC data
	JP-8		P-8 Release Site, Pope AFB, NC	Soil	7POP2	Total Xylenes (m,p, and o)		mg/kg							no FC data
NRMRL	JP-8	4/1/1996 7/19/1996 JI	P-8 Release Site, Pope AFB, NC	Soil	7POP2	Total BTEX		mg/kg							no FC data
	JP-8		P-8 Release Site, Pope AFB, NC	Soil	7POP2	B+T		mg/kg							no FC data
NRMRL	JP-8		P-8 Release Site, Pope AFB, NC	Soil	7POP2	E+X		mg/kg							no FC data
NRMRL	JP-8		P-8 Release Site, Pope AFB, NC	Soil	7POP2	B/T	1								no FC data
NRMRL	JP-8		P-8 Release Site, Pope AFB, NC	Soil	7POP2	B/E	1								no FC data
NRMRL	JP-8		P-8 Release Site, Pope AFB, NC	Soil	7POP2	B/X	0.33333333	3							no FC data
	JP-8		P-8 Release Site, Pope AFB, NC	Soil	7POP2	T/E	1								no FC data
NRMRL	JP-8		P-8 Release Site, Pope AFB, NC	Soil	7POP2	T/X	0.33333333	3							no FC data
	JP-8		P-8 Release Site, Pope AFB, NC	Soil	7POP2	E/X	0.33333333								no FC data
NRMRL	JP-8		P-8 Release Site, Pope AFB, NC	Soil	7POP2	(B+T)/(E+X)	0.5								no FC data
	JP-8		P-8 Release Site, Pope AFB, NC	Soil	7POP2	1,2,3-Trimethylbenzene		mg/kg	7 **						no FC data
NRMRL	JP-8		P-8 Release Site, Pope AFB, NC	Soil	7POP2	1,2,4-Trimethylbenzene		mg/kg							no FC data
NRMRL	JP-8		P-8 Release Site, Pope AFB, NC	Soil	7POP2	1,3,5-Trimethylbenzene		mg/kg							no FC data
NRMRL	JP-8		P-8 Release Site, Pope AFB, NC	Soil	7POP2	1-MethylNaphthalene		mg/kg							no FC data
NRMRL	JP-8		P-8 Release Site, Pope AFB, NC	Soil	7POP2	2-MethylNaphthalene		mg/kg							no FC data
	JP-8		P-8 Release Site, Pope AFB, NC	Soil	9POP2	Benzene		mg/kg							no FC data
NRMRL	JP-8		P-8 Release Site, Pope AFB, NC	Soil	9POP2	Toluene		mg/kg							no FC data
NRMRL	JP-8		P-8 Release Site, Pope AFB, NC	Soil	9POP2	Ethylbenzene		mg/kg							no FC data
NRMRL	JP-8		P-8 Release Site, Pope AFB, NC	Soil	9POP2	m-Xylene		mg/kg			 				no FC data
NRMRL	JP-8		P-8 Release Site, Pope AFB, NC	Soil	9POP2	o-Xylene		mg/kg							no FC data
NRMRL	JP-8		P-8 Release Site, Pope AFB, NC	Soil	9POP2	p-Xylene		mg/kg					1		no FC data
NRMRL	JP-8		P-8 Release Site, Pope AFB, NC	Soil	9POP2	Total Xylenes (m,p, and o)		mg/kg			 				no FC data
NRMRL	JP-8		P-8 Release Site. Pope AFB. NC	Soil	9POP2	Total BTEX		mg/kg			†				no FC data
NRMRL	JP-8		P-8 Release Site, Pope AFB, NC	Soil	9POP2	B+T		mg/kg			 				no FC data
NRMRL	JP-8		P-8 Release Site, Pope AFB, NC		9POP2	E+X		mg/kg							no FC data
NRMRL	JP-8		P-8 Release Site, Pope AFB, NC	Soil	9POP2	B/T	0.024	i ingritu	3						no FC data
NRMRL	JP-8		P-8 Release Site, Pope AFB, NC	Soil	9POP2	B/E	1	1	+						no FC data
NRMRL	JP-8		P-8 Release Site, Pope AFB, NC	Soil	9POP2	B/X	0.33333333		+ +						no FC data
NRMRL	JP-8		P-8 Release Site, Pope AFB, NC	Soil	9POP2	T/E	0.00000000	1	+ +						no FC data
NRMRL	JP-8		P-8 Release Site, Pope AFB, NC	Soil	9POP2	T/X	0.33333333	1			+	1	1		no FC data
NRMRL	JP-8 JP-8		P-8 Release Site, Pope AFB, NC P-8 Release Site, Pope AFB, NC	Soil	9POP2	E/X	0.33333333				+	1	1		no FC data
	JP-8 JP-8		P-8 Release Site, Pope AFB, NC P-8 Release Site. Pope AFB, NC	Soil	9POP2 9POP2		0.3333333								no FC data
NRMRL	JP-8 JP-8		P-8 Release Site, Pope AFB, NC P-8 Release Site, Pope AFB, NC	Soil	9POP2 9POP2	(B+T)/(E+X) 1,2,3-Trimethylbenzene		mg/kg							no FC data
NRMRL	JP-8 JP-8		P-8 Release Site, Pope AFB, NC P-8 Release Site, Pope AFB, NC		9POP2	1,2,3-Trimethylbenzene									no FC data
NRMRL	JP-8 JP-8		P-8 Release Site, Pope AFB, NC P-8 Release Site, Pope AFB, NC	Soil	9POP2 9POP2			mg/kg			-				no FC data no FC data
NRMRL	JP-8 JP-8			Soil	9POP2 9POP2	1,3,5-Trimethylbenzene		mg/kg			 				
	JP-8 JP-8		P-8 Release Site, Pope AFB, NC P-8 Release Site, Pope AFB, NC		9POP2 9POP2	1-MethylNaphthalene 2-MethylNaphthalene		mg/kg			 				no FC data no FC data
INICIVIE	JI0	ון ספפו וופו וון טפפו וו י ר	1 -0 INGIGASE SILE, FUPE AFD, INC	JUII	JI UFZ	z-weurynvapriuralene	0.323	mg/kg	y IW		1	I .	1	1	no ro uala

APPENDIX D RESPONSE TO COMMENTS

Item	Page	Para/Line	Comment	Response
1	1-1	Para 2, Line 7	Change "is" to "was".	Text has been revised as requested.
2	3-3	Para 4, Last Sentence	This statement is incorrect. Military facilities are not exempt from responding to catastrophic releases. In the case of DFSP Charleston, the response in 1974 used the best available technology for the 1970's. Luckily, things have improved and we can truly clean the stuff up.	The sentence was changed to read: "However, site selection criterion #4 is typically not fulfilled on industrial sites, because catastrophic releases at these sites trigger legally required emergency response cleanup actions".
3	4-2	DFSP Charleston, Line 2	Change "UGSG" to "USGS".	Text has been revised as requested.
4	4-5	Para 2, Line 4	Change "resamped" to "resampled".	Text has been revised as requested.
5	5-22	Section 5.2.3.4, Para 2, Line 5	Delete "may be related to a continued release of fuel compounds or" and replace with "are most likely due to". There are no new sources of product. The free product appears to be trapped under the clay lenses and released when the water table drops.	Text has been revised as requested.